Add ICU message format support
[chromium-blink-merge.git] / media / cast / sender / congestion_control.cc
blob5ede1b5886b723358d07a2aa32009ff93ddaadcf
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // The purpose of this file is determine what bitrate to use for mirroring.
6 // Ideally this should be as much as possible, without causing any frames to
7 // arrive late.
9 // The current algorithm is to measure how much bandwidth we've been using
10 // recently. We also keep track of how much data has been queued up for sending
11 // in a virtual "buffer" (this virtual buffer represents all the buffers between
12 // the sender and the receiver, including retransmissions and so forth.)
13 // If we estimate that our virtual buffer is mostly empty, we try to use
14 // more bandwidth than our recent usage, otherwise we use less.
16 #include "media/cast/sender/congestion_control.h"
18 #include "base/logging.h"
19 #include "media/cast/cast_config.h"
20 #include "media/cast/cast_defines.h"
22 namespace media {
23 namespace cast {
25 class AdaptiveCongestionControl : public CongestionControl {
26 public:
27 AdaptiveCongestionControl(base::TickClock* clock,
28 uint32 max_bitrate_configured,
29 uint32 min_bitrate_configured,
30 double max_frame_rate);
32 ~AdaptiveCongestionControl() final;
34 void UpdateRtt(base::TimeDelta rtt) final;
36 void UpdateTargetPlayoutDelay(base::TimeDelta delay) final;
38 // Called when an encoded frame is sent to the transport.
39 void SendFrameToTransport(uint32 frame_id,
40 size_t frame_size,
41 base::TimeTicks when) final;
43 // Called when we receive an ACK for a frame.
44 void AckFrame(uint32 frame_id, base::TimeTicks when) final;
46 // Returns the bitrate we should use for the next frame.
47 uint32 GetBitrate(base::TimeTicks playout_time,
48 base::TimeDelta playout_delay) final;
50 private:
51 struct FrameStats {
52 FrameStats();
53 // Time this frame was sent to the transport.
54 base::TimeTicks sent_time;
55 // Time this frame was acked.
56 base::TimeTicks ack_time;
57 // Size of encoded frame in bits.
58 size_t frame_size;
61 // Calculate how much "dead air" (idle time) there is between two frames.
62 static base::TimeDelta DeadTime(const FrameStats& a, const FrameStats& b);
63 // Get the FrameStats for a given |frame_id|.
64 // Note: Older FrameStats will be removed automatically.
65 FrameStats* GetFrameStats(uint32 frame_id);
66 // Discard old FrameStats.
67 void PruneFrameStats();
68 // Calculate a safe bitrate. This is based on how much we've been
69 // sending in the past.
70 double CalculateSafeBitrate();
72 // For a given frame, calculate when it might be acked.
73 // (Or return the time it was acked, if it was.)
74 base::TimeTicks EstimatedAckTime(uint32 frame_id, double bitrate);
75 // Calculate when we start sending the data for a given frame.
76 // This is done by calculating when we were done sending the previous
77 // frame, but obviously can't be less than |sent_time| (if known).
78 base::TimeTicks EstimatedSendingTime(uint32 frame_id, double bitrate);
80 base::TickClock* const clock_; // Not owned by this class.
81 const uint32 max_bitrate_configured_;
82 const uint32 min_bitrate_configured_;
83 const double max_frame_rate_;
84 std::deque<FrameStats> frame_stats_;
85 uint32 last_frame_stats_;
86 uint32 last_acked_frame_;
87 uint32 last_encoded_frame_;
88 base::TimeDelta rtt_;
89 size_t history_size_;
90 size_t acked_bits_in_history_;
91 base::TimeDelta dead_time_in_history_;
93 DISALLOW_COPY_AND_ASSIGN(AdaptiveCongestionControl);
96 class FixedCongestionControl : public CongestionControl {
97 public:
98 FixedCongestionControl(uint32 bitrate) : bitrate_(bitrate) {}
99 ~FixedCongestionControl() final {}
101 void UpdateRtt(base::TimeDelta rtt) final {}
103 void UpdateTargetPlayoutDelay(base::TimeDelta delay) final {}
105 // Called when an encoded frame is sent to the transport.
106 void SendFrameToTransport(uint32 frame_id,
107 size_t frame_size,
108 base::TimeTicks when) final {}
110 // Called when we receive an ACK for a frame.
111 void AckFrame(uint32 frame_id, base::TimeTicks when) final {}
113 // Returns the bitrate we should use for the next frame.
