1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // Scopers help you manage ownership of a pointer, helping you easily manage the
6 // a pointer within a scope, and automatically destroying the pointer at the
7 // end of a scope. There are two main classes you will use, which correspond
8 // to the operators new/delete and new[]/delete[].
10 // Example usage (scoped_ptr):
12 // scoped_ptr<Foo> foo(new Foo("wee"));
13 // } // foo goes out of scope, releasing the pointer with it.
16 // scoped_ptr<Foo> foo; // No pointer managed.
17 // foo.reset(new Foo("wee")); // Now a pointer is managed.
18 // foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
19 // foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
20 // foo->Method(); // Foo::Method() called.
21 // foo.get()->Method(); // Foo::Method() called.
22 // SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
23 // // manages a pointer.
24 // foo.reset(new Foo("wee4")); // foo manages a pointer again.
25 // foo.reset(); // Foo("wee4") destroyed, foo no longer
26 // // manages a pointer.
27 // } // foo wasn't managing a pointer, so nothing was destroyed.
29 // Example usage (scoped_array):
31 // scoped_array<Foo> foo(new Foo[100]);
32 // foo.get()->Method(); // Foo::Method on the 0th element.
33 // foo[10].Method(); // Foo::Method on the 10th element.
36 // These scopers also implement part of the functionality of C++11 unique_ptr
37 // in that they are "movable but not copyable." You can use the scopers in
38 // the parameter and return types of functions to signify ownership transfer
39 // in to and out of a function. When calling a function that has a scoper
40 // as the argument type, it must be called with the result of an analogous
41 // scoper's Pass() function or another function that generates a temporary;
42 // passing by copy will NOT work. Here is an example using scoped_ptr:
44 // void TakesOwnership(scoped_ptr<Foo> arg) {
45 // // Do something with arg
47 // scoped_ptr<Foo> CreateFoo() {
48 // // No need for calling Pass() because we are constructing a temporary
49 // // for the return value.
50 // return scoped_ptr<Foo>(new Foo("new"));
52 // scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
57 // scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay").
58 // TakesOwnership(ptr.Pass()); // ptr no longer owns Foo("yay").
59 // scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
60 // scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
61 // PassThru(ptr2.Pass()); // ptr2 is correspondingly NULL.
64 // Notice that if you do not call Pass() when returning from PassThru(), or
65 // when invoking TakesOwnership(), the code will not compile because scopers
66 // are not copyable; they only implement move semantics which require calling
67 // the Pass() function to signify a destructive transfer of state. CreateFoo()
68 // is different though because we are constructing a temporary on the return
69 // line and thus can avoid needing to call Pass().
71 // Pass() properly handles upcast in assignment, i.e. you can assign
72 // scoped_ptr<Child> to scoped_ptr<Parent>:
74 // scoped_ptr<Foo> foo(new Foo());
75 // scoped_ptr<FooParent> parent = foo.Pass();
77 // PassAs<>() should be used to upcast return value in return statement:
79 // scoped_ptr<Foo> CreateFoo() {
80 // scoped_ptr<FooChild> result(new FooChild());
81 // return result.PassAs<Foo>();
84 // Note that PassAs<>() is implemented only for scoped_ptr, but not for
85 // scoped_array. This is because casting array pointers may not be safe.
87 #ifndef BASE_MEMORY_SCOPED_PTR_H_
88 #define BASE_MEMORY_SCOPED_PTR_H_
90 // This is an implementation designed to match the anticipated future TR2
91 // implementation of the scoped_ptr class, and its closely-related brethren,
92 // scoped_array, scoped_ptr_malloc.
98 #include <algorithm> // For std::swap().
100 #include "base/basictypes.h"
101 #include "base/compiler_specific.h"
102 #include "base/move.h"
103 #include "base/template_util.h"
108 class RefCountedBase
;
109 class RefCountedThreadSafeBase
;
110 } // namespace subtle
112 // Function object which deletes its parameter, which must be a pointer.
