gpu: Convert egl_main_native target to GN build.
[chromium-blink-merge.git] / base / tracked_objects.cc
blobf7ee6da2eff7729fa21684c4a771ca59002dea10
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/tracked_objects.h"
7 #include <limits.h>
8 #include <stdlib.h>
10 #include "base/atomicops.h"
11 #include "base/base_switches.h"
12 #include "base/command_line.h"
13 #include "base/compiler_specific.h"
14 #include "base/debug/leak_annotations.h"
15 #include "base/logging.h"
16 #include "base/process/process_handle.h"
17 #include "base/profiler/alternate_timer.h"
18 #include "base/strings/stringprintf.h"
19 #include "base/third_party/valgrind/memcheck.h"
20 #include "base/tracking_info.h"
22 using base::TimeDelta;
24 namespace base {
25 class TimeDelta;
28 namespace tracked_objects {
30 namespace {
31 // Flag to compile out almost all of the task tracking code.
32 const bool kTrackAllTaskObjects = true;
34 // TODO(jar): Evaluate the perf impact of enabling this. If the perf impact is
35 // negligible, enable by default.
36 // Flag to compile out parent-child link recording.
37 const bool kTrackParentChildLinks = false;
39 // When ThreadData is first initialized, should we start in an ACTIVE state to
40 // record all of the startup-time tasks, or should we start up DEACTIVATED, so
41 // that we only record after parsing the command line flag --enable-tracking.
42 // Note that the flag may force either state, so this really controls only the
43 // period of time up until that flag is parsed. If there is no flag seen, then
44 // this state may prevail for much or all of the process lifetime.
45 const ThreadData::Status kInitialStartupState =
46 ThreadData::PROFILING_CHILDREN_ACTIVE;
48 // Control whether an alternate time source (Now() function) is supported by
49 // the ThreadData class. This compile time flag should be set to true if we
50 // want other modules (such as a memory allocator, or a thread-specific CPU time
51 // clock) to be able to provide a thread-specific Now() function. Without this
52 // compile-time flag, the code will only support the wall-clock time. This flag
53 // can be flipped to efficiently disable this path (if there is a performance
54 // problem with its presence).
55 static const bool kAllowAlternateTimeSourceHandling = true;
57 // Possible states of the profiler timing enabledness.
58 enum {
59 UNDEFINED_TIMING,
60 ENABLED_TIMING,
61 DISABLED_TIMING,
64 // State of the profiler timing enabledness.
65 base::subtle::Atomic32 g_profiler_timing_enabled = UNDEFINED_TIMING;
67 // Returns whether profiler timing is enabled. The default is true, but this may
68 // be overridden by a command-line flag. Some platforms may programmatically set
69 // this command-line flag to the "off" value if it's not specified.
70 // This in turn can be overridden by explicitly calling
71 // ThreadData::EnableProfilerTiming, say, based on a field trial.
72 inline bool IsProfilerTimingEnabled() {
73 // Reading |g_profiler_timing_enabled| is done without barrier because
74 // multiple initialization is not an issue while the barrier can be relatively
75 // costly given that this method is sometimes called in a tight loop.
76 base::subtle::Atomic32 current_timing_enabled =
77 base::subtle::NoBarrier_Load(&g_profiler_timing_enabled);
78 if (current_timing_enabled == UNDEFINED_TIMING) {
79 if (!base::CommandLine::InitializedForCurrentProcess())
80 return true;
81 current_timing_enabled =
82 (base::CommandLine::ForCurrentProcess()->GetSwitchValueASCII(
83 switches::kProfilerTiming) ==
84 switches::kProfilerTimingDisabledValue)
85 ? DISABLED_TIMING
86 : ENABLED_TIMING;
87 base::subtle::NoBarrier_Store(&g_profiler_timing_enabled,
88 current_timing_enabled);
90 return current_timing_enabled == ENABLED_TIMING;
93 } // namespace
95 //------------------------------------------------------------------------------
96 // DeathData tallies durations when a death takes place.
98 DeathData::DeathData() {
99 Clear();
102 DeathData::DeathData(int count) {
103 Clear();
104 count_ = count;
107 // TODO(jar): I need to see if this macro to optimize branching is worth using.
109 // This macro has no branching, so it is surely fast, and is equivalent to:
110 // if (assign_it)
111 // target = source;
112 // We use a macro rather than a template to force this to inline.
113 // Related code for calculating max is discussed on the web.
