Add ICU message format support
[chromium-blink-merge.git] / media / renderers / audio_renderer_impl.cc
blob8df794155ad5bbd8a224c6ff808792e84d5e0f61
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "media/renderers/audio_renderer_impl.h"
7 #include <math.h>
9 #include <algorithm>
11 #include "base/bind.h"
12 #include "base/callback.h"
13 #include "base/callback_helpers.h"
14 #include "base/logging.h"
15 #include "base/metrics/histogram.h"
16 #include "base/single_thread_task_runner.h"
17 #include "base/time/default_tick_clock.h"
18 #include "media/base/audio_buffer.h"
19 #include "media/base/audio_buffer_converter.h"
20 #include "media/base/audio_hardware_config.h"
21 #include "media/base/audio_splicer.h"
22 #include "media/base/bind_to_current_loop.h"
23 #include "media/base/demuxer_stream.h"
24 #include "media/base/media_log.h"
25 #include "media/filters/audio_clock.h"
26 #include "media/filters/decrypting_demuxer_stream.h"
28 namespace media {
30 namespace {
32 enum AudioRendererEvent {
33 INITIALIZED,
34 RENDER_ERROR,
35 RENDER_EVENT_MAX = RENDER_ERROR,
38 void HistogramRendererEvent(AudioRendererEvent event) {
39 UMA_HISTOGRAM_ENUMERATION(
40 "Media.AudioRendererEvents", event, RENDER_EVENT_MAX + 1);
43 } // namespace
45 AudioRendererImpl::AudioRendererImpl(
46 const scoped_refptr<base::SingleThreadTaskRunner>& task_runner,
47 media::AudioRendererSink* sink,
48 ScopedVector<AudioDecoder> decoders,
49 const AudioHardwareConfig& hardware_config,
50 const scoped_refptr<MediaLog>& media_log)
51 : task_runner_(task_runner),
52 expecting_config_changes_(false),
53 sink_(sink),
54 audio_buffer_stream_(
55 new AudioBufferStream(task_runner, decoders.Pass(), media_log)),
56 hardware_config_(hardware_config),
57 media_log_(media_log),
58 tick_clock_(new base::DefaultTickClock()),
59 playback_rate_(0.0),
60 state_(kUninitialized),
61 buffering_state_(BUFFERING_HAVE_NOTHING),
62 rendering_(false),
63 sink_playing_(false),
64 pending_read_(false),
65 received_end_of_stream_(false),
66 rendered_end_of_stream_(false),
67 weak_factory_(this) {
68 audio_buffer_stream_->set_splice_observer(base::Bind(
69 &AudioRendererImpl::OnNewSpliceBuffer, weak_factory_.GetWeakPtr()));
70 audio_buffer_stream_->set_config_change_observer(base::Bind(
71 &AudioRendererImpl::OnConfigChange, weak_factory_.GetWeakPtr()));
74 AudioRendererImpl::~AudioRendererImpl() {
75 DVLOG(1) << __FUNCTION__;
76 DCHECK(task_runner_->BelongsToCurrentThread());
78 // If Render() is in progress, this call will wait for Render() to finish.
79 // After this call, the |sink_| will not call back into |this| anymore.
80 sink_->Stop();
82 if (!init_cb_.is_null())
83 base::ResetAndReturn(&init_cb_).Run(PIPELINE_ERROR_ABORT);
86 void AudioRendererImpl::StartTicking() {
87 DVLOG(1) << __FUNCTION__;
88 DCHECK(task_runner_->BelongsToCurrentThread());
89 DCHECK(!rendering_);
90 rendering_ = true;
92 base::AutoLock auto_lock(lock_);
93 // Wait for an eventual call to SetPlaybackRate() to start rendering.
94 if (playback_rate_ == 0) {
95 DCHECK(!sink_playing_);
96 return;
99 StartRendering_Locked();
102 void AudioRendererImpl::StartRendering_Locked() {
103 DVLOG(1) << __FUNCTION__;
104 DCHECK(task_runner_->BelongsToCurrentThread());
105 DCHECK_EQ(state_, kPlaying);
106 DCHECK(!sink_playing_);
107 DCHECK_NE(playback_rate_, 0.0);
108 lock_.AssertAcquired();
110 sink_playing_ = true;
112 base::AutoUnlock auto_unlock(lock_);
113 sink_->Play();
116 void AudioRendererImpl::StopTicking() {
117 DVLOG(1) << __FUNCTION__;
118 DCHECK(task_runner_->BelongsToCurrentThread());
119 DCHECK(rendering_);
120 rendering_ = false;
122 base::AutoLock auto_lock(lock_);
123 // Rendering should have already been stopped with a zero playback rate.