113 // If C is an array type, invokes 'delete[]' on the parameter; otherwise,
114 // invokes 'delete'. The default deleter for scoped_ptr<T>.
116 struct DefaultDeleter
{
118 template <typename U
> DefaultDeleter(const DefaultDeleter
<U
>& other
) {
119 // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
120 // if U* is implicitly convertible to T* and U is not an array type.
122 // Correct implementation should use SFINAE to disable this
123 // constructor. However, since there are no other 1-argument constructors,
124 // using a COMPILE_ASSERT() based on is_convertible<> and requiring
125 // complete types is simpler and will cause compile failures for equivalent
128 // Note, the is_convertible<U*, T*> check also ensures that U is not an
129 // array. T is guaranteed to be a non-array, so any U* where U is an array
130 // cannot convert to T*.
131 enum { T_must_be_complete
= sizeof(T
) };
132 enum { U_must_be_complete
= sizeof(U
) };
133 COMPILE_ASSERT((base::is_convertible
<U
*, T
*>::value
),
134 U_ptr_must_implicitly_convert_to_T_ptr
);
136 inline void operator()(T
* ptr
) const {
137 enum { type_must_be_complete
= sizeof(T
) };
142 // Specialization of DefaultDeleter for array types.
144 struct DefaultDeleter
<T
[]> {
145 inline void operator()(T
* ptr
) const {
146 enum { type_must_be_complete
= sizeof(T
) };
151 // Disable this operator for any U != T because it is undefined to execute
152 // an array delete when the static type of the array mismatches the dynamic
156 // C++98 [expr.delete]p3
157 // http://cplusplus.github.com/LWG/lwg-defects.html#938
158 template <typename U
> void operator()(U
* array
) const;
161 template <class T
, int n
>
162 struct DefaultDeleter
<T
[n
]> {
163 // Never allow someone to declare something like scoped_ptr<int[10]>.
164 COMPILE_ASSERT(sizeof(T
) == -1, do_not_use_array_with_size_as_type
);
167 // Function object which invokes 'free' on its parameter, which must be
168 // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
170 // scoped_ptr<int, base::FreeDeleter> foo_ptr(
171 // static_cast<int*>(malloc(sizeof(int))));
173 inline void operator()(void* ptr
) const {
180 template <typename T
> struct IsNotRefCounted
{
182 value
= !base::is_convertible
<T
*, base::subtle::RefCountedBase
*>::value
&&
183 !base::is_convertible
<T
*, base::subtle::RefCountedThreadSafeBase
*>::
188 // Minimal implementation of the core logic of scoped_ptr, suitable for
189 // reuse in both scoped_ptr and its specializations.
190 template <class T
, class D
>
191 class scoped_ptr_impl
{
193 explicit scoped_ptr_impl(T
* p
) : data_(p
) { }
195 // Initializer for deleters that have data parameters.
196 scoped_ptr_impl(T
* p
, const D
& d
) : data_(p
, d
) {}
198 // Templated constructor that destructively takes the value from another
200 template <typename U
, typename V
>
201 scoped_ptr_impl(scoped_ptr_impl
<U
, V
>* other
)
202 : data_(other
->release(), other
->get_deleter()) {
203 // We do not support move-only deleters. We could modify our move
204 // emulation to have base::subtle::move() and base::subtle::forward()
205 // functions that are imperfect emulations of their C++11 equivalents,
206 // but until there's a requirement, just assume deleters are copyable.
209 template <typename U
, typename V
>
210 void TakeState(scoped_ptr_impl
<U
, V
>* other
) {
211 // See comment in templated constructor above regarding lack of support
212 // for move-only deleters.
213 reset(other
->release());
214 get_deleter() = other
->get_deleter();
218 if (data_
.ptr
!= NULL
) {
219 // Not using get_deleter() saves one function call in non-optimized
221 static_cast<D
&>(data_
)(data_
.ptr
);
226 // This self-reset check is deprecated.
