Update V8 to version 4.6.66.
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3080704 / src / vdbe.c
blob366c7a01661b2d48e986d903d412981e69df33f5
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files. The formatting
17 ** of the code in this file is, therefore, important. See other comments
18 ** in this file for details. If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell. This macro verifies that shallow copies are
27 ** not misused. A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content. If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy. This macro verifies that nothing
31 ** like that ever happens.
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly. This variable has no function other than to
44 ** help verify the correct operation of the library.
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
55 ** This facility is used for testing purposes only. It does not function
56 ** in an ordinary build.
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed. The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times. This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly. This variable has no function other than to
78 ** help verify the correct operation of the library.
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
87 #endif
90 ** The next global variable is incremented each time the OP_Found opcode
91 ** is executed. This is used to test whether or not the foreign key
92 ** operation implemented using OP_FkIsZero is working. This variable
93 ** has no function other than to help verify the correct operation of the
94 ** library.
96 #ifdef SQLITE_TEST
97 int sqlite3_found_count = 0;
98 #endif
101 ** Test a register to see if it exceeds the current maximum blob size.
102 ** If it does, record the new maximum blob size.
104 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
105 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
106 #else
107 # define UPDATE_MAX_BLOBSIZE(P)
108 #endif
111 ** Invoke the VDBE coverage callback, if that callback is defined. This
112 ** feature is used for test suite validation only and does not appear an
113 ** production builds.
115 ** M is an integer, 2 or 3, that indices how many different ways the
116 ** branch can go. It is usually 2. "I" is the direction the branch
117 ** goes. 0 means falls through. 1 means branch is taken. 2 means the
118 ** second alternative branch is taken.
120 ** iSrcLine is the source code line (from the __LINE__ macro) that
121 ** generated the VDBE instruction. This instrumentation assumes that all
122 ** source code is in a single file (the amalgamation). Special values 1
123 ** and 2 for the iSrcLine parameter mean that this particular branch is
124 ** always taken or never taken, respectively.
126 #if !defined(SQLITE_VDBE_COVERAGE)
127 # define VdbeBranchTaken(I,M)
128 #else
129 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
130 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
131 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
132 M = iSrcLine;
133 /* Assert the truth of VdbeCoverageAlwaysTaken() and
134 ** VdbeCoverageNeverTaken() */
135 assert( (M & I)==I );
136 }else{
137 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
138 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
139 iSrcLine,I,M);
142 #endif
145 ** Convert the given register into a string if it isn't one
146 ** already. Return non-zero if a malloc() fails.
148 #define Stringify(P, enc) \
149 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
150 { goto no_mem; }
153 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
154 ** a pointer to a dynamically allocated string where some other entity
155 ** is responsible for deallocating that string. Because the register
156 ** does not control the string, it might be deleted without the register
157 ** knowing it.
159 ** This routine converts an ephemeral string into a dynamically allocated
160 ** string that the register itself controls. In other words, it
161 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
163 #define Deephemeralize(P) \
164 if( ((P)->flags&MEM_Ephem)!=0 \
165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
167 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
168 #define isSorter(x) ((x)->pSorter!=0)
171 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
172 ** if we run out of memory.
174 static VdbeCursor *allocateCursor(
175 Vdbe *p, /* The virtual machine */
176 int iCur, /* Index of the new VdbeCursor */
177 int nField, /* Number of fields in the table or index */
178 int iDb, /* Database the cursor belongs to, or -1 */
179 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
181 /* Find the memory cell that will be used to store the blob of memory
182 ** required for this VdbeCursor structure. It is convenient to use a
183 ** vdbe memory cell to manage the memory allocation required for a
184 ** VdbeCursor structure for the following reasons:
186 ** * Sometimes cursor numbers are used for a couple of different
187 ** purposes in a vdbe program. The different uses might require
188 ** different sized allocations. Memory cells provide growable
189 ** allocations.
191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
192 ** be freed lazily via the sqlite3_release_memory() API. This
193 ** minimizes the number of malloc calls made by the system.
195 ** Memory cells for cursors are allocated at the top of the address
196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
197 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
199 Mem *pMem = &p->aMem[p->nMem-iCur];
201 int nByte;
202 VdbeCursor *pCx = 0;
203 nByte =
204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
205 (isBtreeCursor?sqlite3BtreeCursorSize():0);
207 assert( iCur<p->nCursor );
208 if( p->apCsr[iCur] ){
209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
210 p->apCsr[iCur] = 0;
212 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
214 memset(pCx, 0, sizeof(VdbeCursor));
215 pCx->iDb = iDb;
216 pCx->nField = nField;
217 pCx->aOffset = &pCx->aType[nField];
218 if( isBtreeCursor ){
219 pCx->pCursor = (BtCursor*)
220 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
221 sqlite3BtreeCursorZero(pCx->pCursor);
224 return pCx;
228 ** Try to convert a value into a numeric representation if we can
229 ** do so without loss of information. In other words, if the string
230 ** looks like a number, convert it into a number. If it does not
231 ** look like a number, leave it alone.
233 ** If the bTryForInt flag is true, then extra effort is made to give
234 ** an integer representation. Strings that look like floating point
235 ** values but which have no fractional component (example: '48.00')
236 ** will have a MEM_Int representation when bTryForInt is true.
238 ** If bTryForInt is false, then if the input string contains a decimal
239 ** point or exponential notation, the result is only MEM_Real, even
240 ** if there is an exact integer representation of the quantity.
242 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
243 double rValue;
244 i64 iValue;
245 u8 enc = pRec->enc;
246 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
247 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
248 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
249 pRec->u.i = iValue;
250 pRec->flags |= MEM_Int;
251 }else{
252 pRec->u.r = rValue;
253 pRec->flags |= MEM_Real;
254 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
259 ** Processing is determine by the affinity parameter:
261 ** SQLITE_AFF_INTEGER:
262 ** SQLITE_AFF_REAL:
263 ** SQLITE_AFF_NUMERIC:
264 ** Try to convert pRec to an integer representation or a
265 ** floating-point representation if an integer representation
266 ** is not possible. Note that the integer representation is
267 ** always preferred, even if the affinity is REAL, because
268 ** an integer representation is more space efficient on disk.
270 ** SQLITE_AFF_TEXT:
271 ** Convert pRec to a text representation.
273 ** SQLITE_AFF_NONE:
274 ** No-op. pRec is unchanged.
276 static void applyAffinity(
277 Mem *pRec, /* The value to apply affinity to */
278 char affinity, /* The affinity to be applied */
279 u8 enc /* Use this text encoding */
281 if( affinity>=SQLITE_AFF_NUMERIC ){
282 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
283 || affinity==SQLITE_AFF_NUMERIC );
284 if( (pRec->flags & MEM_Int)==0 ){
285 if( (pRec->flags & MEM_Real)==0 ){
286 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
287 }else{
288 sqlite3VdbeIntegerAffinity(pRec);
291 }else if( affinity==SQLITE_AFF_TEXT ){
292 /* Only attempt the conversion to TEXT if there is an integer or real
293 ** representation (blob and NULL do not get converted) but no string
294 ** representation.
296 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
297 sqlite3VdbeMemStringify(pRec, enc, 1);
303 ** Try to convert the type of a function argument or a result column
304 ** into a numeric representation. Use either INTEGER or REAL whichever
305 ** is appropriate. But only do the conversion if it is possible without
306 ** loss of information and return the revised type of the argument.