114 #define CONDITIONAL_ASSIGN(assign_it, target, source) \
115 ((target) ^= ((target) ^ (source)) & -static_cast<int32>(assign_it))
117 void DeathData::RecordDeath(const int32 queue_duration,
118 const int32 run_duration,
119 const uint32 random_number) {
120 // We'll just clamp at INT_MAX, but we should note this in the UI as such.
121 if (count_ < INT_MAX)
122 ++count_;
123 queue_duration_sum_ += queue_duration;
124 run_duration_sum_ += run_duration;
126 if (queue_duration_max_ < queue_duration)
127 queue_duration_max_ = queue_duration;
128 if (run_duration_max_ < run_duration)
129 run_duration_max_ = run_duration;
131 // Take a uniformly distributed sample over all durations ever supplied.
132 // The probability that we (instead) use this new sample is 1/count_. This
133 // results in a completely uniform selection of the sample (at least when we
134 // don't clamp count_... but that should be inconsequentially likely).
135 // We ignore the fact that we correlated our selection of a sample to the run
136 // and queue times (i.e., we used them to generate random_number).
137 CHECK_GT(count_, 0);
138 if (0 == (random_number % count_)) {
139 queue_duration_sample_ = queue_duration;
140 run_duration_sample_ = run_duration;
144 int DeathData::count() const { return count_; }
146 int32 DeathData::run_duration_sum() const { return run_duration_sum_; }
148 int32 DeathData::run_duration_max() const { return run_duration_max_; }
150 int32 DeathData::run_duration_sample() const {
151 return run_duration_sample_;
154 int32 DeathData::queue_duration_sum() const {
155 return queue_duration_sum_;
158 int32 DeathData::queue_duration_max() const {
159 return queue_duration_max_;
162 int32 DeathData::queue_duration_sample() const {
163 return queue_duration_sample_;
166 void DeathData::Clear() {
167 count_ = 0;
168 run_duration_sum_ = 0;
169 run_duration_max_ = 0;
170 run_duration_sample_ = 0;
171 queue_duration_sum_ = 0;
172 queue_duration_max_ = 0;
173 queue_duration_sample_ = 0;
176 //------------------------------------------------------------------------------
177 DeathDataSnapshot::DeathDataSnapshot()
178 : count(-1),
179 run_duration_sum(-1),
180 run_duration_max(-1),
181 run_duration_sample(-1),
182 queue_duration_sum(-1),
183 queue_duration_max(-1),
184 queue_duration_sample(-1) {
187 DeathDataSnapshot::DeathDataSnapshot(
188 const tracked_objects::DeathData& death_data)
189 : count(death_data.count()),
190 run_duration_sum(death_data.run_duration_sum()),
191 run_duration_max(death_data.run_duration_max()),
192 run_duration_sample(death_data.run_duration_sample()),
193 queue_duration_sum(death_data.queue_duration_sum()),
194 queue_duration_max(death_data.queue_duration_max()),
195 queue_duration_sample(death_data.queue_duration_sample()) {
198 DeathDataSnapshot::~DeathDataSnapshot() {
201 //------------------------------------------------------------------------------
202 BirthOnThread::BirthOnThread(const Location& location,
203 const ThreadData& current)
204 : location_(location),
205 birth_thread_(&current) {
208 //------------------------------------------------------------------------------
209 BirthOnThreadSnapshot::BirthOnThreadSnapshot() {
212 BirthOnThreadSnapshot::BirthOnThreadSnapshot(
213 const tracked_objects::BirthOnThread& birth)
214 : location(birth.location()),
215 thread_name(birth.birth_thread()->thread_name()) {
218 BirthOnThreadSnapshot::~BirthOnThreadSnapshot() {
221 //------------------------------------------------------------------------------
222 Births::Births(const Location& location, const ThreadData& current)
223 : BirthOnThread(location, current),
224 birth_count_(1) { }
226 int Births::birth_count() const { return birth_count_; }
228 void Births::RecordBirth() { ++birth_count_; }
230 void Births::ForgetBirth() { --birth_count_; }
232 void Births::Clear() { birth_count_ = 0; }
234 //------------------------------------------------------------------------------
235 // ThreadData maintains the central data for all births and deaths on a single
236 // thread.
238 // TODO(jar): We should pull all these static vars together, into a struct, and
239 // optimize layout so that we benefit from locality of reference during accesses
240 // to them.
242 // static
243 NowFunction* ThreadData::now_function_ = NULL;
245 // static
246 bool ThreadData::now_function_is_time_ = false;
248 // A TLS slot which points to the ThreadData instance for the current thread. We
249 // do a fake initialization here (zeroing out data), and then the real in-place
250 // construction happens when we call tls_index_.Initialize().