124 if (playback_rate_ == 0) {
125 DCHECK(!sink_playing_);
126 return;
129 StopRendering_Locked();
132 void AudioRendererImpl::StopRendering_Locked() {
133 DCHECK(task_runner_->BelongsToCurrentThread());
134 DCHECK_EQ(state_, kPlaying);
135 DCHECK(sink_playing_);
136 lock_.AssertAcquired();
138 sink_playing_ = false;
140 base::AutoUnlock auto_unlock(lock_);
141 sink_->Pause();
142 stop_rendering_time_ = last_render_time_;
145 void AudioRendererImpl::SetMediaTime(base::TimeDelta time) {
146 DVLOG(1) << __FUNCTION__ << "(" << time << ")";
147 DCHECK(task_runner_->BelongsToCurrentThread());
149 base::AutoLock auto_lock(lock_);
150 DCHECK(!rendering_);
151 DCHECK_EQ(state_, kFlushed);
153 start_timestamp_ = time;
154 ended_timestamp_ = kInfiniteDuration();
155 last_render_time_ = stop_rendering_time_ = base::TimeTicks();
156 first_packet_timestamp_ = kNoTimestamp();
157 audio_clock_.reset(new AudioClock(time, audio_parameters_.sample_rate()));
160 base::TimeDelta AudioRendererImpl::CurrentMediaTime() {
161 // In practice the Render() method is called with a high enough frequency
162 // that returning only the front timestamp is good enough and also prevents
163 // returning values that go backwards in time.
164 base::TimeDelta current_media_time;
166 base::AutoLock auto_lock(lock_);
167 current_media_time = audio_clock_->front_timestamp();
170 DVLOG(2) << __FUNCTION__ << ": " << current_media_time;
171 return current_media_time;
174 bool AudioRendererImpl::GetWallClockTimes(
175 const std::vector<base::TimeDelta>& media_timestamps,
176 std::vector<base::TimeTicks>* wall_clock_times) {
177 base::AutoLock auto_lock(lock_);
178 DCHECK(wall_clock_times->empty());
180 // When playback is paused (rate is zero), assume a rate of 1.0.
181 const double playback_rate = playback_rate_ ? playback_rate_ : 1.0;
182 const bool is_time_moving = sink_playing_ && playback_rate_ &&
183 !last_render_time_.is_null() &&
184 stop_rendering_time_.is_null();
186 // Pre-compute the time until playback of the audio buffer extents, since
187 // these values are frequently used below.
188 const base::TimeDelta time_until_front =
189 audio_clock_->TimeUntilPlayback(audio_clock_->front_timestamp());
190 const base::TimeDelta time_until_back =
191 audio_clock_->TimeUntilPlayback(audio_clock_->back_timestamp());
193 if (media_timestamps.empty()) {
194 // Return the current media time as a wall clock time while accounting for
195 // frames which may be in the process of play out.
196 wall_clock_times->push_back(std::min(
197 std::max(tick_clock_->NowTicks(), last_render_time_ + time_until_front),
198 last_render_time_ + time_until_back));
199 return is_time_moving;
202 wall_clock_times->reserve(media_timestamps.size());
203 for (const auto& media_timestamp : media_timestamps) {
204 // When time was or is moving and the requested media timestamp is within
205 // range of played out audio, we can provide an exact conversion.
206 if (!last_render_time_.is_null() &&
207 media_timestamp >= audio_clock_->front_timestamp() &&
208 media_timestamp <= audio_clock_->back_timestamp()) {
209 wall_clock_times->push_back(
210 last_render_time_ + audio_clock_->TimeUntilPlayback(media_timestamp));
211 continue;
214 base::TimeDelta base_timestamp, time_until_playback;
215 if (media_timestamp < audio_clock_->front_timestamp()) {
216 base_timestamp = audio_clock_->front_timestamp();
217 time_until_playback = time_until_front;
218 } else {
219 base_timestamp = audio_clock_->back_timestamp();
220 time_until_playback = time_until_back;
223 // In practice, most calls will be estimates given the relatively small
224 // window in which clients can get the actual time.
