Don't show supervised user as "already on this device" while they're being imported.
[chromium-blink-merge.git] / cc / scheduler / delay_based_time_source.cc
blobf9c06ea044c867dcba867b26ef237cb7e9f345bc
1 // Copyright 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/scheduler/delay_based_time_source.h"
7 #include <algorithm>
8 #include <cmath>
9 #include <string>
11 #include "base/bind.h"
12 #include "base/location.h"
13 #include "base/logging.h"
14 #include "base/single_thread_task_runner.h"
15 #include "base/trace_event/trace_event.h"
16 #include "base/trace_event/trace_event_argument.h"
18 namespace cc {
20 namespace {
22 // kDoubleTickDivisor prevents ticks from running within the specified
23 // fraction of an interval. This helps account for jitter in the timebase as
24 // well as quick timer reactivation.
25 static const int kDoubleTickDivisor = 2;
27 // kIntervalChangeThreshold is the fraction of the interval that will trigger an
28 // immediate interval change. kPhaseChangeThreshold is the fraction of the
29 // interval that will trigger an immediate phase change. If the changes are
30 // within the thresholds, the change will take place on the next tick. If
31 // either change is outside the thresholds, the next tick will be canceled and
32 // reissued immediately.
33 static const double kIntervalChangeThreshold = 0.25;
34 static const double kPhaseChangeThreshold = 0.25;
36 } // namespace
38 // The following methods correspond to the DelayBasedTimeSource that uses
39 // the base::TimeTicks::Now as the timebase.
40 scoped_refptr<DelayBasedTimeSource> DelayBasedTimeSource::Create(
41 base::TimeDelta interval,
42 base::SingleThreadTaskRunner* task_runner) {
43 return make_scoped_refptr(new DelayBasedTimeSource(interval, task_runner));
46 DelayBasedTimeSource::DelayBasedTimeSource(
47 base::TimeDelta interval,
48 base::SingleThreadTaskRunner* task_runner)
49 : client_(NULL),
50 last_tick_time_(base::TimeTicks() - interval),
51 current_parameters_(interval, base::TimeTicks()),
52 next_parameters_(interval, base::TimeTicks()),
53 active_(false),
54 task_runner_(task_runner),
55 weak_factory_(this) {
56 DCHECK_GT(interval.ToInternalValue(), 0);
59 DelayBasedTimeSource::~DelayBasedTimeSource() {}
61 base::TimeTicks DelayBasedTimeSource::SetActive(bool active) {
62 TRACE_EVENT1("cc", "DelayBasedTimeSource::SetActive", "active", active);
63 if (active == active_)
64 return base::TimeTicks();
65 active_ = active;
67 if (!active_) {
68 weak_factory_.InvalidateWeakPtrs();
69 return base::TimeTicks();
72 PostNextTickTask(Now());
74 // Determine if there was a tick that was missed while not active.
75 base::TimeTicks last_tick_time_if_always_active =
76 current_parameters_.tick_target - current_parameters_.interval;
77 base::TimeTicks new_tick_time_threshold =
78 last_tick_time_ + current_parameters_.interval / kDoubleTickDivisor;
79 if (last_tick_time_if_always_active > new_tick_time_threshold) {
80 last_tick_time_ = last_tick_time_if_always_active;
81 return last_tick_time_;
84 return base::TimeTicks();
87 bool DelayBasedTimeSource::Active() const { return active_; }
89 base::TimeTicks DelayBasedTimeSource::LastTickTime() const {
90 return last_tick_time_;
93 base::TimeTicks DelayBasedTimeSource::NextTickTime() const {
94 return Active() ? current_parameters_.tick_target : base::TimeTicks();
97 void DelayBasedTimeSource::OnTimerFired() {
98 DCHECK(active_);
100 last_tick_time_ = current_parameters_.tick_target;
102 PostNextTickTask(Now());
104 // Fire the tick.
105 if (client_)
106 client_->OnTimerTick();
109 void DelayBasedTimeSource::SetClient(TimeSourceClient* client) {
110 client_ = client;
113 void DelayBasedTimeSource::SetTimebaseAndInterval(base::TimeTicks timebase,
114 base::TimeDelta interval) {
115 DCHECK_GT(interval.ToInternalValue(), 0);
116 next_parameters_.interval = interval;
117 next_parameters_.tick_target = timebase;
119 if (!active_) {
120 // If we aren't active, there's no need to reset the timer.
121 return;
124 // If the change in interval is larger than the change threshold,
125 // request an immediate reset.
126 double interval_delta =
127 std::abs((interval - current_parameters_.interval).InSecondsF());
128 double interval_change = interval_delta / interval.InSecondsF();
129 if (interval_change > kIntervalChangeThreshold) {
130 TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::IntervalChanged",
131 TRACE_EVENT_SCOPE_THREAD);
132 SetActive(false);
133 SetActive(true);
134 return;
137 // If the change in phase is greater than the change threshold in either
138 // direction, request an immediate reset. This logic might result in a false
139 // negative if there is a simultaneous small change in the interval and the
140 // fmod just happens to return something near zero. Assuming the timebase
141 // is very recent though, which it should be, we'll still be ok because the
142 // old clock and new clock just happen to line up.