114 uint32 GetBitrate(base::TimeTicks playout_time,
115 base::TimeDelta playout_delay) final {
116 return bitrate_;
119 private:
120 uint32 bitrate_;
121 DISALLOW_COPY_AND_ASSIGN(FixedCongestionControl);
125 CongestionControl* NewAdaptiveCongestionControl(
126 base::TickClock* clock,
127 uint32 max_bitrate_configured,
128 uint32 min_bitrate_configured,
129 double max_frame_rate) {
130 return new AdaptiveCongestionControl(clock,
131 max_bitrate_configured,
132 min_bitrate_configured,
133 max_frame_rate);
136 CongestionControl* NewFixedCongestionControl(uint32 bitrate) {
137 return new FixedCongestionControl(bitrate);
140 // This means that we *try* to keep our buffer 90% empty.
141 // If it is less full, we increase the bandwidth, if it is more
142 // we decrease the bandwidth. Making this smaller makes the
143 // congestion control more aggressive.
144 static const double kTargetEmptyBufferFraction = 0.9;
146 // This is the size of our history in frames. Larger values makes the
147 // congestion control adapt slower.
148 static const size_t kHistorySize = 100;
150 AdaptiveCongestionControl::FrameStats::FrameStats() : frame_size(0) {
153 AdaptiveCongestionControl::AdaptiveCongestionControl(
154 base::TickClock* clock,
155 uint32 max_bitrate_configured,
156 uint32 min_bitrate_configured,
157 double max_frame_rate)
158 : clock_(clock),
159 max_bitrate_configured_(max_bitrate_configured),
160 min_bitrate_configured_(min_bitrate_configured),
161 max_frame_rate_(max_frame_rate),
162 last_frame_stats_(static_cast<uint32>(-1)),
163 last_acked_frame_(static_cast<uint32>(-1)),
164 last_encoded_frame_(static_cast<uint32>(-1)),
165 history_size_(kHistorySize),
166 acked_bits_in_history_(0) {
167 DCHECK_GE(max_bitrate_configured, min_bitrate_configured) << "Invalid config";
168 frame_stats_.resize(2);
169 base::TimeTicks now = clock->NowTicks();
170 frame_stats_[0].ack_time = now;
171 frame_stats_[0].sent_time = now;
172 frame_stats_[1].ack_time = now;
173 DCHECK(!frame_stats_[0].ack_time.is_null());
176 CongestionControl::~CongestionControl() {}
177 AdaptiveCongestionControl::~AdaptiveCongestionControl() {}
179 void AdaptiveCongestionControl::UpdateRtt(base::TimeDelta rtt) {
180 rtt_ = (7 * rtt_ + rtt) / 8;
183 void AdaptiveCongestionControl::UpdateTargetPlayoutDelay(
184 base::TimeDelta delay) {
185 const int max_unacked_frames =
186 std::min(kMaxUnackedFrames,
187 1 + static_cast<int>(delay * max_frame_rate_ /
188 base::TimeDelta::FromSeconds(1)));
189 DCHECK_GT(max_unacked_frames, 0);
190 history_size_ = max_unacked_frames + kHistorySize;
191 PruneFrameStats();
194 // Calculate how much "dead air" there is between two frames.
195 base::TimeDelta AdaptiveCongestionControl::DeadTime(const FrameStats& a,
196 const FrameStats& b) {
197 if (b.sent_time > a.ack_time) {
198 return b.sent_time - a.ack_time;
199 } else {
200 return base::TimeDelta();
204 double AdaptiveCongestionControl::CalculateSafeBitrate() {
205 double transmit_time =
206 (GetFrameStats(last_acked_frame_)->ack_time -
207 frame_stats_.front().sent_time - dead_time_in_history_).InSecondsF();
209 if (acked_bits_in_history_ == 0 || transmit_time <= 0.0) {
210 return min_bitrate_configured_;
212 return acked_bits_in_history_ / std::max(transmit_time, 1E-3);
215 AdaptiveCongestionControl::FrameStats*
216 AdaptiveCongestionControl::GetFrameStats(uint32 frame_id) {
217 int32 offset = static_cast<int32>(frame_id - last_frame_stats_);
218 DCHECK_LT(offset, static_cast<int32>(kHistorySize));
219 if (offset > 0) {
220 frame_stats_.resize(frame_stats_.size() + offset);
221 last_frame_stats_ += offset;
222 offset = 0;
224 PruneFrameStats();
225 offset += frame_stats_.size() - 1;
226 if (offset < 0 || offset >= static_cast<int32>(frame_stats_.size())) {
227 return NULL;
229 return &frame_stats_[offset];
232 void AdaptiveCongestionControl::PruneFrameStats() {
233 while (frame_stats_.size() > history_size_) {
234 DCHECK_GT(frame_stats_.size(), 1UL);
235 DCHECK(!frame_stats_[0].ack_time.is_null());
236 acked_bits_in_history_ -= frame_stats_[0].frame_size;
237 dead_time_in_history_ -= DeadTime(frame_stats_[0], frame_stats_[1]);
238 DCHECK_GE(acked_bits_in_history_, 0UL);
239 VLOG(2) << "DT: " << dead_time_in_history_.InSecondsF();
240 DCHECK_GE(dead_time_in_history_.InSecondsF(), 0.0);
241 frame_stats_.pop_front();
245 void AdaptiveCongestionControl::AckFrame(uint32 frame_id,
246 base::TimeTicks when) {
247 FrameStats* frame_stats = GetFrameStats(last_acked_frame_);
248 while (IsNewerFrameId(frame_id, last_acked_frame_)) {
249 FrameStats* last_frame_stats = frame_stats;
250 frame_stats = GetFrameStats(last_acked_frame_ + 1);
251 DCHECK(frame_stats);
252 if (frame_stats->sent_time.is_null()) {
253 // Can't ack a frame that hasn't been sent yet.