225 wall_clock_times->push_back(last_render_time_ + time_until_playback +
226 (media_timestamp - base_timestamp) /
227 playback_rate);
230 return is_time_moving;
233 TimeSource* AudioRendererImpl::GetTimeSource() {
234 return this;
237 void AudioRendererImpl::Flush(const base::Closure& callback) {
238 DVLOG(1) << __FUNCTION__;
239 DCHECK(task_runner_->BelongsToCurrentThread());
241 base::AutoLock auto_lock(lock_);
242 DCHECK_EQ(state_, kPlaying);
243 DCHECK(flush_cb_.is_null());
245 flush_cb_ = callback;
246 ChangeState_Locked(kFlushing);
248 if (pending_read_)
249 return;
251 ChangeState_Locked(kFlushed);
252 DoFlush_Locked();
255 void AudioRendererImpl::DoFlush_Locked() {
256 DCHECK(task_runner_->BelongsToCurrentThread());
257 lock_.AssertAcquired();
259 DCHECK(!pending_read_);
260 DCHECK_EQ(state_, kFlushed);
262 audio_buffer_stream_->Reset(base::Bind(&AudioRendererImpl::ResetDecoderDone,
263 weak_factory_.GetWeakPtr()));
266 void AudioRendererImpl::ResetDecoderDone() {
267 DCHECK(task_runner_->BelongsToCurrentThread());
269 base::AutoLock auto_lock(lock_);
271 DCHECK_EQ(state_, kFlushed);
272 DCHECK(!flush_cb_.is_null());
274 received_end_of_stream_ = false;
275 rendered_end_of_stream_ = false;
277 // Flush() may have been called while underflowed/not fully buffered.
278 if (buffering_state_ != BUFFERING_HAVE_NOTHING)
279 SetBufferingState_Locked(BUFFERING_HAVE_NOTHING);
281 splicer_->Reset();
282 if (buffer_converter_)
283 buffer_converter_->Reset();
284 algorithm_->FlushBuffers();
287 // Changes in buffering state are always posted. Flush callback must only be
288 // run after buffering state has been set back to nothing.
289 task_runner_->PostTask(FROM_HERE, base::ResetAndReturn(&flush_cb_));
292 void AudioRendererImpl::StartPlaying() {
293 DVLOG(1) << __FUNCTION__;
294 DCHECK(task_runner_->BelongsToCurrentThread());
296 base::AutoLock auto_lock(lock_);
297 DCHECK(!sink_playing_);
298 DCHECK_EQ(state_, kFlushed);
299 DCHECK_EQ(buffering_state_, BUFFERING_HAVE_NOTHING);
300 DCHECK(!pending_read_) << "Pending read must complete before seeking";
302 ChangeState_Locked(kPlaying);
303 AttemptRead_Locked();
306 void AudioRendererImpl::Initialize(
307 DemuxerStream* stream,
308 const PipelineStatusCB& init_cb,
309 const SetDecryptorReadyCB& set_decryptor_ready_cb,
310 const StatisticsCB& statistics_cb,
311 const BufferingStateCB& buffering_state_cb,
312 const base::Closure& ended_cb,
313 const PipelineStatusCB& error_cb,
314 const base::Closure& waiting_for_decryption_key_cb) {
315 DVLOG(1) << __FUNCTION__;
316 DCHECK(task_runner_->BelongsToCurrentThread());
317 DCHECK(stream);
318 DCHECK_EQ(stream->type(), DemuxerStream::AUDIO);
319 DCHECK(!init_cb.is_null());
320 DCHECK(!statistics_cb.is_null());
321 DCHECK(!buffering_state_cb.is_null());
322 DCHECK(!ended_cb.is_null());
323 DCHECK(!error_cb.is_null());
324 DCHECK_EQ(kUninitialized, state_);
325 DCHECK(sink_.get());
327 state_ = kInitializing;
329 // Always post |init_cb_| because |this| could be destroyed if initialization
330 // failed.
331 init_cb_ = BindToCurrentLoop(init_cb);
333 buffering_state_cb_ = buffering_state_cb;
334 ended_cb_ = ended_cb;
335 error_cb_ = error_cb;
337 const AudioParameters& hw_params = hardware_config_.GetOutputConfig();
338 expecting_config_changes_ = stream->SupportsConfigChanges();
339 if (!expecting_config_changes_ || !hw_params.IsValid()) {
340 // The actual buffer size is controlled via the size of the AudioBus
341 // provided to Render(), so just choose something reasonable here for looks.