308 int sqlite3_value_numeric_type(sqlite3_value *pVal){
309 int eType = sqlite3_value_type(pVal);
310 if( eType==SQLITE_TEXT ){
311 Mem *pMem = (Mem*)pVal;
312 applyNumericAffinity(pMem, 0);
313 eType = sqlite3_value_type(pVal);
315 return eType;
319 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
320 ** not the internal Mem* type.
322 void sqlite3ValueApplyAffinity(
323 sqlite3_value *pVal,
324 u8 affinity,
325 u8 enc
327 applyAffinity((Mem *)pVal, affinity, enc);
331 ** pMem currently only holds a string type (or maybe a BLOB that we can
332 ** interpret as a string if we want to). Compute its corresponding
333 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
334 ** accordingly.
336 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
337 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
338 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
339 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
340 return 0;
342 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
343 return MEM_Int;
345 return MEM_Real;
349 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
350 ** none.
352 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
353 ** But it does set pMem->u.r and pMem->u.i appropriately.
355 static u16 numericType(Mem *pMem){
356 if( pMem->flags & (MEM_Int|MEM_Real) ){
357 return pMem->flags & (MEM_Int|MEM_Real);
359 if( pMem->flags & (MEM_Str|MEM_Blob) ){
360 return computeNumericType(pMem);
362 return 0;
365 #ifdef SQLITE_DEBUG
367 ** Write a nice string representation of the contents of cell pMem
368 ** into buffer zBuf, length nBuf.
370 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
371 char *zCsr = zBuf;
372 int f = pMem->flags;
374 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
376 if( f&MEM_Blob ){
377 int i;
378 char c;
379 if( f & MEM_Dyn ){
380 c = 'z';
381 assert( (f & (MEM_Static|MEM_Ephem))==0 );
382 }else if( f & MEM_Static ){
383 c = 't';
384 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
385 }else if( f & MEM_Ephem ){
386 c = 'e';
387 assert( (f & (MEM_Static|MEM_Dyn))==0 );
388 }else{
389 c = 's';
392 sqlite3_snprintf(100, zCsr, "%c", c);
393 zCsr += sqlite3Strlen30(zCsr);
394 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
395 zCsr += sqlite3Strlen30(zCsr);
396 for(i=0; i<16 && i<pMem->n; i++){
397 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
398 zCsr += sqlite3Strlen30(zCsr);
400 for(i=0; i<16 && i<pMem->n; i++){
401 char z = pMem->z[i];
402 if( z<32 || z>126 ) *zCsr++ = '.';
403 else *zCsr++ = z;
406 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
407 zCsr += sqlite3Strlen30(zCsr);
408 if( f & MEM_Zero ){
409 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
410 zCsr += sqlite3Strlen30(zCsr);
412 *zCsr = '\0';
413 }else if( f & MEM_Str ){
414 int j, k;
415 zBuf[0] = ' ';
416 if( f & MEM_Dyn ){
417 zBuf[1] = 'z';
418 assert( (f & (MEM_Static|MEM_Ephem))==0 );
419 }else if( f & MEM_Static ){
420 zBuf[1] = 't';
421 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
422 }else if( f & MEM_Ephem ){
423 zBuf[1] = 'e';
424 assert( (f & (MEM_Static|MEM_Dyn))==0 );
425 }else{
426 zBuf[1] = 's';
428 k = 2;
429 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
430 k += sqlite3Strlen30(&zBuf[k]);
431 zBuf[k++] = '[';
432 for(j=0; j<15 && j<pMem->n; j++){
433 u8 c = pMem->z[j];
434 if( c>=0x20 && c<0x7f ){
435 zBuf[k++] = c;
436 }else{
437 zBuf[k++] = '.';
440 zBuf[k++] = ']';
441 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
442 k += sqlite3Strlen30(&zBuf[k]);
443 zBuf[k++] = 0;
446 #endif
448 #ifdef SQLITE_DEBUG
450 ** Print the value of a register for tracing purposes:
452 static void memTracePrint(Mem *p){
453 if( p->flags & MEM_Undefined ){
454 printf(" undefined");
455 }else if( p->flags & MEM_Null ){
456 printf(" NULL");
457 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
458 printf(" si:%lld", p->u.i);
459 }else if( p->flags & MEM_Int ){
460 printf(" i:%lld", p->u.i);
461 #ifndef SQLITE_OMIT_FLOATING_POINT
462 }else if( p->flags & MEM_Real ){
463 printf(" r:%g", p->u.r);
464 #endif
465 }else if( p->flags & MEM_RowSet ){
466 printf(" (rowset)");
467 }else{
468 char zBuf[200];
469 sqlite3VdbeMemPrettyPrint(p, zBuf);
470 printf(" %s", zBuf);
473 static void registerTrace(int iReg, Mem *p){
474 printf("REG[%d] = ", iReg);
475 memTracePrint(p);
476 printf("\n");
478 #endif
480 #ifdef SQLITE_DEBUG
481 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
482 #else
483 # define REGISTER_TRACE(R,M)
484 #endif
487 #ifdef VDBE_PROFILE
490 ** hwtime.h contains inline assembler code for implementing
491 ** high-performance timing routines.
493 #include "hwtime.h"
495 #endif
497 #ifndef NDEBUG
499 ** This function is only called from within an assert() expression. It
500 ** checks that the sqlite3.nTransaction variable is correctly set to
501 ** the number of non-transaction savepoints currently in the
502 ** linked list starting at sqlite3.pSavepoint.
504 ** Usage:
506 ** assert( checkSavepointCount(db) );
508 static int checkSavepointCount(sqlite3 *db){
509 int n = 0;
510 Savepoint *p;
511 for(p=db->pSavepoint; p; p=p->pNext) n++;
512 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
513 return 1;
515 #endif
519 ** Execute as much of a VDBE program as we can.
520 ** This is the core of sqlite3_step().
522 int sqlite3VdbeExec(
523 Vdbe *p /* The VDBE */
525 int pc=0; /* The program counter */
526 Op *aOp = p->aOp; /* Copy of p->aOp */
527 Op *pOp; /* Current operation */
528 int rc = SQLITE_OK; /* Value to return */
529 sqlite3 *db = p->db; /* The database */
530 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
531 u8 encoding = ENC(db); /* The database encoding */
532 int iCompare = 0; /* Result of last OP_Compare operation */
533 unsigned nVmStep = 0; /* Number of virtual machine steps */
534 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
535 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
536 #endif
537 Mem *aMem = p->aMem; /* Copy of p->aMem */
538 Mem *pIn1 = 0; /* 1st input operand */
539 Mem *pIn2 = 0; /* 2nd input operand */
540 Mem *pIn3 = 0; /* 3rd input operand */
541 Mem *pOut = 0; /* Output operand */
542 int *aPermute = 0; /* Permutation of columns for OP_Compare */
543 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
544 #ifdef VDBE_PROFILE
545 u64 start; /* CPU clock count at start of opcode */
546 #endif
547 /*** INSERT STACK UNION HERE ***/
549 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
550 sqlite3VdbeEnter(p);
551 if( p->rc==SQLITE_NOMEM ){
552 /* This happens if a malloc() inside a call to sqlite3_column_text() or
553 ** sqlite3_column_text16() failed. */
554 goto no_mem;
556 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
557 assert( p->bIsReader || p->readOnly!=0 );
558 p->rc = SQLITE_OK;
559 p->iCurrentTime = 0;
560 assert( p->explain==0 );
561 p->pResultSet = 0;
562 db->busyHandler.nBusy = 0;
563 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
564 sqlite3VdbeIOTraceSql(p);
565 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
566 if( db->xProgress ){
567 assert( 0 < db->nProgressOps );
568 nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
569 if( nProgressLimit==0 ){
570 nProgressLimit = db->nProgressOps;
571 }else{
572 nProgressLimit %= (unsigned)db->nProgressOps;
575 #endif
576 #ifdef SQLITE_DEBUG
577 sqlite3BeginBenignMalloc();
578 if( p->pc==0
579 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
581 int i;
582 int once = 1;
583 sqlite3VdbePrintSql(p);
584 if( p->db->flags & SQLITE_VdbeListing ){
585 printf("VDBE Program Listing:\n");
586 for(i=0; i<p->nOp; i++){
587 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
590 if( p->db->flags & SQLITE_VdbeEQP ){
591 for(i=0; i<p->nOp; i++){
592 if( aOp[i].opcode==OP_Explain ){
593 if( once ) printf("VDBE Query Plan:\n");
594 printf("%s\n", aOp[i].p4.z);
595 once = 0;
599 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
601 sqlite3EndBenignMalloc();
602 #endif
603 for(pc=p->pc; rc==SQLITE_OK; pc++){
604 assert( pc>=0 && pc<p->nOp );
605 if( db->mallocFailed ) goto no_mem;
606 #ifdef VDBE_PROFILE
607 start = sqlite3Hwtime();
608 #endif
609 nVmStep++;
610 pOp = &aOp[pc];
612 /* Only allow tracing if SQLITE_DEBUG is defined.
