1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "sandbox/linux/seccomp-bpf/trap.h"
10 #include <sys/syscall.h>
15 #include "base/logging.h"
16 #include "build/build_config.h"
17 #include "sandbox/linux/bpf_dsl/seccomp_macros.h"
18 #include "sandbox/linux/seccomp-bpf/die.h"
19 #include "sandbox/linux/seccomp-bpf/syscall.h"
20 #include "sandbox/linux/system_headers/linux_seccomp.h"
22 // Android's signal.h doesn't define ucontext etc.
23 #if defined(OS_ANDROID)
24 #include "sandbox/linux/system_headers/android_ucontext.h"
35 const int kCapacityIncrement
= 20;
37 // Unsafe traps can only be turned on, if the user explicitly allowed them
38 // by setting the CHROME_SANDBOX_DEBUGGING environment variable.
39 const char kSandboxDebuggingEnv
[] = "CHROME_SANDBOX_DEBUGGING";
41 // We need to tell whether we are performing a "normal" callback, or
42 // whether we were called recursively from within a UnsafeTrap() callback.
43 // This is a little tricky to do, because we need to somehow get access to
44 // per-thread data from within a signal context. Normal TLS storage is not
45 // safely accessible at this time. We could roll our own, but that involves
46 // a lot of complexity. Instead, we co-opt one bit in the signal mask.
47 // If BUS is blocked, we assume that we have been called recursively.
48 // There is a possibility for collision with other code that needs to do
49 // this, but in practice the risks are low.
50 // If SIGBUS turns out to be a problem, we could instead co-opt one of the
51 // realtime signals. There are plenty of them. Unfortunately, there is no
52 // way to mark a signal as allocated. So, the potential for collision is
53 // possibly even worse.
54 bool GetIsInSigHandler(const ucontext_t
* ctx
) {
55 // Note: on Android, sigismember does not take a pointer to const.
56 return sigismember(const_cast<sigset_t
*>(&ctx
->uc_sigmask
), SIGBUS
);
59 void SetIsInSigHandler() {
61 if (sigemptyset(&mask
) || sigaddset(&mask
, SIGBUS
) ||
62 sigprocmask(SIG_BLOCK
, &mask
, NULL
)) {
63 SANDBOX_DIE("Failed to block SIGBUS");
67 bool IsDefaultSignalAction(const struct sigaction
& sa
) {
68 if (sa
.sa_flags
& SA_SIGINFO
|| sa
.sa_handler
!= SIG_DFL
) {
81 trap_array_capacity_(0),
82 has_unsafe_traps_(false) {
83 // Set new SIGSYS handler
84 struct sigaction sa
= {};
85 sa
.sa_sigaction
= SigSysAction
;
86 sa
.sa_flags
= SA_SIGINFO
| SA_NODEFER
;
87 struct sigaction old_sa
;
88 if (sigaction(SIGSYS
, &sa
, &old_sa
) < 0) {
89 SANDBOX_DIE("Failed to configure SIGSYS handler");
92 if (!IsDefaultSignalAction(old_sa
)) {
93 static const char kExistingSIGSYSMsg
[] =
94 "Existing signal handler when trying to install SIGSYS. SIGSYS needs "
95 "to be reserved for seccomp-bpf.";
96 DLOG(FATAL
) << kExistingSIGSYSMsg
;
97 LOG(ERROR
) << kExistingSIGSYSMsg
;
102 if (sigemptyset(&mask
) || sigaddset(&mask
, SIGSYS
) ||
103 sigprocmask(SIG_UNBLOCK
, &mask
, NULL
)) {
104 SANDBOX_DIE("Failed to configure SIGSYS handler");
108 bpf_dsl::TrapRegistry
* Trap::Registry() {
109 // Note: This class is not thread safe. It is the caller's responsibility
110 // to avoid race conditions. Normally, this is a non-issue as the sandbox
111 // can only be initialized if there are no other threads present.
112 // Also, this is not a normal singleton. Once created, the global trap
113 // object must never be destroyed again.
115 global_trap_
= new Trap();
117 SANDBOX_DIE("Failed to allocate global trap handler");
123 void Trap::SigSysAction(int nr
, siginfo_t
* info
, void* void_context
) {
126 "This can't happen. Found no global singleton instance "
127 "for Trap() handling.");
129 global_trap_
->SigSys(nr
, info
, void_context
);
132 void Trap::SigSys(int nr
, siginfo_t
* info
, void* void_context
) {
133 // Signal handlers should always preserve "errno". Otherwise, we could
134 // trigger really subtle bugs.
135 const int old_errno
= errno
;
137 // Various sanity checks to make sure we actually received a signal
138 // triggered by a BPF filter. If something else triggered SIGSYS
139 // (e.g. kill()), there is really nothing we can do with this signal.
140 if (nr
!= SIGSYS
|| info
->si_code
!= SYS_SECCOMP
|| !void_context
||
141 info
->si_errno
<= 0 ||
142 static_cast<size_t>(info
->si_errno
) > trap_array_size_
) {
143 // ATI drivers seem to send SIGSYS, so this cannot be FATAL.