254 return;
256 last_acked_frame_++;
257 if (when < frame_stats->sent_time)
258 when = frame_stats->sent_time;
260 frame_stats->ack_time = when;
261 acked_bits_in_history_ += frame_stats->frame_size;
262 dead_time_in_history_ += DeadTime(*last_frame_stats, *frame_stats);
266 void AdaptiveCongestionControl::SendFrameToTransport(uint32 frame_id,
267 size_t frame_size,
268 base::TimeTicks when) {
269 last_encoded_frame_ = frame_id;
270 FrameStats* frame_stats = GetFrameStats(frame_id);
271 DCHECK(frame_stats);
272 frame_stats->frame_size = frame_size;
273 frame_stats->sent_time = when;
276 base::TimeTicks AdaptiveCongestionControl::EstimatedAckTime(uint32 frame_id,
277 double bitrate) {
278 FrameStats* frame_stats = GetFrameStats(frame_id);
279 DCHECK(frame_stats);
280 if (frame_stats->ack_time.is_null()) {
281 DCHECK(frame_stats->frame_size) << "frame_id: " << frame_id;
282 base::TimeTicks ret = EstimatedSendingTime(frame_id, bitrate);
283 ret += base::TimeDelta::FromSecondsD(frame_stats->frame_size / bitrate);
284 ret += rtt_;
285 base::TimeTicks now = clock_->NowTicks();
286 if (ret < now) {
287 // This is a little counter-intuitive, but it seems to work.
288 // Basically, when we estimate that the ACK should have already happened,
289 // we figure out how long ago it should have happened and guess that the
290 // ACK will happen half of that time in the future. This will cause some
291 // over-estimation when acks are late, which is actually what we want.
292 return now + (now - ret) / 2;
293 } else {
294 return ret;
296 } else {
297 return frame_stats->ack_time;
301 base::TimeTicks AdaptiveCongestionControl::EstimatedSendingTime(
302 uint32 frame_id,
303 double bitrate) {
304 FrameStats* frame_stats = GetFrameStats(frame_id);
305 DCHECK(frame_stats);
306 base::TimeTicks ret = EstimatedAckTime(frame_id - 1, bitrate) - rtt_;
307 if (frame_stats->sent_time.is_null()) {
308 // Not sent yet, but we can't start sending it in the past.
309 return std::max(ret, clock_->NowTicks());
310 } else {
311 return std::max(ret, frame_stats->sent_time);
315 uint32 AdaptiveCongestionControl::GetBitrate(base::TimeTicks playout_time,
316 base::TimeDelta playout_delay) {
317 double safe_bitrate = CalculateSafeBitrate();
318 // Estimate when we might start sending the next frame.
319 base::TimeDelta time_to_catch_up =
320 playout_time -
321 EstimatedSendingTime(last_encoded_frame_ + 1, safe_bitrate);
323 double empty_buffer_fraction =
324 time_to_catch_up.InSecondsF() / playout_delay.InSecondsF();
325 empty_buffer_fraction = std::min(empty_buffer_fraction, 1.0);
326 empty_buffer_fraction = std::max(empty_buffer_fraction, 0.0);
328 uint32 bits_per_second = static_cast<uint32>(
329 safe_bitrate * empty_buffer_fraction / kTargetEmptyBufferFraction);
330 VLOG(3) << " FBR:" << (bits_per_second / 1E6)
331 << " EBF:" << empty_buffer_fraction
332 << " SBR:" << (safe_bitrate / 1E6);
333 bits_per_second = std::max(bits_per_second, min_bitrate_configured_);
334 bits_per_second = std::min(bits_per_second, max_bitrate_configured_);
335 return bits_per_second;
338 } // namespace cast
339 } // namespace media