614 #ifdef SQLITE_DEBUG
615 if( db->flags & SQLITE_VdbeTrace ){
616 sqlite3VdbePrintOp(stdout, pc, pOp);
618 #endif
621 /* Check to see if we need to simulate an interrupt. This only happens
622 ** if we have a special test build.
624 #ifdef SQLITE_TEST
625 if( sqlite3_interrupt_count>0 ){
626 sqlite3_interrupt_count--;
627 if( sqlite3_interrupt_count==0 ){
628 sqlite3_interrupt(db);
631 #endif
633 /* On any opcode with the "out2-prerelease" tag, free any
634 ** external allocations out of mem[p2] and set mem[p2] to be
635 ** an undefined integer. Opcodes will either fill in the integer
636 ** value or convert mem[p2] to a different type.
638 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
639 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
640 assert( pOp->p2>0 );
641 assert( pOp->p2<=(p->nMem-p->nCursor) );
642 pOut = &aMem[pOp->p2];
643 memAboutToChange(p, pOut);
644 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
645 pOut->flags = MEM_Int;
648 /* Sanity checking on other operands */
649 #ifdef SQLITE_DEBUG
650 if( (pOp->opflags & OPFLG_IN1)!=0 ){
651 assert( pOp->p1>0 );
652 assert( pOp->p1<=(p->nMem-p->nCursor) );
653 assert( memIsValid(&aMem[pOp->p1]) );
654 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
655 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
657 if( (pOp->opflags & OPFLG_IN2)!=0 ){
658 assert( pOp->p2>0 );
659 assert( pOp->p2<=(p->nMem-p->nCursor) );
660 assert( memIsValid(&aMem[pOp->p2]) );
661 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
662 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
664 if( (pOp->opflags & OPFLG_IN3)!=0 ){
665 assert( pOp->p3>0 );
666 assert( pOp->p3<=(p->nMem-p->nCursor) );
667 assert( memIsValid(&aMem[pOp->p3]) );
668 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
669 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
671 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
672 assert( pOp->p2>0 );
673 assert( pOp->p2<=(p->nMem-p->nCursor) );
674 memAboutToChange(p, &aMem[pOp->p2]);
676 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
677 assert( pOp->p3>0 );
678 assert( pOp->p3<=(p->nMem-p->nCursor) );
679 memAboutToChange(p, &aMem[pOp->p3]);
681 #endif
683 switch( pOp->opcode ){
685 /*****************************************************************************
686 ** What follows is a massive switch statement where each case implements a
687 ** separate instruction in the virtual machine. If we follow the usual
688 ** indentation conventions, each case should be indented by 6 spaces. But
689 ** that is a lot of wasted space on the left margin. So the code within
690 ** the switch statement will break with convention and be flush-left. Another
691 ** big comment (similar to this one) will mark the point in the code where
692 ** we transition back to normal indentation.
694 ** The formatting of each case is important. The makefile for SQLite
695 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
696 ** file looking for lines that begin with "case OP_". The opcodes.h files
697 ** will be filled with #defines that give unique integer values to each
698 ** opcode and the opcodes.c file is filled with an array of strings where
699 ** each string is the symbolic name for the corresponding opcode. If the
700 ** case statement is followed by a comment of the form "/# same as ... #/"
701 ** that comment is used to determine the particular value of the opcode.
703 ** Other keywords in the comment that follows each case are used to
704 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
705 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
706 ** the mkopcodeh.awk script for additional information.
708 ** Documentation about VDBE opcodes is generated by scanning this file
709 ** for lines of that contain "Opcode:". That line and all subsequent
710 ** comment lines are used in the generation of the opcode.html documentation
711 ** file.
713 ** SUMMARY:
715 ** Formatting is important to scripts that scan this file.
716 ** Do not deviate from the formatting style currently in use.
718 *****************************************************************************/
720 /* Opcode: Goto * P2 * * *
722 ** An unconditional jump to address P2.
723 ** The next instruction executed will be
724 ** the one at index P2 from the beginning of
725 ** the program.
727 ** The P1 parameter is not actually used by this opcode. However, it
728 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
729 ** that this Goto is the bottom of a loop and that the lines from P2 down
730 ** to the current line should be indented for EXPLAIN output.
732 case OP_Goto: { /* jump */
733 pc = pOp->p2 - 1;
735 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
736 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
737 ** completion. Check to see if sqlite3_interrupt() has been called
738 ** or if the progress callback needs to be invoked.
740 ** This code uses unstructured "goto" statements and does not look clean.
741 ** But that is not due to sloppy coding habits. The code is written this
742 ** way for performance, to avoid having to run the interrupt and progress
743 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
744 ** faster according to "valgrind --tool=cachegrind" */
745 check_for_interrupt:
746 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
747 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
748 /* Call the progress callback if it is configured and the required number
749 ** of VDBE ops have been executed (either since this invocation of
750 ** sqlite3VdbeExec() or since last time the progress callback was called).
751 ** If the progress callback returns non-zero, exit the virtual machine with
752 ** a return code SQLITE_ABORT.
754 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
755 assert( db->nProgressOps!=0 );
756 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
757 if( db->xProgress(db->pProgressArg) ){
758 rc = SQLITE_INTERRUPT;
759 goto vdbe_error_halt;
762 #endif
764 break;
767 /* Opcode: Gosub P1 P2 * * *
769 ** Write the current address onto register P1
770 ** and then jump to address P2.
772 case OP_Gosub: { /* jump */
773 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
774 pIn1 = &aMem[pOp->p1];
775 assert( VdbeMemDynamic(pIn1)==0 );
776 memAboutToChange(p, pIn1);
777 pIn1->flags = MEM_Int;
778 pIn1->u.i = pc;
779 REGISTER_TRACE(pOp->p1, pIn1);
780 pc = pOp->p2 - 1;
781 break;
784 /* Opcode: Return P1 * * * *
786 ** Jump to the next instruction after the address in register P1. After
787 ** the jump, register P1 becomes undefined.