251 // static
252 base::ThreadLocalStorage::StaticSlot ThreadData::tls_index_ = TLS_INITIALIZER;
254 // static
255 int ThreadData::worker_thread_data_creation_count_ = 0;
257 // static
258 int ThreadData::cleanup_count_ = 0;
260 // static
261 int ThreadData::incarnation_counter_ = 0;
263 // static
264 ThreadData* ThreadData::all_thread_data_list_head_ = NULL;
266 // static
267 ThreadData* ThreadData::first_retired_worker_ = NULL;
269 // static
270 base::LazyInstance<base::Lock>::Leaky
271 ThreadData::list_lock_ = LAZY_INSTANCE_INITIALIZER;
273 // static
274 ThreadData::Status ThreadData::status_ = ThreadData::UNINITIALIZED;
276 ThreadData::ThreadData(const std::string& suggested_name)
277 : next_(NULL),
278 next_retired_worker_(NULL),
279 worker_thread_number_(0),
280 incarnation_count_for_pool_(-1),
281 current_stopwatch_(NULL) {
282 DCHECK_GE(suggested_name.size(), 0u);
283 thread_name_ = suggested_name;
284 PushToHeadOfList(); // Which sets real incarnation_count_for_pool_.
287 ThreadData::ThreadData(int thread_number)
288 : next_(NULL),
289 next_retired_worker_(NULL),
290 worker_thread_number_(thread_number),
291 incarnation_count_for_pool_(-1),
292 current_stopwatch_(NULL) {
293 CHECK_GT(thread_number, 0);
294 base::StringAppendF(&thread_name_, "WorkerThread-%d", thread_number);
295 PushToHeadOfList(); // Which sets real incarnation_count_for_pool_.
298 ThreadData::~ThreadData() {}
300 void ThreadData::PushToHeadOfList() {
301 // Toss in a hint of randomness (atop the uniniitalized value).
302 (void)VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(&random_number_,
303 sizeof(random_number_));
304 MSAN_UNPOISON(&random_number_, sizeof(random_number_));
305 random_number_ += static_cast<uint32>(this - static_cast<ThreadData*>(0));
306 random_number_ ^= (Now() - TrackedTime()).InMilliseconds();
308 DCHECK(!next_);
309 base::AutoLock lock(*list_lock_.Pointer());
310 incarnation_count_for_pool_ = incarnation_counter_;
311 next_ = all_thread_data_list_head_;
312 all_thread_data_list_head_ = this;
315 // static
316 ThreadData* ThreadData::first() {
317 base::AutoLock lock(*list_lock_.Pointer());
318 return all_thread_data_list_head_;
321 ThreadData* ThreadData::next() const { return next_; }
323 // static
324 void ThreadData::InitializeThreadContext(const std::string& suggested_name) {
325 if (!Initialize()) // Always initialize if needed.
326 return;
327 ThreadData* current_thread_data =
328 reinterpret_cast<ThreadData*>(tls_index_.Get());
329 if (current_thread_data)
330 return; // Browser tests instigate this.
331 current_thread_data = new ThreadData(suggested_name);
332 tls_index_.Set(current_thread_data);
335 // static
336 ThreadData* ThreadData::Get() {
337 if (!tls_index_.initialized())
338 return NULL; // For unittests only.
339 ThreadData* registered = reinterpret_cast<ThreadData*>(tls_index_.Get());
340 if (registered)
341 return registered;
343 // We must be a worker thread, since we didn't pre-register.
344 ThreadData* worker_thread_data = NULL;
345 int worker_thread_number = 0;
347 base::AutoLock lock(*list_lock_.Pointer());
348 if (first_retired_worker_) {
349 worker_thread_data = first_retired_worker_;
350 first_retired_worker_ = first_retired_worker_->next_retired_worker_;
351 worker_thread_data->next_retired_worker_ = NULL;
352 } else {
353 worker_thread_number = ++worker_thread_data_creation_count_;
357 // If we can't find a previously used instance, then we have to create one.
358 if (!worker_thread_data) {
359 DCHECK_GT(worker_thread_number, 0);
360 worker_thread_data = new ThreadData(worker_thread_number);
362 DCHECK_GT(worker_thread_data->worker_thread_number_, 0);
364 tls_index_.Set(worker_thread_data);
365 return worker_thread_data;
368 // static
369 void ThreadData::OnThreadTermination(void* thread_data) {
370 DCHECK(thread_data); // TLS should *never* call us with a NULL.
371 // We must NOT do any allocations during this callback. There is a chance
372 // that the allocator is no longer active on this thread.