143 double target_delta =
144 std::abs((timebase - current_parameters_.tick_target).InSecondsF());
145 double phase_change =
146 fmod(target_delta, interval.InSecondsF()) / interval.InSecondsF();
147 if (phase_change > kPhaseChangeThreshold &&
148 phase_change < (1.0 - kPhaseChangeThreshold)) {
149 TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::PhaseChanged",
150 TRACE_EVENT_SCOPE_THREAD);
151 SetActive(false);
152 SetActive(true);
153 return;
157 base::TimeTicks DelayBasedTimeSource::Now() const {
158 return base::TimeTicks::Now();
161 // This code tries to achieve an average tick rate as close to interval_ as
162 // possible. To do this, it has to deal with a few basic issues:
163 // 1. PostDelayedTask can delay only at a millisecond granularity. So, 16.666
164 // has to posted as 16 or 17.
165 // 2. A delayed task may come back a bit late (a few ms), or really late
166 // (frames later)
168 // The basic idea with this scheduler here is to keep track of where we *want*
169 // to run in tick_target_. We update this with the exact interval.
171 // Then, when we post our task, we take the floor of (tick_target_ and Now()).
172 // If we started at now=0, and 60FPs (all times in milliseconds):
173 // now=0 target=16.667 PostDelayedTask(16)
175 // When our callback runs, we figure out how far off we were from that goal.
176 // Because of the flooring operation, and assuming our timer runs exactly when
177 // it should, this yields:
178 // now=16 target=16.667
180 // Since we can't post a 0.667 ms task to get to now=16, we just treat this as a
181 // tick. Then, we update target to be 33.333. We now post another task based on
182 // the difference between our target and now:
183 // now=16 tick_target=16.667 new_target=33.333 -->
184 // PostDelayedTask(floor(33.333 - 16)) --> PostDelayedTask(17)
186 // Over time, with no late tasks, this leads to us posting tasks like this:
187 // now=0 tick_target=0 new_target=16.667 -->
188 // tick(), PostDelayedTask(16)
189 // now=16 tick_target=16.667 new_target=33.333 -->
190 // tick(), PostDelayedTask(17)
191 // now=33 tick_target=33.333 new_target=50.000 -->
192 // tick(), PostDelayedTask(17)
193 // now=50 tick_target=50.000 new_target=66.667 -->
194 // tick(), PostDelayedTask(16)
196 // We treat delays in tasks differently depending on the amount of delay we
197 // encounter. Suppose we posted a task with a target=16.667:
198 // Case 1: late but not unrecoverably-so
199 // now=18 tick_target=16.667
201 // Case 2: so late we obviously missed the tick
202 // now=25.0 tick_target=16.667
204 // We treat the first case as a tick anyway, and assume the delay was unusual.
205 // Thus, we compute the new_target based on the old timebase:
206 // now=18 tick_target=16.667 new_target=33.333 -->
207 // tick(), PostDelayedTask(floor(33.333-18)) --> PostDelayedTask(15)
208 // This brings us back to 18+15 = 33, which was where we would have been if the
209 // task hadn't been late.
211 // For the really late delay, we we move to the next logical tick. The timebase
212 // is not reset.
213 // now=37 tick_target=16.667 new_target=50.000 -->
214 // tick(), PostDelayedTask(floor(50.000-37)) --> PostDelayedTask(13)
215 base::TimeTicks DelayBasedTimeSource::NextTickTarget(base::TimeTicks now) {
216 base::TimeTicks new_tick_target = now.SnappedToNextTick(
217 next_parameters_.tick_target, next_parameters_.interval);
218 DCHECK(now <= new_tick_target)
219 << "now = " << now.ToInternalValue()
220 << "; new_tick_target = " << new_tick_target.ToInternalValue()
221 << "; new_interval = " << next_parameters_.interval.InMicroseconds()
222 << "; tick_target = " << next_parameters_.tick_target.ToInternalValue();
224 // Avoid double ticks when:
225 // 1) Turning off the timer and turning it right back on.
226 // 2) Jittery data is passed to SetTimebaseAndInterval().
227 if (new_tick_target - last_tick_time_ <=
228 next_parameters_.interval / kDoubleTickDivisor)
229 new_tick_target += next_parameters_.interval;
231 return new_tick_target;
234 void DelayBasedTimeSource::PostNextTickTask(base::TimeTicks now) {
235 base::TimeTicks new_tick_target = NextTickTarget(now);
237 // Post another task *before* the tick and update state
238 base::TimeDelta delay;
239 if (now <= new_tick_target)
240 delay = new_tick_target - now;
241 task_runner_->PostDelayedTask(FROM_HERE,
242 base::Bind(&DelayBasedTimeSource::OnTimerFired,
243 weak_factory_.GetWeakPtr()),
244 delay);
246 next_parameters_.tick_target = new_tick_target;
247 current_parameters_ = next_parameters_;
250 std::string DelayBasedTimeSource::TypeString() const {
251 return "DelayBasedTimeSource";
254 void DelayBasedTimeSource::AsValueInto(
255 base::trace_event::TracedValue* state) const {
256 state->SetString("type", TypeString());
257 state->SetDouble("last_tick_time_us", LastTickTime().ToInternalValue());
258 state->SetDouble("next_tick_time_us", NextTickTime().ToInternalValue());
260 state->BeginDictionary("current_parameters");
261 state->SetDouble("interval_us",
262 current_parameters_.interval.InMicroseconds());
263 state->SetDouble("tick_target_us",
264 current_parameters_.tick_target.ToInternalValue());
265 state->EndDictionary();
267 state->BeginDictionary("next_parameters");
268 state->SetDouble("interval_us", next_parameters_.interval.InMicroseconds());
269 state->SetDouble("tick_target_us",
270 next_parameters_.tick_target.ToInternalValue());
271 state->EndDictionary();
273 state->SetBoolean("active", active_);
276 } // namespace cc