789 case OP_Return: { /* in1 */
790 pIn1 = &aMem[pOp->p1];
791 assert( pIn1->flags==MEM_Int );
792 pc = (int)pIn1->u.i;
793 pIn1->flags = MEM_Undefined;
794 break;
797 /* Opcode: InitCoroutine P1 P2 P3 * *
799 ** Set up register P1 so that it will Yield to the coroutine
800 ** located at address P3.
802 ** If P2!=0 then the coroutine implementation immediately follows
803 ** this opcode. So jump over the coroutine implementation to
804 ** address P2.
806 ** See also: EndCoroutine
808 case OP_InitCoroutine: { /* jump */
809 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
810 assert( pOp->p2>=0 && pOp->p2<p->nOp );
811 assert( pOp->p3>=0 && pOp->p3<p->nOp );
812 pOut = &aMem[pOp->p1];
813 assert( !VdbeMemDynamic(pOut) );
814 pOut->u.i = pOp->p3 - 1;
815 pOut->flags = MEM_Int;
816 if( pOp->p2 ) pc = pOp->p2 - 1;
817 break;
820 /* Opcode: EndCoroutine P1 * * * *
822 ** The instruction at the address in register P1 is a Yield.
823 ** Jump to the P2 parameter of that Yield.
824 ** After the jump, register P1 becomes undefined.
826 ** See also: InitCoroutine
828 case OP_EndCoroutine: { /* in1 */
829 VdbeOp *pCaller;
830 pIn1 = &aMem[pOp->p1];
831 assert( pIn1->flags==MEM_Int );
832 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
833 pCaller = &aOp[pIn1->u.i];
834 assert( pCaller->opcode==OP_Yield );
835 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
836 pc = pCaller->p2 - 1;
837 pIn1->flags = MEM_Undefined;
838 break;
841 /* Opcode: Yield P1 P2 * * *
843 ** Swap the program counter with the value in register P1. This
844 ** has the effect of yielding to a coroutine.
846 ** If the coroutine that is launched by this instruction ends with
847 ** Yield or Return then continue to the next instruction. But if
848 ** the coroutine launched by this instruction ends with
849 ** EndCoroutine, then jump to P2 rather than continuing with the
850 ** next instruction.
852 ** See also: InitCoroutine
854 case OP_Yield: { /* in1, jump */
855 int pcDest;
856 pIn1 = &aMem[pOp->p1];
857 assert( VdbeMemDynamic(pIn1)==0 );
858 pIn1->flags = MEM_Int;
859 pcDest = (int)pIn1->u.i;
860 pIn1->u.i = pc;
861 REGISTER_TRACE(pOp->p1, pIn1);
862 pc = pcDest;
863 break;
866 /* Opcode: HaltIfNull P1 P2 P3 P4 P5
867 ** Synopsis: if r[P3]=null halt
869 ** Check the value in register P3. If it is NULL then Halt using
870 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
871 ** value in register P3 is not NULL, then this routine is a no-op.
872 ** The P5 parameter should be 1.
874 case OP_HaltIfNull: { /* in3 */
875 pIn3 = &aMem[pOp->p3];
876 if( (pIn3->flags & MEM_Null)==0 ) break;
877 /* Fall through into OP_Halt */
880 /* Opcode: Halt P1 P2 * P4 P5
882 ** Exit immediately. All open cursors, etc are closed
883 ** automatically.
885 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
886 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
887 ** For errors, it can be some other value. If P1!=0 then P2 will determine
888 ** whether or not to rollback the current transaction. Do not rollback
889 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
890 ** then back out all changes that have occurred during this execution of the
891 ** VDBE, but do not rollback the transaction.
893 ** If P4 is not null then it is an error message string.
895 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
897 ** 0: (no change)
898 ** 1: NOT NULL contraint failed: P4
899 ** 2: UNIQUE constraint failed: P4
900 ** 3: CHECK constraint failed: P4
901 ** 4: FOREIGN KEY constraint failed: P4
903 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
904 ** omitted.
906 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
907 ** every program. So a jump past the last instruction of the program
908 ** is the same as executing Halt.
910 case OP_Halt: {
911 const char *zType;
912 const char *zLogFmt;
914 if( pOp->p1==SQLITE_OK && p->pFrame ){
915 /* Halt the sub-program. Return control to the parent frame. */
916 VdbeFrame *pFrame = p->pFrame;
917 p->pFrame = pFrame->pParent;
918 p->nFrame--;
919 sqlite3VdbeSetChanges(db, p->nChange);
920 pc = sqlite3VdbeFrameRestore(pFrame);
921 lastRowid = db->lastRowid;
922 if( pOp->p2==OE_Ignore ){
923 /* Instruction pc is the OP_Program that invoked the sub-program
924 ** currently being halted. If the p2 instruction of this OP_Halt
925 ** instruction is set to OE_Ignore, then the sub-program is throwing
926 ** an IGNORE exception. In this case jump to the address specified
927 ** as the p2 of the calling OP_Program. */
928 pc = p->aOp[pc].p2-1;
930 aOp = p->aOp;
931 aMem = p->aMem;
932 break;
934 p->rc = pOp->p1;
935 p->errorAction = (u8)pOp->p2;
936 p->pc = pc;
937 if( p->rc ){
938 if( pOp->p5 ){
939 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
940 "FOREIGN KEY" };
941 assert( pOp->p5>=1 && pOp->p5<=4 );
942 testcase( pOp->p5==1 );
943 testcase( pOp->p5==2 );
944 testcase( pOp->p5==3 );
945 testcase( pOp->p5==4 );
946 zType = azType[pOp->p5-1];
947 }else{
948 zType = 0;
950 assert( zType!=0 || pOp->p4.z!=0 );
951 zLogFmt = "abort at %d in [%s]: %s";
952 if( zType && pOp->p4.z ){
953 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s",
954 zType, pOp->p4.z);
955 }else if( pOp->p4.z ){
956 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
957 }else{
958 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType);
960 sqlite3_log(pOp->p1, zLogFmt, pc, p->zSql, p->zErrMsg);
962 rc = sqlite3VdbeHalt(p);
963 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
964 if( rc==SQLITE_BUSY ){
965 p->rc = rc = SQLITE_BUSY;
966 }else{
967 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
968 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
969 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
971 goto vdbe_return;
974 /* Opcode: Integer P1 P2 * * *
975 ** Synopsis: r[P2]=P1
977 ** The 32-bit integer value P1 is written into register P2.
979 case OP_Integer: { /* out2-prerelease */
980 pOut->u.i = pOp->p1;
981 break;
984 /* Opcode: Int64 * P2 * P4 *
985 ** Synopsis: r[P2]=P4
987 ** P4 is a pointer to a 64-bit integer value.
988 ** Write that value into register P2.
990 case OP_Int64: { /* out2-prerelease */
991 assert( pOp->p4.pI64!=0 );
992 pOut->u.i = *pOp->p4.pI64;
993 break;
996 #ifndef SQLITE_OMIT_FLOATING_POINT
997 /* Opcode: Real * P2 * P4 *
998 ** Synopsis: r[P2]=P4
1000 ** P4 is a pointer to a 64-bit floating point value.
1001 ** Write that value into register P2.
1003 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
1004 pOut->flags = MEM_Real;
1005 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1006 pOut->u.r = *pOp->p4.pReal;
1007 break;
1009 #endif
1011 /* Opcode: String8 * P2 * P4 *
1012 ** Synopsis: r[P2]='P4'
1014 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1015 ** into a String before it is executed for the first time. During
1016 ** this transformation, the length of string P4 is computed and stored
1017 ** as the P1 parameter.