373 if (!kTrackAllTaskObjects)
374 return; // Not compiled in.
375 reinterpret_cast<ThreadData*>(thread_data)->OnThreadTerminationCleanup();
378 void ThreadData::OnThreadTerminationCleanup() {
379 // The list_lock_ was created when we registered the callback, so it won't be
380 // allocated here despite the lazy reference.
381 base::AutoLock lock(*list_lock_.Pointer());
382 if (incarnation_counter_ != incarnation_count_for_pool_)
383 return; // ThreadData was constructed in an earlier unit test.
384 ++cleanup_count_;
385 // Only worker threads need to be retired and reused.
386 if (!worker_thread_number_) {
387 return;
389 // We must NOT do any allocations during this callback.
390 // Using the simple linked lists avoids all allocations.
391 DCHECK_EQ(this->next_retired_worker_, reinterpret_cast<ThreadData*>(NULL));
392 this->next_retired_worker_ = first_retired_worker_;
393 first_retired_worker_ = this;
396 // static
397 void ThreadData::Snapshot(ProcessDataSnapshot* process_data) {
398 // Add births that have run to completion to |collected_data|.
399 // |birth_counts| tracks the total number of births recorded at each location
400 // for which we have not seen a death count.
401 BirthCountMap birth_counts;
402 ThreadData::SnapshotAllExecutedTasks(process_data, &birth_counts);
404 // Add births that are still active -- i.e. objects that have tallied a birth,
405 // but have not yet tallied a matching death, and hence must be either
406 // running, queued up, or being held in limbo for future posting.
407 for (BirthCountMap::const_iterator it = birth_counts.begin();
408 it != birth_counts.end(); ++it) {
409 if (it->second > 0) {
410 process_data->tasks.push_back(
411 TaskSnapshot(*it->first, DeathData(it->second), "Still_Alive"));
416 Births* ThreadData::TallyABirth(const Location& location) {
417 BirthMap::iterator it = birth_map_.find(location);
418 Births* child;
419 if (it != birth_map_.end()) {
420 child = it->second;
421 child->RecordBirth();
422 } else {
423 child = new Births(location, *this); // Leak this.
424 // Lock since the map may get relocated now, and other threads sometimes
425 // snapshot it (but they lock before copying it).
426 base::AutoLock lock(map_lock_);
427 birth_map_[location] = child;
430 if (kTrackParentChildLinks && status_ > PROFILING_ACTIVE &&
431 !parent_stack_.empty()) {
432 const Births* parent = parent_stack_.top();
433 ParentChildPair pair(parent, child);
434 if (parent_child_set_.find(pair) == parent_child_set_.end()) {
435 // Lock since the map may get relocated now, and other threads sometimes
436 // snapshot it (but they lock before copying it).
437 base::AutoLock lock(map_lock_);
438 parent_child_set_.insert(pair);
442 return child;
445 void ThreadData::TallyADeath(const Births& birth,
446 int32 queue_duration,
447 const TaskStopwatch& stopwatch) {
448 int32 run_duration = stopwatch.RunDurationMs();
450 // Stir in some randomness, plus add constant in case durations are zero.
451 const uint32 kSomePrimeNumber = 2147483647;
452 random_number_ += queue_duration + run_duration + kSomePrimeNumber;
453 // An address is going to have some randomness to it as well ;-).
454 random_number_ ^= static_cast<uint32>(&birth - reinterpret_cast<Births*>(0));
456 // We don't have queue durations without OS timer. OS timer is automatically
457 // used for task-post-timing, so the use of an alternate timer implies all
458 // queue times are invalid, unless it was explicitly said that we can trust
459 // the alternate timer.
460 if (kAllowAlternateTimeSourceHandling &&
461 now_function_ &&
462 !now_function_is_time_) {
463 queue_duration = 0;
466 DeathMap::iterator it = death_map_.find(&birth);
467 DeathData* death_data;
468 if (it != death_map_.end()) {
469 death_data = &it->second;
470 } else {
471 base::AutoLock lock(map_lock_); // Lock as the map may get relocated now.
472 death_data = &death_map_[&birth];
473 } // Release lock ASAP.
474 death_data->RecordDeath(queue_duration, run_duration, random_number_);
476 if (!kTrackParentChildLinks)
477 return;
478 if (!parent_stack_.empty()) { // We might get turned off.
479 DCHECK_EQ(parent_stack_.top(), &birth);
480 parent_stack_.pop();
484 // static
485 Births* ThreadData::TallyABirthIfActive(const Location& location) {
486 if (!kTrackAllTaskObjects)
487 return NULL; // Not compiled in.