227 // this->reset(this->get()) currently works, but it is DEPRECATED, and
228 // will be removed once we verify that no one depends on it.
230 // TODO(ajwong): Change this behavior to match unique_ptr<>.
231 // http://crbug.com/162971
232 if (p
!= data_
.ptr
) {
233 if (data_
.ptr
!= NULL
) {
234 // Note that this can lead to undefined behavior and memory leaks
235 // in the unlikely but possible case that get_deleter()(get())
236 // indirectly deletes this. The fix is to reset ptr_ before deleting
237 // its old value, but first we need to clean up the code that relies
238 // on the current sequencing.
239 static_cast<D
&>(data_
)(data_
.ptr
);
245 T
* get() const { return data_
.ptr
; }
247 D
& get_deleter() { return data_
; }
248 const D
& get_deleter() const { return data_
; }
250 void swap(scoped_ptr_impl
& p2
) {
251 // Standard swap idiom: 'using std::swap' ensures that std::swap is
252 // present in the overload set, but we call swap unqualified so that
253 // any more-specific overloads can be used, if available.
255 swap(static_cast<D
&>(data_
), static_cast<D
&>(p2
.data_
));
256 swap(data_
.ptr
, p2
.data_
.ptr
);
260 T
* old_ptr
= data_
.ptr
;
266 // Needed to allow type-converting constructor.
267 template <typename U
, typename V
> friend class scoped_ptr_impl
;
269 // Use the empty base class optimization to allow us to have a D
270 // member, while avoiding any space overhead for it when D is an
271 // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
272 // discussion of this technique.
273 struct Data
: public D
{
274 explicit Data(T
* ptr_in
) : ptr(ptr_in
) {}
275 Data(T
* ptr_in
, const D
& other
) : D(other
), ptr(ptr_in
) {}
281 DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl
);
284 } // namespace internal
288 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
289 // automatically deletes the pointer it holds (if any).
290 // That is, scoped_ptr<T> owns the T object that it points to.
291 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
292 // Also like T*, scoped_ptr<T> is thread-compatible, and once you
293 // dereference it, you get the thread safety guarantees of T.
295 // The size of scoped_ptr is small. On most compilers, when using the
296 // DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
297 // increase the size proportional to whatever state they need to have. See
298 // comments inside scoped_ptr_impl<> for details.
300 // Current implementation targets having a strict subset of C++11's
301 // unique_ptr<> features. Known deficiencies include not supporting move-only
302 // deleteres, function pointers as deleters, and deleters with reference
304 template <class T
, class D
= base::DefaultDeleter
<T
> >
306 MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr
, RValue
)
308 COMPILE_ASSERT(base::internal::IsNotRefCounted
<T
>::value
,
309 T_is_refcounted_type_and_needs_scoped_refptr
);
312 // The element and deleter types.
313 typedef T element_type
;
314 typedef D deleter_type
;
316 // Constructor. Defaults to initializing with NULL.
317 scoped_ptr() : impl_(NULL
) { }
319 // Constructor. Takes ownership of p.
320 explicit scoped_ptr(element_type
* p
) : impl_(p
) { }
322 // Constructor. Allows initialization of a stateful deleter.
323 scoped_ptr(element_type
* p
, const D
& d
) : impl_(p
, d
) { }
325 // Constructor. Allows construction from a scoped_ptr rvalue for a
326 // convertible type and deleter.
328 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
329 // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
330 // has different post-conditions if D is a reference type. Since this
331 // implementation does not support deleters with reference type,
332 // we do not need a separate move constructor allowing us to avoid one
333 // use of SFINAE. You only need to care about this if you modify the
334 // implementation of scoped_ptr.