1019 case OP_String8: { /* same as TK_STRING, out2-prerelease */
1020 assert( pOp->p4.z!=0 );
1021 pOp->opcode = OP_String;
1022 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1024 #ifndef SQLITE_OMIT_UTF16
1025 if( encoding!=SQLITE_UTF8 ){
1026 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1027 if( rc==SQLITE_TOOBIG ) goto too_big;
1028 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1029 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1030 assert( VdbeMemDynamic(pOut)==0 );
1031 pOut->szMalloc = 0;
1032 pOut->flags |= MEM_Static;
1033 if( pOp->p4type==P4_DYNAMIC ){
1034 sqlite3DbFree(db, pOp->p4.z);
1036 pOp->p4type = P4_DYNAMIC;
1037 pOp->p4.z = pOut->z;
1038 pOp->p1 = pOut->n;
1040 #endif
1041 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1042 goto too_big;
1044 /* Fall through to the next case, OP_String */
1047 /* Opcode: String P1 P2 * P4 *
1048 ** Synopsis: r[P2]='P4' (len=P1)
1050 ** The string value P4 of length P1 (bytes) is stored in register P2.
1052 case OP_String: { /* out2-prerelease */
1053 assert( pOp->p4.z!=0 );
1054 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1055 pOut->z = pOp->p4.z;
1056 pOut->n = pOp->p1;
1057 pOut->enc = encoding;
1058 UPDATE_MAX_BLOBSIZE(pOut);
1059 break;
1062 /* Opcode: Null P1 P2 P3 * *
1063 ** Synopsis: r[P2..P3]=NULL
1065 ** Write a NULL into registers P2. If P3 greater than P2, then also write
1066 ** NULL into register P3 and every register in between P2 and P3. If P3
1067 ** is less than P2 (typically P3 is zero) then only register P2 is
1068 ** set to NULL.
1070 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1071 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1072 ** OP_Ne or OP_Eq.
1074 case OP_Null: { /* out2-prerelease */
1075 int cnt;
1076 u16 nullFlag;
1077 cnt = pOp->p3-pOp->p2;
1078 assert( pOp->p3<=(p->nMem-p->nCursor) );
1079 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1080 while( cnt>0 ){
1081 pOut++;
1082 memAboutToChange(p, pOut);
1083 sqlite3VdbeMemSetNull(pOut);
1084 pOut->flags = nullFlag;
1085 cnt--;
1087 break;
1090 /* Opcode: SoftNull P1 * * * *
1091 ** Synopsis: r[P1]=NULL
1093 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1094 ** instruction, but do not free any string or blob memory associated with
1095 ** the register, so that if the value was a string or blob that was
1096 ** previously copied using OP_SCopy, the copies will continue to be valid.
1098 case OP_SoftNull: {
1099 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
1100 pOut = &aMem[pOp->p1];
1101 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1102 break;
1105 /* Opcode: Blob P1 P2 * P4 *
1106 ** Synopsis: r[P2]=P4 (len=P1)
1108 ** P4 points to a blob of data P1 bytes long. Store this
1109 ** blob in register P2.
1111 case OP_Blob: { /* out2-prerelease */
1112 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1113 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1114 pOut->enc = encoding;
1115 UPDATE_MAX_BLOBSIZE(pOut);
1116 break;
1119 /* Opcode: Variable P1 P2 * P4 *
1120 ** Synopsis: r[P2]=parameter(P1,P4)
1122 ** Transfer the values of bound parameter P1 into register P2
1124 ** If the parameter is named, then its name appears in P4.
1125 ** The P4 value is used by sqlite3_bind_parameter_name().
1127 case OP_Variable: { /* out2-prerelease */
1128 Mem *pVar; /* Value being transferred */
1130 assert( pOp->p1>0 && pOp->p1<=p->nVar );
1131 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
1132 pVar = &p->aVar[pOp->p1 - 1];
1133 if( sqlite3VdbeMemTooBig(pVar) ){
1134 goto too_big;
1136 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1137 UPDATE_MAX_BLOBSIZE(pOut);
1138 break;
1141 /* Opcode: Move P1 P2 P3 * *
1142 ** Synopsis: r[P2@P3]=r[P1@P3]
1144 ** Move the P3 values in register P1..P1+P3-1 over into
1145 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
1146 ** left holding a NULL. It is an error for register ranges
1147 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1148 ** for P3 to be less than 1.
1150 case OP_Move: {
1151 int n; /* Number of registers left to copy */
1152 int p1; /* Register to copy from */
1153 int p2; /* Register to copy to */
1155 n = pOp->p3;
1156 p1 = pOp->p1;
1157 p2 = pOp->p2;
1158 assert( n>0 && p1>0 && p2>0 );
1159 assert( p1+n<=p2 || p2+n<=p1 );
1161 pIn1 = &aMem[p1];
1162 pOut = &aMem[p2];
1164 assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
1165 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
1166 assert( memIsValid(pIn1) );
1167 memAboutToChange(p, pOut);
1168 sqlite3VdbeMemMove(pOut, pIn1);
1169 #ifdef SQLITE_DEBUG
1170 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
1171 pOut->pScopyFrom += p1 - pOp->p2;
1173 #endif
1174 REGISTER_TRACE(p2++, pOut);
1175 pIn1++;
1176 pOut++;
1177 }while( --n );
1178 break;
1181 /* Opcode: Copy P1 P2 P3 * *
1182 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1184 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1186 ** This instruction makes a deep copy of the value. A duplicate
1187 ** is made of any string or blob constant. See also OP_SCopy.
1189 case OP_Copy: {
1190 int n;
1192 n = pOp->p3;
1193 pIn1 = &aMem[pOp->p1];
1194 pOut = &aMem[pOp->p2];
1195 assert( pOut!=pIn1 );
1196 while( 1 ){
1197 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1198 Deephemeralize(pOut);
1199 #ifdef SQLITE_DEBUG
1200 pOut->pScopyFrom = 0;
1201 #endif
1202 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1203 if( (n--)==0 ) break;
1204 pOut++;
1205 pIn1++;
1207 break;
1210 /* Opcode: SCopy P1 P2 * * *
1211 ** Synopsis: r[P2]=r[P1]
1213 ** Make a shallow copy of register P1 into register P2.
1215 ** This instruction makes a shallow copy of the value. If the value
1216 ** is a string or blob, then the copy is only a pointer to the
1217 ** original and hence if the original changes so will the copy.
1218 ** Worse, if the original is deallocated, the copy becomes invalid.
1219 ** Thus the program must guarantee that the original will not change
1220 ** during the lifetime of the copy. Use OP_Copy to make a complete
1221 ** copy.
1223 case OP_SCopy: { /* out2 */
1224 pIn1 = &aMem[pOp->p1];
1225 pOut = &aMem[pOp->p2];
1226 assert( pOut!=pIn1 );
1227 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1228 #ifdef SQLITE_DEBUG
1229 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1230 #endif
1231 break;
1234 /* Opcode: ResultRow P1 P2 * * *
1235 ** Synopsis: output=r[P1@P2]
1237 ** The registers P1 through P1+P2-1 contain a single row of
1238 ** results. This opcode causes the sqlite3_step() call to terminate
1239 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1240 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1241 ** the result row.
1243 case OP_ResultRow: {
1244 Mem *pMem;
1245 int i;
1246 assert( p->nResColumn==pOp->p2 );
1247 assert( pOp->p1>0 );
1248 assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
1250 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1251 /* Run the progress counter just before returning.