489 if (!TrackingStatus())
490 return NULL;
491 ThreadData* current_thread_data = Get();
492 if (!current_thread_data)
493 return NULL;
494 return current_thread_data->TallyABirth(location);
497 // static
498 void ThreadData::TallyRunOnNamedThreadIfTracking(
499 const base::TrackingInfo& completed_task,
500 const TaskStopwatch& stopwatch) {
501 if (!kTrackAllTaskObjects)
502 return; // Not compiled in.
504 // Even if we have been DEACTIVATED, we will process any pending births so
505 // that our data structures (which counted the outstanding births) remain
506 // consistent.
507 const Births* birth = completed_task.birth_tally;
508 if (!birth)
509 return;
510 ThreadData* current_thread_data = stopwatch.GetThreadData();
511 if (!current_thread_data)
512 return;
514 // Watch out for a race where status_ is changing, and hence one or both
515 // of start_of_run or end_of_run is zero. In that case, we didn't bother to
516 // get a time value since we "weren't tracking" and we were trying to be
517 // efficient by not calling for a genuine time value. For simplicity, we'll
518 // use a default zero duration when we can't calculate a true value.
519 TrackedTime start_of_run = stopwatch.StartTime();
520 int32 queue_duration = 0;
521 if (!start_of_run.is_null()) {
522 queue_duration = (start_of_run - completed_task.EffectiveTimePosted())
523 .InMilliseconds();
525 current_thread_data->TallyADeath(*birth, queue_duration, stopwatch);
528 // static
529 void ThreadData::TallyRunOnWorkerThreadIfTracking(
530 const Births* birth,
531 const TrackedTime& time_posted,
532 const TaskStopwatch& stopwatch) {
533 if (!kTrackAllTaskObjects)
534 return; // Not compiled in.
536 // Even if we have been DEACTIVATED, we will process any pending births so
537 // that our data structures (which counted the outstanding births) remain
538 // consistent.
539 if (!birth)
540 return;
542 // TODO(jar): Support the option to coalesce all worker-thread activity under
543 // one ThreadData instance that uses locks to protect *all* access. This will
544 // reduce memory (making it provably bounded), but run incrementally slower
545 // (since we'll use locks on TallyABirth and TallyADeath). The good news is
546 // that the locks on TallyADeath will be *after* the worker thread has run,
547 // and hence nothing will be waiting for the completion (... besides some
548 // other thread that might like to run). Also, the worker threads tasks are
549 // generally longer, and hence the cost of the lock may perchance be amortized
550 // over the long task's lifetime.
551 ThreadData* current_thread_data = stopwatch.GetThreadData();
552 if (!current_thread_data)
553 return;
555 TrackedTime start_of_run = stopwatch.StartTime();
556 int32 queue_duration = 0;
557 if (!start_of_run.is_null()) {
558 queue_duration = (start_of_run - time_posted).InMilliseconds();
560 current_thread_data->TallyADeath(*birth, queue_duration, stopwatch);
563 // static
564 void ThreadData::TallyRunInAScopedRegionIfTracking(
565 const Births* birth,
566 const TaskStopwatch& stopwatch) {
567 if (!kTrackAllTaskObjects)
568 return; // Not compiled in.
570 // Even if we have been DEACTIVATED, we will process any pending births so
571 // that our data structures (which counted the outstanding births) remain
572 // consistent.
573 if (!birth)
574 return;
576 ThreadData* current_thread_data = stopwatch.GetThreadData();
577 if (!current_thread_data)
578 return;
580 int32 queue_duration = 0;
581 current_thread_data->TallyADeath(*birth, queue_duration, stopwatch);
584 // static
585 void ThreadData::SnapshotAllExecutedTasks(ProcessDataSnapshot* process_data,
586 BirthCountMap* birth_counts) {
587 if (!kTrackAllTaskObjects)
588 return; // Not compiled in.
590 // Get an unchanging copy of a ThreadData list.
591 ThreadData* my_list = ThreadData::first();
593 // Gather data serially.
594 // This hackish approach *can* get some slighly corrupt tallies, as we are
595 // grabbing values without the protection of a lock, but it has the advantage
596 // of working even with threads that don't have message loops. If a user
597 // sees any strangeness, they can always just run their stats gathering a
598 // second time.