342 int buffer_size = stream->audio_decoder_config().samples_per_second() / 100;
343 audio_parameters_.Reset(
344 AudioParameters::AUDIO_PCM_LOW_LATENCY,
345 stream->audio_decoder_config().channel_layout(),
346 ChannelLayoutToChannelCount(
347 stream->audio_decoder_config().channel_layout()),
348 stream->audio_decoder_config().samples_per_second(),
349 stream->audio_decoder_config().bits_per_channel(),
350 buffer_size);
351 buffer_converter_.reset();
352 } else {
353 audio_parameters_.Reset(
354 hw_params.format(),
355 // Always use the source's channel layout and channel count to avoid
356 // premature downmixing (http://crbug.com/379288), platform specific
357 // issues around channel layouts (http://crbug.com/266674), and
358 // unnecessary upmixing overhead.
359 stream->audio_decoder_config().channel_layout(),
360 ChannelLayoutToChannelCount(
361 stream->audio_decoder_config().channel_layout()),
362 hw_params.sample_rate(),
363 hw_params.bits_per_sample(),
364 hardware_config_.GetHighLatencyBufferSize());
367 audio_clock_.reset(
368 new AudioClock(base::TimeDelta(), audio_parameters_.sample_rate()));
370 audio_buffer_stream_->Initialize(
371 stream, base::Bind(&AudioRendererImpl::OnAudioBufferStreamInitialized,
372 weak_factory_.GetWeakPtr()),
373 set_decryptor_ready_cb, statistics_cb, waiting_for_decryption_key_cb);
376 void AudioRendererImpl::OnAudioBufferStreamInitialized(bool success) {
377 DVLOG(1) << __FUNCTION__ << ": " << success;
378 DCHECK(task_runner_->BelongsToCurrentThread());
380 base::AutoLock auto_lock(lock_);
382 if (!success) {
383 state_ = kUninitialized;
384 base::ResetAndReturn(&init_cb_).Run(DECODER_ERROR_NOT_SUPPORTED);
385 return;
388 if (!audio_parameters_.IsValid()) {
389 DVLOG(1) << __FUNCTION__ << ": Invalid audio parameters: "
390 << audio_parameters_.AsHumanReadableString();
391 ChangeState_Locked(kUninitialized);
392 base::ResetAndReturn(&init_cb_).Run(PIPELINE_ERROR_INITIALIZATION_FAILED);
393 return;
396 if (expecting_config_changes_)
397 buffer_converter_.reset(new AudioBufferConverter(audio_parameters_));
398 splicer_.reset(new AudioSplicer(audio_parameters_.sample_rate(), media_log_));
400 // We're all good! Continue initializing the rest of the audio renderer
401 // based on the decoder format.
402 algorithm_.reset(new AudioRendererAlgorithm());
403 algorithm_->Initialize(audio_parameters_);
405 ChangeState_Locked(kFlushed);
407 HistogramRendererEvent(INITIALIZED);
410 base::AutoUnlock auto_unlock(lock_);
411 sink_->Initialize(audio_parameters_, this);
412 sink_->Start();
414 // Some sinks play on start...