335 template <typename U
, typename V
>
336 scoped_ptr(scoped_ptr
<U
, V
> other
) : impl_(&other
.impl_
) {
337 COMPILE_ASSERT(!base::is_array
<U
>::value
, U_cannot_be_an_array
);
340 // Constructor. Move constructor for C++03 move emulation of this type.
341 scoped_ptr(RValue rvalue
) : impl_(&rvalue
.object
->impl_
) { }
343 // operator=. Allows assignment from a scoped_ptr rvalue for a convertible
346 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
347 // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
348 // form has different requirements on for move-only Deleters. Since this
349 // implementation does not support move-only Deleters, we do not need a
350 // separate move assignment operator allowing us to avoid one use of SFINAE.
351 // You only need to care about this if you modify the implementation of
353 template <typename U
, typename V
>
354 scoped_ptr
& operator=(scoped_ptr
<U
, V
> rhs
) {
355 COMPILE_ASSERT(!base::is_array
<U
>::value
, U_cannot_be_an_array
);
356 impl_
.TakeState(&rhs
.impl_
);
360 // Reset. Deletes the currently owned object, if any.
361 // Then takes ownership of a new object, if given.
362 void reset(element_type
* p
= NULL
) { impl_
.reset(p
); }
364 // Accessors to get the owned object.
365 // operator* and operator-> will assert() if there is no current object.
366 element_type
& operator*() const {
367 assert(impl_
.get() != NULL
);
370 element_type
* operator->() const {
371 assert(impl_
.get() != NULL
);
374 element_type
* get() const { return impl_
.get(); }
376 // Access to the deleter.
377 deleter_type
& get_deleter() { return impl_
.get_deleter(); }
378 const deleter_type
& get_deleter() const { return impl_
.get_deleter(); }
380 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
381 // implicitly convertible to a real bool (which is dangerous).
383 typedef base::internal::scoped_ptr_impl
<element_type
, deleter_type
>
384 scoped_ptr::*Testable
;
387 operator Testable() const { return impl_
.get() ? &scoped_ptr::impl_
: NULL
; }
389 // Comparison operators.
390 // These return whether two scoped_ptr refer to the same object, not just to
391 // two different but equal objects.
392 bool operator==(const element_type
* p
) const { return impl_
.get() == p
; }
393 bool operator!=(const element_type
* p
) const { return impl_
.get() != p
; }
395 // Swap two scoped pointers.
396 void swap(scoped_ptr
& p2
) {
397 impl_
.swap(p2
.impl_
);
400 // Release a pointer.
401 // The return value is the current pointer held by this object.
402 // If this object holds a NULL pointer, the return value is NULL.
403 // After this operation, this object will hold a NULL pointer,
404 // and will not own the object any more.
405 element_type
* release() WARN_UNUSED_RESULT
{
406 return impl_
.release();
409 // C++98 doesn't support functions templates with default parameters which
410 // makes it hard to write a PassAs() that understands converting the deleter
411 // while preserving simple calling semantics.
413 // Until there is a use case for PassAs() with custom deleters, just ignore
414 // the custom deleter.
415 template <typename PassAsType
>
416 scoped_ptr
<PassAsType
> PassAs() {
417 return scoped_ptr
<PassAsType
>(Pass());
421 // Needed to reach into |impl_| in the constructor.
422 template <typename U
, typename V
> friend class scoped_ptr
;
423 base::internal::scoped_ptr_impl
<element_type
, deleter_type
> impl_
;
425 // Forbid comparison of scoped_ptr types. If U != T, it totally
426 // doesn't make sense, and if U == T, it still doesn't make sense
427 // because you should never have the same object owned by two different
429 template <class U
> bool operator==(scoped_ptr
<U
> const& p2
) const;
430 template <class U
> bool operator!=(scoped_ptr
<U
> const& p2
) const;
433 template <class T
, class D
>
434 class scoped_ptr
<T
[], D
> {
435 MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr
, RValue
)
438 // The element and deleter types.
439 typedef T element_type
;
440 typedef D deleter_type
;
442 // Constructor. Defaults to initializing with NULL.