1253 if( db->xProgress!=0
1254 && nVmStep>=nProgressLimit
1255 && db->xProgress(db->pProgressArg)!=0
1257 rc = SQLITE_INTERRUPT;
1258 goto vdbe_error_halt;
1260 #endif
1262 /* If this statement has violated immediate foreign key constraints, do
1263 ** not return the number of rows modified. And do not RELEASE the statement
1264 ** transaction. It needs to be rolled back. */
1265 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1266 assert( db->flags&SQLITE_CountRows );
1267 assert( p->usesStmtJournal );
1268 break;
1271 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1272 ** DML statements invoke this opcode to return the number of rows
1273 ** modified to the user. This is the only way that a VM that
1274 ** opens a statement transaction may invoke this opcode.
1276 ** In case this is such a statement, close any statement transaction
1277 ** opened by this VM before returning control to the user. This is to
1278 ** ensure that statement-transactions are always nested, not overlapping.
1279 ** If the open statement-transaction is not closed here, then the user
1280 ** may step another VM that opens its own statement transaction. This
1281 ** may lead to overlapping statement transactions.
1283 ** The statement transaction is never a top-level transaction. Hence
1284 ** the RELEASE call below can never fail.
1286 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1287 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1288 if( NEVER(rc!=SQLITE_OK) ){
1289 break;
1292 /* Invalidate all ephemeral cursor row caches */
1293 p->cacheCtr = (p->cacheCtr + 2)|1;
1295 /* Make sure the results of the current row are \000 terminated
1296 ** and have an assigned type. The results are de-ephemeralized as
1297 ** a side effect.
1299 pMem = p->pResultSet = &aMem[pOp->p1];
1300 for(i=0; i<pOp->p2; i++){
1301 assert( memIsValid(&pMem[i]) );
1302 Deephemeralize(&pMem[i]);
1303 assert( (pMem[i].flags & MEM_Ephem)==0
1304 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1305 sqlite3VdbeMemNulTerminate(&pMem[i]);
1306 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1308 if( db->mallocFailed ) goto no_mem;
1310 /* Return SQLITE_ROW
1312 p->pc = pc + 1;
1313 rc = SQLITE_ROW;
1314 goto vdbe_return;
1317 /* Opcode: Concat P1 P2 P3 * *
1318 ** Synopsis: r[P3]=r[P2]+r[P1]
1320 ** Add the text in register P1 onto the end of the text in
1321 ** register P2 and store the result in register P3.
1322 ** If either the P1 or P2 text are NULL then store NULL in P3.
1324 ** P3 = P2 || P1
1326 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1327 ** if P3 is the same register as P2, the implementation is able
1328 ** to avoid a memcpy().
1330 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
1331 i64 nByte;
1333 pIn1 = &aMem[pOp->p1];
1334 pIn2 = &aMem[pOp->p2];
1335 pOut = &aMem[pOp->p3];
1336 assert( pIn1!=pOut );
1337 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1338 sqlite3VdbeMemSetNull(pOut);
1339 break;
1341 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1342 Stringify(pIn1, encoding);
1343 Stringify(pIn2, encoding);
1344 nByte = pIn1->n + pIn2->n;
1345 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1346 goto too_big;
1348 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1349 goto no_mem;
1351 MemSetTypeFlag(pOut, MEM_Str);
1352 if( pOut!=pIn2 ){
1353 memcpy(pOut->z, pIn2->z, pIn2->n);
1355 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1356 pOut->z[nByte]=0;
1357 pOut->z[nByte+1] = 0;
1358 pOut->flags |= MEM_Term;
1359 pOut->n = (int)nByte;
1360 pOut->enc = encoding;
1361 UPDATE_MAX_BLOBSIZE(pOut);
1362 break;
1365 /* Opcode: Add P1 P2 P3 * *
1366 ** Synopsis: r[P3]=r[P1]+r[P2]
1368 ** Add the value in register P1 to the value in register P2
1369 ** and store the result in register P3.
1370 ** If either input is NULL, the result is NULL.
1372 /* Opcode: Multiply P1 P2 P3 * *
1373 ** Synopsis: r[P3]=r[P1]*r[P2]
1376 ** Multiply the value in register P1 by the value in register P2
1377 ** and store the result in register P3.
1378 ** If either input is NULL, the result is NULL.
1380 /* Opcode: Subtract P1 P2 P3 * *
1381 ** Synopsis: r[P3]=r[P2]-r[P1]
1383 ** Subtract the value in register P1 from the value in register P2
1384 ** and store the result in register P3.
1385 ** If either input is NULL, the result is NULL.
1387 /* Opcode: Divide P1 P2 P3 * *
1388 ** Synopsis: r[P3]=r[P2]/r[P1]
1390 ** Divide the value in register P1 by the value in register P2
1391 ** and store the result in register P3 (P3=P2/P1). If the value in
1392 ** register P1 is zero, then the result is NULL. If either input is
1393 ** NULL, the result is NULL.
1395 /* Opcode: Remainder P1 P2 P3 * *
1396 ** Synopsis: r[P3]=r[P2]%r[P1]
1398 ** Compute the remainder after integer register P2 is divided by
1399 ** register P1 and store the result in register P3.
1400 ** If the value in register P1 is zero the result is NULL.
1401 ** If either operand is NULL, the result is NULL.
1403 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1404 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1405 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1406 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1407 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
1408 char bIntint; /* Started out as two integer operands */
1409 u16 flags; /* Combined MEM_* flags from both inputs */
1410 u16 type1; /* Numeric type of left operand */
1411 u16 type2; /* Numeric type of right operand */
1412 i64 iA; /* Integer value of left operand */
1413 i64 iB; /* Integer value of right operand */
1414 double rA; /* Real value of left operand */
1415 double rB; /* Real value of right operand */
1417 pIn1 = &aMem[pOp->p1];
1418 type1 = numericType(pIn1);
1419 pIn2 = &aMem[pOp->p2];
1420 type2 = numericType(pIn2);
1421 pOut = &aMem[pOp->p3];
1422 flags = pIn1->flags | pIn2->flags;
1423 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1424 if( (type1 & type2 & MEM_Int)!=0 ){
1425 iA = pIn1->u.i;
1426 iB = pIn2->u.i;
1427 bIntint = 1;
1428 switch( pOp->opcode ){
1429 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1430 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1431 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
1432 case OP_Divide: {
1433 if( iA==0 ) goto arithmetic_result_is_null;
1434 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1435 iB /= iA;
1436 break;
1438 default: {
1439 if( iA==0 ) goto arithmetic_result_is_null;
1440 if( iA==-1 ) iA = 1;
1441 iB %= iA;
1442 break;
1445 pOut->u.i = iB;
1446 MemSetTypeFlag(pOut, MEM_Int);
1447 }else{
1448 bIntint = 0;
1449 fp_math:
1450 rA = sqlite3VdbeRealValue(pIn1);
1451 rB = sqlite3VdbeRealValue(pIn2);
1452 switch( pOp->opcode ){
1453 case OP_Add: rB += rA; break;
1454 case OP_Subtract: rB -= rA; break;
1455 case OP_Multiply: rB *= rA; break;
1456 case OP_Divide: {
1457 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1458 if( rA==(double)0 ) goto arithmetic_result_is_null;
1459 rB /= rA;
1460 break;
1462 default: {
1463 iA = (i64)rA;
1464 iB = (i64)rB;
1465 if( iA==0 ) goto arithmetic_result_is_null;
1466 if( iA==-1 ) iA = 1;
1467 rB = (double)(iB % iA);
1468 break;
1471 #ifdef SQLITE_OMIT_FLOATING_POINT
1472 pOut->u.i = rB;
1473 MemSetTypeFlag(pOut, MEM_Int);
1474 #else
1475 if( sqlite3IsNaN(rB) ){
1476 goto arithmetic_result_is_null;
1478 pOut->u.r = rB;
1479 MemSetTypeFlag(pOut, MEM_Real);
1480 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
1481 sqlite3VdbeIntegerAffinity(pOut);
1483 #endif
1485 break;
1487 arithmetic_result_is_null:
1488 sqlite3VdbeMemSetNull(pOut);
1489 break;
1492 /* Opcode: CollSeq P1 * * P4
1494 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1495 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1496 ** be returned. This is used by the built-in min(), max() and nullif()
1497 ** functions.