415 sink_->Pause();
418 DCHECK(!sink_playing_);
419 base::ResetAndReturn(&init_cb_).Run(PIPELINE_OK);
422 void AudioRendererImpl::SetVolume(float volume) {
423 DCHECK(task_runner_->BelongsToCurrentThread());
424 DCHECK(sink_.get());
425 sink_->SetVolume(volume);
428 void AudioRendererImpl::DecodedAudioReady(
429 AudioBufferStream::Status status,
430 const scoped_refptr<AudioBuffer>& buffer) {
431 DVLOG(2) << __FUNCTION__ << "(" << status << ")";
432 DCHECK(task_runner_->BelongsToCurrentThread());
434 base::AutoLock auto_lock(lock_);
435 DCHECK(state_ != kUninitialized);
437 CHECK(pending_read_);
438 pending_read_ = false;
440 if (status == AudioBufferStream::ABORTED ||
441 status == AudioBufferStream::DEMUXER_READ_ABORTED) {
442 HandleAbortedReadOrDecodeError(false);
443 return;
446 if (status == AudioBufferStream::DECODE_ERROR) {
447 HandleAbortedReadOrDecodeError(true);
448 return;
451 DCHECK_EQ(status, AudioBufferStream::OK);
452 DCHECK(buffer.get());
454 if (state_ == kFlushing) {
455 ChangeState_Locked(kFlushed);
456 DoFlush_Locked();
457 return;
460 if (expecting_config_changes_) {
461 DCHECK(buffer_converter_);
462 buffer_converter_->AddInput(buffer);
463 while (buffer_converter_->HasNextBuffer()) {
464 if (!splicer_->AddInput(buffer_converter_->GetNextBuffer())) {
465 HandleAbortedReadOrDecodeError(true);
466 return;
469 } else {
470 if (!splicer_->AddInput(buffer)) {
471 HandleAbortedReadOrDecodeError(true);
472 return;
476 if (!splicer_->HasNextBuffer()) {
477 AttemptRead_Locked();
478 return;
481 bool need_another_buffer = false;
482 while (splicer_->HasNextBuffer())
483 need_another_buffer = HandleSplicerBuffer_Locked(splicer_->GetNextBuffer());
485 if (!need_another_buffer && !CanRead_Locked())
486 return;
488 AttemptRead_Locked();
491 bool AudioRendererImpl::HandleSplicerBuffer_Locked(
492 const scoped_refptr<AudioBuffer>& buffer) {
493 lock_.AssertAcquired();
494 if (buffer->end_of_stream()) {
495 received_end_of_stream_ = true;
496 } else {
497 if (state_ == kPlaying) {
498 if (IsBeforeStartTime(buffer))
499 return true;
501 // Trim off any additional time before the start timestamp.
502 const base::TimeDelta trim_time = start_timestamp_ - buffer->timestamp();
503 if (trim_time > base::TimeDelta()) {
504 buffer->TrimStart(buffer->frame_count() *
505 (static_cast<double>(trim_time.InMicroseconds()) /
506 buffer->duration().InMicroseconds()));
508 // If the entire buffer was trimmed, request a new one.
509 if (!buffer->frame_count())
510 return true;
513 if (state_ != kUninitialized)
514 algorithm_->EnqueueBuffer(buffer);
517 // Store the timestamp of the first packet so we know when to start actual
518 // audio playback.
519 if (first_packet_timestamp_ == kNoTimestamp())
520 first_packet_timestamp_ = buffer->timestamp();
522 switch (state_) {
523 case kUninitialized:
524 case kInitializing:
525 case kFlushing:
526 NOTREACHED();
527 return false;
529 case kFlushed:
530 DCHECK(!pending_read_);
531 return false;
533 case kPlaying:
534 if (buffer->end_of_stream() || algorithm_->IsQueueFull()) {
535 if (buffering_state_ == BUFFERING_HAVE_NOTHING)
536 SetBufferingState_Locked(BUFFERING_HAVE_ENOUGH);
537 return false;
539 return true;
541 return false;
544 void AudioRendererImpl::AttemptRead() {
545 base::AutoLock auto_lock(lock_);
546 AttemptRead_Locked();
549 void AudioRendererImpl::AttemptRead_Locked() {
550 DCHECK(task_runner_->BelongsToCurrentThread());
551 lock_.AssertAcquired();
553 if (!CanRead_Locked())
554 return;
556 pending_read_ = true;
557 audio_buffer_stream_->Read(base::Bind(&AudioRendererImpl::DecodedAudioReady,
558 weak_factory_.GetWeakPtr()));
561 bool AudioRendererImpl::CanRead_Locked() {
562 lock_.AssertAcquired();
564 switch (state_) {
565 case kUninitialized:
566 case kInitializing:
567 case kFlushing:
568 case kFlushed:
569 return false;
571 case kPlaying:
572 break;
575 return !pending_read_ && !received_end_of_stream_ &&
576 !algorithm_->IsQueueFull();
579 void AudioRendererImpl::SetPlaybackRate(double playback_rate) {