443 scoped_ptr() : impl_(NULL
) { }
445 // Constructor. Stores the given array. Note that the argument's type
446 // must exactly match T*. In particular:
447 // - it cannot be a pointer to a type derived from T, because it is
448 // inherently unsafe in the general case to access an array through a
449 // pointer whose dynamic type does not match its static type (eg., if
450 // T and the derived types had different sizes access would be
451 // incorrectly calculated). Deletion is also always undefined
452 // (C++98 [expr.delete]p3). If you're doing this, fix your code.
453 // - it cannot be NULL, because NULL is an integral expression, not a
454 // pointer to T. Use the no-argument version instead of explicitly
456 // - it cannot be const-qualified differently from T per unique_ptr spec
457 // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
458 // to work around this may use implicit_cast<const T*>().
459 // However, because of the first bullet in this comment, users MUST
460 // NOT use implicit_cast<Base*>() to upcast the static type of the array.
461 explicit scoped_ptr(element_type
* array
) : impl_(array
) { }
463 // Constructor. Move constructor for C++03 move emulation of this type.
464 scoped_ptr(RValue rvalue
) : impl_(&rvalue
.object
->impl_
) { }
466 // operator=. Move operator= for C++03 move emulation of this type.
467 scoped_ptr
& operator=(RValue rhs
) {
468 impl_
.TakeState(&rhs
.object
->impl_
);
472 // Reset. Deletes the currently owned array, if any.
473 // Then takes ownership of a new object, if given.
474 void reset(element_type
* array
= NULL
) { impl_
.reset(array
); }
476 // Accessors to get the owned array.
477 element_type
& operator[](size_t i
) const {
478 assert(impl_
.get() != NULL
);
479 return impl_
.get()[i
];
481 element_type
* get() const { return impl_
.get(); }
483 // Access to the deleter.
484 deleter_type
& get_deleter() { return impl_
.get_deleter(); }
485 const deleter_type
& get_deleter() const { return impl_
.get_deleter(); }
487 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
488 // implicitly convertible to a real bool (which is dangerous).
490 typedef base::internal::scoped_ptr_impl
<element_type
, deleter_type
>
491 scoped_ptr::*Testable
;
494 operator Testable() const { return impl_
.get() ? &scoped_ptr::impl_
: NULL
; }
496 // Comparison operators.
497 // These return whether two scoped_ptr refer to the same object, not just to
498 // two different but equal objects.
499 bool operator==(element_type
* array
) const { return impl_
.get() == array
; }
500 bool operator!=(element_type
* array
) const { return impl_
.get() != array
; }
502 // Swap two scoped pointers.
503 void swap(scoped_ptr
& p2
) {
504 impl_
.swap(p2
.impl_
);
507 // Release a pointer.
508 // The return value is the current pointer held by this object.
509 // If this object holds a NULL pointer, the return value is NULL.
510 // After this operation, this object will hold a NULL pointer,
511 // and will not own the object any more.
512 element_type
* release() WARN_UNUSED_RESULT
{
513 return impl_
.release();
517 // Force element_type to be a complete type.
518 enum { type_must_be_complete
= sizeof(element_type
) };
520 // Actually hold the data.
521 base::internal::scoped_ptr_impl
<element_type
, deleter_type
> impl_
;
523 // Disable initialization from any type other than element_type*, by
524 // providing a constructor that matches such an initialization, but is
525 // private and has no definition. This is disabled because it is not safe to
526 // call delete[] on an array whose static type does not match its dynamic
528 template <typename U
> explicit scoped_ptr(U
* array
);
530 // Disable reset() from any type other than element_type*, for the same
531 // reasons as the constructor above.