599 for (ThreadData* thread_data = my_list;
600 thread_data;
601 thread_data = thread_data->next()) {
602 thread_data->SnapshotExecutedTasks(process_data, birth_counts);
606 void ThreadData::SnapshotExecutedTasks(ProcessDataSnapshot* process_data,
607 BirthCountMap* birth_counts) {
608 // Get copy of data, so that the data will not change during the iterations
609 // and processing.
610 ThreadData::BirthMap birth_map;
611 ThreadData::DeathMap death_map;
612 ThreadData::ParentChildSet parent_child_set;
613 SnapshotMaps(&birth_map, &death_map, &parent_child_set);
615 for (ThreadData::DeathMap::const_iterator it = death_map.begin();
616 it != death_map.end(); ++it) {
617 process_data->tasks.push_back(
618 TaskSnapshot(*it->first, it->second, thread_name()));
619 (*birth_counts)[it->first] -= it->first->birth_count();
622 for (ThreadData::BirthMap::const_iterator it = birth_map.begin();
623 it != birth_map.end(); ++it) {
624 (*birth_counts)[it->second] += it->second->birth_count();
627 if (!kTrackParentChildLinks)
628 return;
630 for (ThreadData::ParentChildSet::const_iterator it = parent_child_set.begin();
631 it != parent_child_set.end(); ++it) {
632 process_data->descendants.push_back(ParentChildPairSnapshot(*it));
636 // This may be called from another thread.
637 void ThreadData::SnapshotMaps(BirthMap* birth_map,
638 DeathMap* death_map,
639 ParentChildSet* parent_child_set) {
640 base::AutoLock lock(map_lock_);
641 for (BirthMap::const_iterator it = birth_map_.begin();
642 it != birth_map_.end(); ++it)
643 (*birth_map)[it->first] = it->second;
644 for (DeathMap::iterator it = death_map_.begin();
645 it != death_map_.end(); ++it) {
646 (*death_map)[it->first] = it->second;
649 if (!kTrackParentChildLinks)
650 return;
652 for (ParentChildSet::iterator it = parent_child_set_.begin();
653 it != parent_child_set_.end(); ++it)
654 parent_child_set->insert(*it);
657 // static
658 void ThreadData::ResetAllThreadData() {
659 ThreadData* my_list = first();
661 for (ThreadData* thread_data = my_list;
662 thread_data;
663 thread_data = thread_data->next())
664 thread_data->Reset();
667 void ThreadData::Reset() {
668 base::AutoLock lock(map_lock_);
669 for (DeathMap::iterator it = death_map_.begin();
670 it != death_map_.end(); ++it)
671 it->second.Clear();
672 for (BirthMap::iterator it = birth_map_.begin();
673 it != birth_map_.end(); ++it)
674 it->second->Clear();
677 static void OptionallyInitializeAlternateTimer() {
678 NowFunction* alternate_time_source = GetAlternateTimeSource();
679 if (alternate_time_source)
680 ThreadData::SetAlternateTimeSource(alternate_time_source);
683 bool ThreadData::Initialize() {
684 if (!kTrackAllTaskObjects)
685 return false; // Not compiled in.
686 if (status_ >= DEACTIVATED)
687 return true; // Someone else did the initialization.
688 // Due to racy lazy initialization in tests, we'll need to recheck status_
689 // after we acquire the lock.
691 // Ensure that we don't double initialize tls. We are called when single
692 // threaded in the product, but some tests may be racy and lazy about our
693 // initialization.
694 base::AutoLock lock(*list_lock_.Pointer());
695 if (status_ >= DEACTIVATED)
696 return true; // Someone raced in here and beat us.
698 // Put an alternate timer in place if the environment calls for it, such as
699 // for tracking TCMalloc allocations. This insertion is idempotent, so we
700 // don't mind if there is a race, and we'd prefer not to be in a lock while
701 // doing this work.
702 if (kAllowAlternateTimeSourceHandling)
703 OptionallyInitializeAlternateTimer();
705 // Perform the "real" TLS initialization now, and leave it intact through
706 // process termination.
707 if (!tls_index_.initialized()) { // Testing may have initialized this.
708 DCHECK_EQ(status_, UNINITIALIZED);
709 tls_index_.Initialize(&ThreadData::OnThreadTermination);
710 if (!tls_index_.initialized())
711 return false;
712 } else {
713 // TLS was initialzed for us earlier.
714 DCHECK_EQ(status_, DORMANT_DURING_TESTS);
717 // Incarnation counter is only significant to testing, as it otherwise will
718 // never again change in this process.
719 ++incarnation_counter_;
721 // The lock is not critical for setting status_, but it doesn't hurt. It also
722 // ensures that if we have a racy initialization, that we'll bail as soon as
723 // we get the lock earlier in this method.