580 DVLOG(1) << __FUNCTION__ << "(" << playback_rate << ")";
581 DCHECK(task_runner_->BelongsToCurrentThread());
582 DCHECK_GE(playback_rate, 0);
583 DCHECK(sink_.get());
585 base::AutoLock auto_lock(lock_);
587 // We have two cases here:
588 // Play: current_playback_rate == 0 && playback_rate != 0
589 // Pause: current_playback_rate != 0 && playback_rate == 0
590 double current_playback_rate = playback_rate_;
591 playback_rate_ = playback_rate;
593 if (!rendering_)
594 return;
596 if (current_playback_rate == 0 && playback_rate != 0) {
597 StartRendering_Locked();
598 return;
601 if (current_playback_rate != 0 && playback_rate == 0) {
602 StopRendering_Locked();
603 return;
607 bool AudioRendererImpl::IsBeforeStartTime(
608 const scoped_refptr<AudioBuffer>& buffer) {
609 DCHECK_EQ(state_, kPlaying);
610 return buffer.get() && !buffer->end_of_stream() &&
611 (buffer->timestamp() + buffer->duration()) < start_timestamp_;
614 int AudioRendererImpl::Render(AudioBus* audio_bus,
615 int audio_delay_milliseconds) {
616 const int requested_frames = audio_bus->frames();
617 base::TimeDelta playback_delay = base::TimeDelta::FromMilliseconds(
618 audio_delay_milliseconds);
619 const int delay_frames = static_cast<int>(playback_delay.InSecondsF() *
620 audio_parameters_.sample_rate());
621 int frames_written = 0;
623 base::AutoLock auto_lock(lock_);
624 last_render_time_ = tick_clock_->NowTicks();
626 if (!stop_rendering_time_.is_null()) {
627 audio_clock_->CompensateForSuspendedWrites(
628 last_render_time_ - stop_rendering_time_, delay_frames);
629 stop_rendering_time_ = base::TimeTicks();
632 // Ensure Stop() hasn't destroyed our |algorithm_| on the pipeline thread.
633 if (!algorithm_) {
634 audio_clock_->WroteAudio(
635 0, requested_frames, delay_frames, playback_rate_);
636 return 0;
639 if (playback_rate_ == 0) {
640 audio_clock_->WroteAudio(
641 0, requested_frames, delay_frames, playback_rate_);
642 return 0;
645 // Mute audio by returning 0 when not playing.
646 if (state_ != kPlaying) {
647 audio_clock_->WroteAudio(
648 0, requested_frames, delay_frames, playback_rate_);
649 return 0;
652 // Delay playback by writing silence if we haven't reached the first
653 // timestamp yet; this can occur if the video starts before the audio.
654 if (algorithm_->frames_buffered() > 0) {
655 DCHECK(first_packet_timestamp_ != kNoTimestamp());
656 const base::TimeDelta play_delay =
657 first_packet_timestamp_ - audio_clock_->back_timestamp();
658 if (play_delay > base::TimeDelta()) {
659 DCHECK_EQ(frames_written, 0);
660 frames_written =
661 std::min(static_cast<int>(play_delay.InSecondsF() *
662 audio_parameters_.sample_rate()),
663 requested_frames);
664 audio_bus->ZeroFramesPartial(0, frames_written);
667 // If there's any space left, actually render the audio; this is where the
668 // aural magic happens.
669 if (frames_written < requested_frames) {
670 frames_written += algorithm_->FillBuffer(
671 audio_bus, frames_written, requested_frames - frames_written,
672 playback_rate_);
676 // We use the following conditions to determine end of playback:
677 // 1) Algorithm can not fill the audio callback buffer
678 // 2) We received an end of stream buffer
679 // 3) We haven't already signalled that we've ended
680 // 4) We've played all known audio data sent to hardware
682 // We use the following conditions to determine underflow:
683 // 1) Algorithm can not fill the audio callback buffer
684 // 2) We have NOT received an end of stream buffer
685 // 3) We are in the kPlaying state
687 // Otherwise the buffer has data we can send to the device.
689 // Per the TimeSource API the media time should always increase even after
690 // we've rendered all known audio data. Doing so simplifies scenarios where
691 // we have other sources of media data that need to be scheduled after audio
692 // data has ended.
694 // That being said, we don't want to advance time when underflowed as we
695 // know more decoded frames will eventually arrive. If we did, we would
696 // throw things out of sync when said decoded frames arrive.