144 // See crbug.com/178166.
145 // TODO(jln): add a DCHECK or move back to FATAL.
146 RAW_LOG(ERROR
, "Unexpected SIGSYS received.");
151 // Obtain the signal context. This, most notably, gives us access to
152 // all CPU registers at the time of the signal.
153 ucontext_t
* ctx
= reinterpret_cast<ucontext_t
*>(void_context
);
155 // Obtain the siginfo information that is specific to SIGSYS. Unfortunately,
156 // most versions of glibc don't include this information in siginfo_t. So,
157 // we need to explicitly copy it into a arch_sigsys structure.
158 struct arch_sigsys sigsys
;
159 memcpy(&sigsys
, &info
->_sifields
, sizeof(sigsys
));
161 #if defined(__mips__)
162 // When indirect syscall (syscall(__NR_foo, ...)) is made on Mips, the
163 // number in register SECCOMP_SYSCALL(ctx) is always __NR_syscall and the
164 // real number of a syscall (__NR_foo) is in SECCOMP_PARM1(ctx)
165 bool sigsys_nr_is_bad
= sigsys
.nr
!= static_cast<int>(SECCOMP_SYSCALL(ctx
)) &&
166 sigsys
.nr
!= static_cast<int>(SECCOMP_PARM1(ctx
));
168 bool sigsys_nr_is_bad
= sigsys
.nr
!= static_cast<int>(SECCOMP_SYSCALL(ctx
));
171 // Some more sanity checks.
172 if (sigsys
.ip
!= reinterpret_cast<void*>(SECCOMP_IP(ctx
)) ||
173 sigsys_nr_is_bad
|| sigsys
.arch
!= SECCOMP_ARCH
) {
175 // SANDBOX_DIE() can call LOG(FATAL). This is not normally async-signal
176 // safe and can lead to bugs. We should eventually implement a different
177 // logging and reporting mechanism that is safe to be called from
178 // the sigSys() handler.
179 RAW_SANDBOX_DIE("Sanity checks are failing after receiving SIGSYS.");
183 if (has_unsafe_traps_
&& GetIsInSigHandler(ctx
)) {
185 if (sigsys
.nr
== __NR_clone
) {
186 RAW_SANDBOX_DIE("Cannot call clone() from an UnsafeTrap() handler.");
188 #if defined(__mips__)
189 // Mips supports up to eight arguments for syscall.
190 // However, seccomp bpf can filter only up to six arguments, so using eight
191 // arguments has sense only when using UnsafeTrap() handler.
192 rc
= Syscall::Call(SECCOMP_SYSCALL(ctx
),
202 rc
= Syscall::Call(SECCOMP_SYSCALL(ctx
),
209 #endif // defined(__mips__)
211 const TrapKey
& trap
= trap_array_
[info
->si_errno
- 1];
216 // Copy the seccomp-specific data into a arch_seccomp_data structure. This
217 // is what we are showing to TrapFnc callbacks that the system call
218 // evaluator registered with the sandbox.
219 struct arch_seccomp_data data
= {
220 static_cast<int>(SECCOMP_SYSCALL(ctx
)),
222 reinterpret_cast<uint64_t>(sigsys
.ip
),
223 {static_cast<uint64_t>(SECCOMP_PARM1(ctx
)),
224 static_cast<uint64_t>(SECCOMP_PARM2(ctx
)),
225 static_cast<uint64_t>(SECCOMP_PARM3(ctx
)),
226 static_cast<uint64_t>(SECCOMP_PARM4(ctx
)),
227 static_cast<uint64_t>(SECCOMP_PARM5(ctx
)),
228 static_cast<uint64_t>(SECCOMP_PARM6(ctx
))}};
230 // Now call the TrapFnc callback associated with this particular instance
231 // of SECCOMP_RET_TRAP.
232 rc
= trap
.fnc(data
, const_cast<void*>(trap
.aux
));
235 // Update the CPU register that stores the return code of the system call
236 // that we just handled, and restore "errno" to the value that it had
237 // before entering the signal handler.
238 Syscall::PutValueInUcontext(rc
, ctx
);
244 bool Trap::TrapKey::operator<(const TrapKey
& o
) const {
247 } else if (aux
!= o
.aux
) {
250 return safe
< o
.safe
;
254 uint16_t Trap::Add(TrapFnc fnc
, const void* aux
, bool safe
) {
255 if (!safe
&& !SandboxDebuggingAllowedByUser()) {
256 // Unless the user set the CHROME_SANDBOX_DEBUGGING environment variable,
257 // we never return an ErrorCode that is marked as "unsafe". This also
258 // means, the BPF compiler will never emit code that allow unsafe system
259 // calls to by-pass the filter (because they use the magic return address
260 // from Syscall::Call(-1)).
262 // This SANDBOX_DIE() can optionally be removed. It won't break security,
263 // but it might make error messages from the BPF compiler a little harder
264 // to understand. Removing the SANDBOX_DIE() allows callers to easily check
265 // whether unsafe traps are supported (by checking whether the returned
266 // ErrorCode is ET_INVALID).