724 status_ = kInitialStartupState;
725 if (!kTrackParentChildLinks &&
726 kInitialStartupState == PROFILING_CHILDREN_ACTIVE)
727 status_ = PROFILING_ACTIVE;
728 DCHECK(status_ != UNINITIALIZED);
729 return true;
732 // static
733 bool ThreadData::InitializeAndSetTrackingStatus(Status status) {
734 DCHECK_GE(status, DEACTIVATED);
735 DCHECK_LE(status, PROFILING_CHILDREN_ACTIVE);
737 if (!Initialize()) // No-op if already initialized.
738 return false; // Not compiled in.
740 if (!kTrackParentChildLinks && status > DEACTIVATED)
741 status = PROFILING_ACTIVE;
742 status_ = status;
743 return true;
746 // static
747 ThreadData::Status ThreadData::status() {
748 return status_;
751 // static
752 bool ThreadData::TrackingStatus() {
753 return status_ > DEACTIVATED;
756 // static
757 bool ThreadData::TrackingParentChildStatus() {
758 return status_ >= PROFILING_CHILDREN_ACTIVE;
761 // static
762 void ThreadData::PrepareForStartOfRun(const Births* parent) {
763 if (kTrackParentChildLinks && parent && status_ > PROFILING_ACTIVE) {
764 ThreadData* current_thread_data = Get();
765 if (current_thread_data)
766 current_thread_data->parent_stack_.push(parent);
770 // static
771 void ThreadData::SetAlternateTimeSource(NowFunction* now_function) {
772 DCHECK(now_function);
773 if (kAllowAlternateTimeSourceHandling)
774 now_function_ = now_function;
777 // static
778 void ThreadData::EnableProfilerTiming() {
779 base::subtle::NoBarrier_Store(&g_profiler_timing_enabled, ENABLED_TIMING);
782 // static
783 TrackedTime ThreadData::Now() {
784 if (kAllowAlternateTimeSourceHandling && now_function_)
785 return TrackedTime::FromMilliseconds((*now_function_)());
786 if (kTrackAllTaskObjects && IsProfilerTimingEnabled() && TrackingStatus())
787 return TrackedTime::Now();
788 return TrackedTime(); // Super fast when disabled, or not compiled.
791 // static
792 void ThreadData::EnsureCleanupWasCalled(int major_threads_shutdown_count) {
793 base::AutoLock lock(*list_lock_.Pointer());
794 if (worker_thread_data_creation_count_ == 0)
795 return; // We haven't really run much, and couldn't have leaked.
797 // TODO(jar): until this is working on XP, don't run the real test.
798 #if 0
799 // Verify that we've at least shutdown/cleanup the major namesd threads. The
800 // caller should tell us how many thread shutdowns should have taken place by
801 // now.
802 CHECK_GT(cleanup_count_, major_threads_shutdown_count);
803 #endif
806 // static
807 void ThreadData::ShutdownSingleThreadedCleanup(bool leak) {
808 // This is only called from test code, where we need to cleanup so that
809 // additional tests can be run.
810 // We must be single threaded... but be careful anyway.
811 if (!InitializeAndSetTrackingStatus(DEACTIVATED))
812 return;
813 ThreadData* thread_data_list;
815 base::AutoLock lock(*list_lock_.Pointer());
816 thread_data_list = all_thread_data_list_head_;
817 all_thread_data_list_head_ = NULL;
818 ++incarnation_counter_;
819 // To be clean, break apart the retired worker list (though we leak them).
820 while (first_retired_worker_) {
821 ThreadData* worker = first_retired_worker_;
822 CHECK_GT(worker->worker_thread_number_, 0);
823 first_retired_worker_ = worker->next_retired_worker_;
824 worker->next_retired_worker_ = NULL;
828 // Put most global static back in pristine shape.
829 worker_thread_data_creation_count_ = 0;
830 cleanup_count_ = 0;
831 tls_index_.Set(NULL);
832 status_ = DORMANT_DURING_TESTS; // Almost UNINITIALIZED.
834 // To avoid any chance of racing in unit tests, which is the only place we
835 // call this function, we may sometimes leak all the data structures we
836 // recovered, as they may still be in use on threads from prior tests!
837 if (leak) {
838 ThreadData* thread_data = thread_data_list;
839 while (thread_data) {
840 ANNOTATE_LEAKING_OBJECT_PTR(thread_data);
841 thread_data = thread_data->next();
843 return;
846 // When we want to cleanup (on a single thread), here is what we do.