1499 ** If P1 is not zero, then it is a register that a subsequent min() or
1500 ** max() aggregate will set to 1 if the current row is not the minimum or
1501 ** maximum. The P1 register is initialized to 0 by this instruction.
1503 ** The interface used by the implementation of the aforementioned functions
1504 ** to retrieve the collation sequence set by this opcode is not available
1505 ** publicly, only to user functions defined in func.c.
1507 case OP_CollSeq: {
1508 assert( pOp->p4type==P4_COLLSEQ );
1509 if( pOp->p1 ){
1510 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1512 break;
1515 /* Opcode: Function P1 P2 P3 P4 P5
1516 ** Synopsis: r[P3]=func(r[P2@P5])
1518 ** Invoke a user function (P4 is a pointer to a Function structure that
1519 ** defines the function) with P5 arguments taken from register P2 and
1520 ** successors. The result of the function is stored in register P3.
1521 ** Register P3 must not be one of the function inputs.
1523 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1524 ** function was determined to be constant at compile time. If the first
1525 ** argument was constant then bit 0 of P1 is set. This is used to determine
1526 ** whether meta data associated with a user function argument using the
1527 ** sqlite3_set_auxdata() API may be safely retained until the next
1528 ** invocation of this opcode.
1530 ** See also: AggStep and AggFinal
1532 case OP_Function: {
1533 int i;
1534 Mem *pArg;
1535 sqlite3_context ctx;
1536 sqlite3_value **apVal;
1537 int n;
1539 n = pOp->p5;
1540 apVal = p->apArg;
1541 assert( apVal || n==0 );
1542 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
1543 ctx.pOut = &aMem[pOp->p3];
1544 memAboutToChange(p, ctx.pOut);
1546 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
1547 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1548 pArg = &aMem[pOp->p2];
1549 for(i=0; i<n; i++, pArg++){
1550 assert( memIsValid(pArg) );
1551 apVal[i] = pArg;
1552 Deephemeralize(pArg);
1553 REGISTER_TRACE(pOp->p2+i, pArg);
1556 assert( pOp->p4type==P4_FUNCDEF );
1557 ctx.pFunc = pOp->p4.pFunc;
1558 ctx.iOp = pc;
1559 ctx.pVdbe = p;
1560 MemSetTypeFlag(ctx.pOut, MEM_Null);
1561 ctx.fErrorOrAux = 0;
1562 db->lastRowid = lastRowid;
1563 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
1564 lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */
1566 /* If the function returned an error, throw an exception */
1567 if( ctx.fErrorOrAux ){
1568 if( ctx.isError ){
1569 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(ctx.pOut));
1570 rc = ctx.isError;
1572 sqlite3VdbeDeleteAuxData(p, pc, pOp->p1);
1575 /* Copy the result of the function into register P3 */
1576 sqlite3VdbeChangeEncoding(ctx.pOut, encoding);
1577 if( sqlite3VdbeMemTooBig(ctx.pOut) ){
1578 goto too_big;
1581 REGISTER_TRACE(pOp->p3, ctx.pOut);
1582 UPDATE_MAX_BLOBSIZE(ctx.pOut);
1583 break;
1586 /* Opcode: BitAnd P1 P2 P3 * *
1587 ** Synopsis: r[P3]=r[P1]&r[P2]
1589 ** Take the bit-wise AND of the values in register P1 and P2 and
1590 ** store the result in register P3.
1591 ** If either input is NULL, the result is NULL.
1593 /* Opcode: BitOr P1 P2 P3 * *
1594 ** Synopsis: r[P3]=r[P1]|r[P2]
1596 ** Take the bit-wise OR of the values in register P1 and P2 and
1597 ** store the result in register P3.
1598 ** If either input is NULL, the result is NULL.
1600 /* Opcode: ShiftLeft P1 P2 P3 * *
1601 ** Synopsis: r[P3]=r[P2]<<r[P1]
1603 ** Shift the integer value in register P2 to the left by the
1604 ** number of bits specified by the integer in register P1.
1605 ** Store the result in register P3.
1606 ** If either input is NULL, the result is NULL.
1608 /* Opcode: ShiftRight P1 P2 P3 * *
1609 ** Synopsis: r[P3]=r[P2]>>r[P1]
1611 ** Shift the integer value in register P2 to the right by the
1612 ** number of bits specified by the integer in register P1.
1613 ** Store the result in register P3.
1614 ** If either input is NULL, the result is NULL.
1616 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1617 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1618 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1619 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
1620 i64 iA;
1621 u64 uA;
1622 i64 iB;
1623 u8 op;
1625 pIn1 = &aMem[pOp->p1];
1626 pIn2 = &aMem[pOp->p2];
1627 pOut = &aMem[pOp->p3];
1628 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1629 sqlite3VdbeMemSetNull(pOut);
1630 break;
1632 iA = sqlite3VdbeIntValue(pIn2);
1633 iB = sqlite3VdbeIntValue(pIn1);
1634 op = pOp->opcode;
1635 if( op==OP_BitAnd ){
1636 iA &= iB;
1637 }else if( op==OP_BitOr ){
1638 iA |= iB;
1639 }else if( iB!=0 ){
1640 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1642 /* If shifting by a negative amount, shift in the other direction */
1643 if( iB<0 ){
1644 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1645 op = 2*OP_ShiftLeft + 1 - op;
1646 iB = iB>(-64) ? -iB : 64;
1649 if( iB>=64 ){
1650 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1651 }else{
1652 memcpy(&uA, &iA, sizeof(uA));
1653 if( op==OP_ShiftLeft ){
1654 uA <<= iB;
1655 }else{
1656 uA >>= iB;
1657 /* Sign-extend on a right shift of a negative number */
1658 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1660 memcpy(&iA, &uA, sizeof(iA));
1663 pOut->u.i = iA;
1664 MemSetTypeFlag(pOut, MEM_Int);
1665 break;
1668 /* Opcode: AddImm P1 P2 * * *
1669 ** Synopsis: r[P1]=r[P1]+P2
1671 ** Add the constant P2 to the value in register P1.
1672 ** The result is always an integer.
1674 ** To force any register to be an integer, just add 0.
1676 case OP_AddImm: { /* in1 */
1677 pIn1 = &aMem[pOp->p1];
1678 memAboutToChange(p, pIn1);
1679 sqlite3VdbeMemIntegerify(pIn1);
1680 pIn1->u.i += pOp->p2;
1681 break;
1684 /* Opcode: MustBeInt P1 P2 * * *
1686 ** Force the value in register P1 to be an integer. If the value
1687 ** in P1 is not an integer and cannot be converted into an integer
1688 ** without data loss, then jump immediately to P2, or if P2==0
1689 ** raise an SQLITE_MISMATCH exception.