697 int frames_after_end_of_stream = 0;
698 if (frames_written == 0) {
699 if (received_end_of_stream_) {
700 if (ended_timestamp_ == kInfiniteDuration())
701 ended_timestamp_ = audio_clock_->back_timestamp();
702 frames_after_end_of_stream = requested_frames;
703 } else if (state_ == kPlaying &&
704 buffering_state_ != BUFFERING_HAVE_NOTHING) {
705 algorithm_->IncreaseQueueCapacity();
706 SetBufferingState_Locked(BUFFERING_HAVE_NOTHING);
710 audio_clock_->WroteAudio(frames_written + frames_after_end_of_stream,
711 requested_frames,
712 delay_frames,
713 playback_rate_);
715 if (CanRead_Locked()) {
716 task_runner_->PostTask(FROM_HERE,
717 base::Bind(&AudioRendererImpl::AttemptRead,
718 weak_factory_.GetWeakPtr()));
721 if (audio_clock_->front_timestamp() >= ended_timestamp_ &&
722 !rendered_end_of_stream_) {
723 rendered_end_of_stream_ = true;
724 task_runner_->PostTask(FROM_HERE, ended_cb_);
728 DCHECK_LE(frames_written, requested_frames);
729 return frames_written;
732 void AudioRendererImpl::OnRenderError() {
733 // UMA data tells us this happens ~0.01% of the time. Trigger an error instead
734 // of trying to gracefully fall back to a fake sink. It's very likely
735 // OnRenderError() should be removed and the audio stack handle errors without
736 // notifying clients. See http://crbug.com/234708 for details.
737 HistogramRendererEvent(RENDER_ERROR);
739 MEDIA_LOG(ERROR, media_log_) << "audio render error";
741 // Post to |task_runner_| as this is called on the audio callback thread.
742 task_runner_->PostTask(FROM_HERE,
743 base::Bind(error_cb_, PIPELINE_ERROR_DECODE));
746 void AudioRendererImpl::HandleAbortedReadOrDecodeError(bool is_decode_error) {
747 DCHECK(task_runner_->BelongsToCurrentThread());
748 lock_.AssertAcquired();
750 PipelineStatus status = is_decode_error ? PIPELINE_ERROR_DECODE : PIPELINE_OK;
751 switch (state_) {
752 case kUninitialized:
753 case kInitializing:
754 NOTREACHED();
755 return;
756 case kFlushing:
757 ChangeState_Locked(kFlushed);
758 if (status == PIPELINE_OK) {
759 DoFlush_Locked();
760 return;
763 MEDIA_LOG(ERROR, media_log_) << "audio decode error during flushing";
764 error_cb_.Run(status);
765 base::ResetAndReturn(&flush_cb_).Run();
766 return;
768 case kFlushed:
769 case kPlaying:
770 if (status != PIPELINE_OK) {
771 MEDIA_LOG(ERROR, media_log_) << "audio decode error during playing";
772 error_cb_.Run(status);
774 return;
778 void AudioRendererImpl::ChangeState_Locked(State new_state) {
779 DVLOG(1) << __FUNCTION__ << " : " << state_ << " -> " << new_state;
780 lock_.AssertAcquired();
781 state_ = new_state;
784 void AudioRendererImpl::OnNewSpliceBuffer(base::TimeDelta splice_timestamp) {
785 DCHECK(task_runner_->BelongsToCurrentThread());
786 splicer_->SetSpliceTimestamp(splice_timestamp);
789 void AudioRendererImpl::OnConfigChange() {
790 DCHECK(task_runner_->BelongsToCurrentThread());
791 DCHECK(expecting_config_changes_);
792 buffer_converter_->ResetTimestampState();
793 // Drain flushed buffers from the converter so the AudioSplicer receives all
794 // data ahead of any OnNewSpliceBuffer() calls. Since discontinuities should
795 // only appear after config changes, AddInput() should never fail here.
796 while (buffer_converter_->HasNextBuffer())
797 CHECK(splicer_->AddInput(buffer_converter_->GetNextBuffer()));
800 void AudioRendererImpl::SetBufferingState_Locked(
801 BufferingState buffering_state) {
802 DVLOG(1) << __FUNCTION__ << " : " << buffering_state_ << " -> "
803 << buffering_state;
804 DCHECK_NE(buffering_state_, buffering_state);
805 lock_.AssertAcquired();
806 buffering_state_ = buffering_state;
808 task_runner_->PostTask(FROM_HERE,
809 base::Bind(buffering_state_cb_, buffering_state_));
812 } // namespace media