848 // Do actual recursive delete in all ThreadData instances.
849 while (thread_data_list) {
850 ThreadData* next_thread_data = thread_data_list;
851 thread_data_list = thread_data_list->next();
853 for (BirthMap::iterator it = next_thread_data->birth_map_.begin();
854 next_thread_data->birth_map_.end() != it; ++it)
855 delete it->second; // Delete the Birth Records.
856 delete next_thread_data; // Includes all Death Records.
860 //------------------------------------------------------------------------------
861 TaskStopwatch::TaskStopwatch()
862 : wallclock_duration_ms_(0),
863 current_thread_data_(NULL),
864 excluded_duration_ms_(0),
865 parent_(NULL) {
866 #if DCHECK_IS_ON()
867 state_ = CREATED;
868 child_ = NULL;
869 #endif
872 TaskStopwatch::~TaskStopwatch() {
873 #if DCHECK_IS_ON()
874 DCHECK(state_ != RUNNING);
875 DCHECK(child_ == NULL);
876 #endif
879 void TaskStopwatch::Start() {
880 #if DCHECK_IS_ON()
881 DCHECK(state_ == CREATED);
882 state_ = RUNNING;
883 #endif
885 start_time_ = ThreadData::Now();
887 current_thread_data_ = ThreadData::Get();
888 if (!current_thread_data_)
889 return;
891 parent_ = current_thread_data_->current_stopwatch_;
892 #if DCHECK_IS_ON()
893 if (parent_) {
894 DCHECK(parent_->state_ == RUNNING);
895 DCHECK(parent_->child_ == NULL);
896 parent_->child_ = this;
898 #endif
899 current_thread_data_->current_stopwatch_ = this;
902 void TaskStopwatch::Stop() {
903 const TrackedTime end_time = ThreadData::Now();
904 #if DCHECK_IS_ON()
905 DCHECK(state_ == RUNNING);
906 state_ = STOPPED;
907 DCHECK(child_ == NULL);
908 #endif
910 if (!start_time_.is_null() && !end_time.is_null()) {
911 wallclock_duration_ms_ = (end_time - start_time_).InMilliseconds();
914 if (!current_thread_data_)
915 return;
917 DCHECK(current_thread_data_->current_stopwatch_ == this);
918 current_thread_data_->current_stopwatch_ = parent_;
919 if (!parent_)
920 return;
922 #if DCHECK_IS_ON()
923 DCHECK(parent_->state_ == RUNNING);
924 DCHECK(parent_->child_ == this);
925 parent_->child_ = NULL;
926 #endif
927 parent_->excluded_duration_ms_ += wallclock_duration_ms_;
928 parent_ = NULL;
931 TrackedTime TaskStopwatch::StartTime() const {
932 #if DCHECK_IS_ON()
933 DCHECK(state_ != CREATED);
934 #endif
936 return start_time_;
939 int32 TaskStopwatch::RunDurationMs() const {
940 #if DCHECK_IS_ON()
941 DCHECK(state_ == STOPPED);
942 #endif
944 return wallclock_duration_ms_ - excluded_duration_ms_;
947 ThreadData* TaskStopwatch::GetThreadData() const {
948 #if DCHECK_IS_ON()
949 DCHECK(state_ != CREATED);
950 #endif
952 return current_thread_data_;
955 //------------------------------------------------------------------------------
956 TaskSnapshot::TaskSnapshot() {
959 TaskSnapshot::TaskSnapshot(const BirthOnThread& birth,
960 const DeathData& death_data,
961 const std::string& death_thread_name)
962 : birth(birth),
963 death_data(death_data),
964 death_thread_name(death_thread_name) {
967 TaskSnapshot::~TaskSnapshot() {
970 //------------------------------------------------------------------------------
971 // ParentChildPairSnapshot
973 ParentChildPairSnapshot::ParentChildPairSnapshot() {
976 ParentChildPairSnapshot::ParentChildPairSnapshot(
977 const ThreadData::ParentChildPair& parent_child)
978 : parent(*parent_child.first),
979 child(*parent_child.second) {
982 ParentChildPairSnapshot::~ParentChildPairSnapshot() {
985 //------------------------------------------------------------------------------
986 // ProcessDataSnapshot
988 ProcessDataSnapshot::ProcessDataSnapshot()
989 #if !defined(OS_NACL)
990 : process_id(base::GetCurrentProcId()) {
991 #else
992 : process_id(0) {
993 #endif
996 ProcessDataSnapshot::~ProcessDataSnapshot() {
999 } // namespace tracked_objects