532 template <typename U
> void reset(U
* array
);
534 // Forbid comparison of scoped_ptr types. If U != T, it totally
535 // doesn't make sense, and if U == T, it still doesn't make sense
536 // because you should never have the same object owned by two different
538 template <class U
> bool operator==(scoped_ptr
<U
> const& p2
) const;
539 template <class U
> bool operator!=(scoped_ptr
<U
> const& p2
) const;
543 template <class T
, class D
>
544 void swap(scoped_ptr
<T
, D
>& p1
, scoped_ptr
<T
, D
>& p2
) {
548 template <class T
, class D
>
549 bool operator==(T
* p1
, const scoped_ptr
<T
, D
>& p2
) {
550 return p1
== p2
.get();
553 template <class T
, class D
>
554 bool operator!=(T
* p1
, const scoped_ptr
<T
, D
>& p2
) {
555 return p1
!= p2
.get();
558 // DEPRECATED: Use scoped_ptr<C[]> instead.
560 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
561 // with new [] and the destructor deletes objects with delete [].
563 // As with scoped_ptr<C>, a scoped_array<C> either points to an object
564 // or is NULL. A scoped_array<C> owns the object that it points to.
565 // scoped_array<T> is thread-compatible, and once you index into it,
566 // the returned objects have only the thread safety guarantees of T.
568 // Size: sizeof(scoped_array<C>) == sizeof(C*)
571 MOVE_ONLY_TYPE_FOR_CPP_03(scoped_array
, RValue
)
576 typedef C element_type
;
578 // Constructor. Defaults to initializing with NULL.
579 // There is no way to create an uninitialized scoped_array.
580 // The input parameter must be allocated with new [].
581 explicit scoped_array(C
* p
= NULL
) : array_(p
) { }
583 // Constructor. Move constructor for C++03 move emulation of this type.
584 scoped_array(RValue rvalue
)
585 : array_(rvalue
.object
->release()) {
588 // Destructor. If there is a C object, delete it.
589 // We don't need to test ptr_ == NULL because C++ does that for us.
591 enum { type_must_be_complete
= sizeof(C
) };
595 // operator=. Move operator= for C++03 move emulation of this type.
596 scoped_array
& operator=(RValue rhs
) {
597 reset(rhs
.object
->release());
601 // Reset. Deletes the current owned object, if any.
602 // Then takes ownership of a new object, if given.
603 // this->reset(this->get()) works.
604 void reset(C
* p
= NULL
) {
606 enum { type_must_be_complete
= sizeof(C
) };
612 // Get one element of the current object.
613 // Will assert() if there is no current object, or index i is negative.
614 C
& operator[](ptrdiff_t i
) const {
616 assert(array_
!= NULL
);
620 // Get a pointer to the zeroth element of the current object.
621 // If there is no current object, return NULL.
626 // Allow scoped_array<C> to be used in boolean expressions, but not
627 // implicitly convertible to a real bool (which is dangerous).
628 typedef C
* scoped_array::*Testable
;
629 operator Testable() const { return array_
? &scoped_array::array_
: NULL
; }
631 // Comparison operators.
632 // These return whether two scoped_array refer to the same object, not just to
633 // two different but equal objects.
634 bool operator==(C
* p
) const { return array_
== p
; }
635 bool operator!=(C
* p
) const { return array_
!= p
; }
637 // Swap two scoped arrays.
638 void swap(scoped_array
& p2
) {
645 // The return value is the current pointer held by this object.
646 // If this object holds a NULL pointer, the return value is NULL.
647 // After this operation, this object will hold a NULL pointer,
648 // and will not own the object any more.
649 C
* release() WARN_UNUSED_RESULT
{
658 // Forbid comparison of different scoped_array types.
659 template <class C2
> bool operator==(scoped_array
<C2
> const& p2
) const;
660 template <class C2
> bool operator!=(scoped_array
<C2
> const& p2
) const;
665 void swap(scoped_array
<C
>& p1
, scoped_array
<C
>& p2
) {
670 bool operator==(C
* p1
, const scoped_array
<C
>& p2
) {
671 return p1
== p2
.get();
675 bool operator!=(C
* p1
, const scoped_array
<C
>& p2
) {
676 return p1
!= p2
.get();
679 // DEPRECATED: Use scoped_ptr<C, base::FreeDeleter> instead.