268 "Cannot use unsafe traps unless CHROME_SANDBOX_DEBUGGING "
274 // Each unique pair of TrapFnc and auxiliary data make up a distinct instance
275 // of a SECCOMP_RET_TRAP.
276 TrapKey
key(fnc
, aux
, safe
);
278 // We return unique identifiers together with SECCOMP_RET_TRAP. This allows
279 // us to associate trap with the appropriate handler. The kernel allows us
280 // identifiers in the range from 0 to SECCOMP_RET_DATA (0xFFFF). We want to
281 // avoid 0, as it could be confused for a trap without any specific id.
282 // The nice thing about sequentially numbered identifiers is that we can also
283 // trivially look them up from our signal handler without making any system
284 // calls that might be async-signal-unsafe.
285 // In order to do so, we store all of our traps in a C-style trap_array_.
287 TrapIds::const_iterator iter
= trap_ids_
.find(key
);
288 if (iter
!= trap_ids_
.end()) {
289 // We have seen this pair before. Return the same id that we assigned
294 // This is a new pair. Remember it and assign a new id.
295 if (trap_array_size_
>= SECCOMP_RET_DATA
/* 0xFFFF */ ||
296 trap_array_size_
>= std::numeric_limits
<uint16_t>::max()) {
297 // In practice, this is pretty much impossible to trigger, as there
298 // are other kernel limitations that restrict overall BPF program sizes.
299 SANDBOX_DIE("Too many SECCOMP_RET_TRAP callback instances");
302 // Our callers ensure that there are no other threads accessing trap_array_
303 // concurrently (typically this is done by ensuring that we are single-
304 // threaded while the sandbox is being set up). But we nonetheless are
305 // modifying a live data structure that could be accessed any time a
306 // system call is made; as system calls could be triggering SIGSYS.
307 // So, we have to be extra careful that we update trap_array_ atomically.
308 // In particular, this means we shouldn't be using realloc() to resize it.
309 // Instead, we allocate a new array, copy the values, and then switch the
310 // pointer. We only really care about the pointer being updated atomically
311 // and the data that is pointed to being valid, as these are the only
312 // values accessed from the signal handler. It is OK if trap_array_size_
313 // is inconsistent with the pointer, as it is monotonously increasing.
314 // Also, we only care about compiler barriers, as the signal handler is
315 // triggered synchronously from a system call. We don't have to protect
316 // against issues with the memory model or with completely asynchronous
318 if (trap_array_size_
>= trap_array_capacity_
) {
319 trap_array_capacity_
+= kCapacityIncrement
;
320 TrapKey
* old_trap_array
= trap_array_
;
321 TrapKey
* new_trap_array
= new TrapKey
[trap_array_capacity_
];
322 std::copy_n(old_trap_array
, trap_array_size_
, new_trap_array
);
324 // Language specs are unclear on whether the compiler is allowed to move
325 // the "delete[]" above our preceding assignments and/or memory moves,
326 // iff the compiler believes that "delete[]" doesn't have any other
327 // global side-effects.
328 // We insert optimization barriers to prevent this from happening.
329 // The first barrier is probably not needed, but better be explicit in
330 // what we want to tell the compiler.
331 // The clang developer mailing list couldn't answer whether this is a
332 // legitimate worry; but they at least thought that the barrier is
333 // sufficient to prevent the (so far hypothetical) problem of re-ordering
334 // of instructions by the compiler.
336 // TODO(mdempsky): Try to clean this up using base/atomicops or C++11
337 // atomics; see crbug.com/414363.
338 asm volatile("" : "=r"(new_trap_array
) : "0"(new_trap_array
) : "memory");
339 trap_array_
= new_trap_array
;
340 asm volatile("" : "=r"(trap_array_
) : "0"(trap_array_
) : "memory");
342 delete[] old_trap_array
;
345 uint16_t id
= trap_array_size_
+ 1;
347 trap_array_
[trap_array_size_
] = key
;
352 bool Trap::SandboxDebuggingAllowedByUser() {
353 const char* debug_flag
= getenv(kSandboxDebuggingEnv
);
354 return debug_flag
&& *debug_flag
;
357 bool Trap::EnableUnsafeTraps() {
358 if (!has_unsafe_traps_
) {
359 // Unsafe traps are a one-way fuse. Once enabled, they can never be turned
361 // We only allow enabling unsafe traps, if the user explicitly set an
362 // appropriate environment variable. This prevents bugs that accidentally
363 // disable all sandboxing for all users.
364 if (SandboxDebuggingAllowedByUser()) {
365 // We only ever print this message once, when we enable unsafe traps the
367 SANDBOX_INFO("WARNING! Disabling sandbox for debugging purposes");
368 has_unsafe_traps_
= true;
371 "Cannot disable sandbox and use unsafe traps unless "
372 "CHROME_SANDBOX_DEBUGGING is turned on first");
375 // Returns the, possibly updated, value of has_unsafe_traps_.
376 return has_unsafe_traps_
;
379 Trap
* Trap::global_trap_
;
381 } // namespace sandbox