681 // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
682 // second template argument, the functor used to free the object.
684 template<class C
, class FreeProc
= base::FreeDeleter
>
685 class scoped_ptr_malloc
{
686 MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr_malloc
, RValue
)
691 typedef C element_type
;
693 // Constructor. Defaults to initializing with NULL.
694 // There is no way to create an uninitialized scoped_ptr.
695 // The input parameter must be allocated with an allocator that matches the
696 // Free functor. For the default Free functor, this is malloc, calloc, or
698 explicit scoped_ptr_malloc(C
* p
= NULL
): ptr_(p
) {}
700 // Constructor. Move constructor for C++03 move emulation of this type.
701 scoped_ptr_malloc(RValue rvalue
)
702 : ptr_(rvalue
.object
->release()) {
705 // Destructor. If there is a C object, call the Free functor.
706 ~scoped_ptr_malloc() {
710 // operator=. Move operator= for C++03 move emulation of this type.
711 scoped_ptr_malloc
& operator=(RValue rhs
) {
712 reset(rhs
.object
->release());
716 // Reset. Calls the Free functor on the current owned object, if any.
717 // Then takes ownership of a new object, if given.
718 // this->reset(this->get()) works.
719 void reset(C
* p
= NULL
) {
729 // Get the current object.
730 // operator* and operator-> will cause an assert() failure if there is
731 // no current object.
732 C
& operator*() const {
733 assert(ptr_
!= NULL
);
737 C
* operator->() const {
738 assert(ptr_
!= NULL
);
746 // Allow scoped_ptr_malloc<C> to be used in boolean expressions, but not
747 // implicitly convertible to a real bool (which is dangerous).
748 typedef C
* scoped_ptr_malloc::*Testable
;
749 operator Testable() const { return ptr_
? &scoped_ptr_malloc::ptr_
: NULL
; }
751 // Comparison operators.
752 // These return whether a scoped_ptr_malloc and a plain pointer refer
753 // to the same object, not just to two different but equal objects.
754 // For compatibility with the boost-derived implementation, these
755 // take non-const arguments.
756 bool operator==(C
* p
) const {
760 bool operator!=(C
* p
) const {
764 // Swap two scoped pointers.
765 void swap(scoped_ptr_malloc
& b
) {
771 // Release a pointer.
772 // The return value is the current pointer held by this object.
773 // If this object holds a NULL pointer, the return value is NULL.
774 // After this operation, this object will hold a NULL pointer,
775 // and will not own the object any more.
776 C
* release() WARN_UNUSED_RESULT
{
785 // no reason to use these: each scoped_ptr_malloc should have its own object
786 template <class C2
, class GP
>
787 bool operator==(scoped_ptr_malloc
<C2
, GP
> const& p
) const;
788 template <class C2
, class GP
>
789 bool operator!=(scoped_ptr_malloc
<C2
, GP
> const& p
) const;
792 template<class C
, class FP
> inline
793 void swap(scoped_ptr_malloc
<C
, FP
>& a
, scoped_ptr_malloc
<C
, FP
>& b
) {
797 template<class C
, class FP
> inline
798 bool operator==(C
* p
, const scoped_ptr_malloc
<C
, FP
>& b
) {
802 template<class C
, class FP
> inline
803 bool operator!=(C
* p
, const scoped_ptr_malloc
<C
, FP
>& b
) {
807 // A function to convert T* into scoped_ptr<T>
808 // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
809 // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
810 template <typename T
>
811 scoped_ptr
<T
> make_scoped_ptr(T
* ptr
) {
812 return scoped_ptr
<T
>(ptr
);
815 #endif // BASE_MEMORY_SCOPED_PTR_H_