1691 case OP_MustBeInt: { /* jump, in1 */
1692 pIn1 = &aMem[pOp->p1];
1693 if( (pIn1->flags & MEM_Int)==0 ){
1694 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1695 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
1696 if( (pIn1->flags & MEM_Int)==0 ){
1697 if( pOp->p2==0 ){
1698 rc = SQLITE_MISMATCH;
1699 goto abort_due_to_error;
1700 }else{
1701 pc = pOp->p2 - 1;
1702 break;
1706 MemSetTypeFlag(pIn1, MEM_Int);
1707 break;
1710 #ifndef SQLITE_OMIT_FLOATING_POINT
1711 /* Opcode: RealAffinity P1 * * * *
1713 ** If register P1 holds an integer convert it to a real value.
1715 ** This opcode is used when extracting information from a column that
1716 ** has REAL affinity. Such column values may still be stored as
1717 ** integers, for space efficiency, but after extraction we want them
1718 ** to have only a real value.
1720 case OP_RealAffinity: { /* in1 */
1721 pIn1 = &aMem[pOp->p1];
1722 if( pIn1->flags & MEM_Int ){
1723 sqlite3VdbeMemRealify(pIn1);
1725 break;
1727 #endif
1729 #ifndef SQLITE_OMIT_CAST
1730 /* Opcode: Cast P1 P2 * * *
1731 ** Synopsis: affinity(r[P1])
1733 ** Force the value in register P1 to be the type defined by P2.
1735 ** <ul>
1736 ** <li value="97"> TEXT
1737 ** <li value="98"> BLOB
1738 ** <li value="99"> NUMERIC
1739 ** <li value="100"> INTEGER
1740 ** <li value="101"> REAL
1741 ** </ul>
1743 ** A NULL value is not changed by this routine. It remains NULL.
1745 case OP_Cast: { /* in1 */
1746 assert( pOp->p2>=SQLITE_AFF_NONE && pOp->p2<=SQLITE_AFF_REAL );
1747 testcase( pOp->p2==SQLITE_AFF_TEXT );
1748 testcase( pOp->p2==SQLITE_AFF_NONE );
1749 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1750 testcase( pOp->p2==SQLITE_AFF_INTEGER );
1751 testcase( pOp->p2==SQLITE_AFF_REAL );
1752 pIn1 = &aMem[pOp->p1];
1753 memAboutToChange(p, pIn1);
1754 rc = ExpandBlob(pIn1);
1755 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1756 UPDATE_MAX_BLOBSIZE(pIn1);
1757 break;
1759 #endif /* SQLITE_OMIT_CAST */
1761 /* Opcode: Lt P1 P2 P3 P4 P5
1762 ** Synopsis: if r[P1]<r[P3] goto P2
1764 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1765 ** jump to address P2.
1767 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1768 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
1769 ** bit is clear then fall through if either operand is NULL.
1771 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1772 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1773 ** to coerce both inputs according to this affinity before the
1774 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1775 ** affinity is used. Note that the affinity conversions are stored
1776 ** back into the input registers P1 and P3. So this opcode can cause
1777 ** persistent changes to registers P1 and P3.
1779 ** Once any conversions have taken place, and neither value is NULL,
1780 ** the values are compared. If both values are blobs then memcmp() is
1781 ** used to determine the results of the comparison. If both values
1782 ** are text, then the appropriate collating function specified in
1783 ** P4 is used to do the comparison. If P4 is not specified then
1784 ** memcmp() is used to compare text string. If both values are
1785 ** numeric, then a numeric comparison is used. If the two values
1786 ** are of different types, then numbers are considered less than
1787 ** strings and strings are considered less than blobs.
1789 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1790 ** store a boolean result (either 0, or 1, or NULL) in register P2.
1792 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1793 ** equal to one another, provided that they do not have their MEM_Cleared
1794 ** bit set.
1796 /* Opcode: Ne P1 P2 P3 P4 P5
1797 ** Synopsis: if r[P1]!=r[P3] goto P2
1799 ** This works just like the Lt opcode except that the jump is taken if
1800 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for
1801 ** additional information.
1803 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1804 ** true or false and is never NULL. If both operands are NULL then the result
1805 ** of comparison is false. If either operand is NULL then the result is true.
1806 ** If neither operand is NULL the result is the same as it would be if
1807 ** the SQLITE_NULLEQ flag were omitted from P5.
1809 /* Opcode: Eq P1 P2 P3 P4 P5
1810 ** Synopsis: if r[P1]==r[P3] goto P2
1812 ** This works just like the Lt opcode except that the jump is taken if
1813 ** the operands in registers P1 and P3 are equal.
1814 ** See the Lt opcode for additional information.
1816 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1817 ** true or false and is never NULL. If both operands are NULL then the result
1818 ** of comparison is true. If either operand is NULL then the result is false.
1819 ** If neither operand is NULL the result is the same as it would be if
1820 ** the SQLITE_NULLEQ flag were omitted from P5.
1822 /* Opcode: Le P1 P2 P3 P4 P5
1823 ** Synopsis: if r[P1]<=r[P3] goto P2
1825 ** This works just like the Lt opcode except that the jump is taken if
1826 ** the content of register P3 is less than or equal to the content of
1827 ** register P1. See the Lt opcode for additional information.
1829 /* Opcode: Gt P1 P2 P3 P4 P5
1830 ** Synopsis: if r[P1]>r[P3] goto P2
1832 ** This works just like the Lt opcode except that the jump is taken if
1833 ** the content of register P3 is greater than the content of
1834 ** register P1. See the Lt opcode for additional information.
1836 /* Opcode: Ge P1 P2 P3 P4 P5
1837 ** Synopsis: if r[P1]>=r[P3] goto P2
1839 ** This works just like the Lt opcode except that the jump is taken if
1840 ** the content of register P3 is greater than or equal to the content of
1841 ** register P1. See the Lt opcode for additional information.
1843 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1844 case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1845 case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1846 case OP_Le: /* same as TK_LE, jump, in1, in3 */
1847 case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1848 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
1849 int res; /* Result of the comparison of pIn1 against pIn3 */
1850 char affinity; /* Affinity to use for comparison */
1851 u16 flags1; /* Copy of initial value of pIn1->flags */
1852 u16 flags3; /* Copy of initial value of pIn3->flags */
1854 pIn1 = &aMem[pOp->p1];
1855 pIn3 = &aMem[pOp->p3];
1856 flags1 = pIn1->flags;
1857 flags3 = pIn3->flags;
1858 if( (flags1 | flags3)&MEM_Null ){
1859 /* One or both operands are NULL */
1860 if( pOp->p5 & SQLITE_NULLEQ ){
1861 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1862 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1863 ** or not both operands are null.
1865 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1866 assert( (flags1 & MEM_Cleared)==0 );
1867 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
1868 if( (flags1&MEM_Null)!=0
1869 && (flags3&MEM_Null)!=0
1870 && (flags3&MEM_Cleared)==0
1872 res = 0; /* Results are equal */
1873 }else{
1874 res = 1; /* Results are not equal */
1876 }else{
1877 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1878 ** then the result is always NULL.
1879 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1881 if( pOp->p5 & SQLITE_STOREP2 ){
1882 pOut = &aMem[pOp->p2];
1883 MemSetTypeFlag(pOut, MEM_Null);
1884 REGISTER_TRACE(pOp->p2, pOut);
1885 }else{
1886 VdbeBranchTaken(2,3);
1887 if( pOp->p5 & SQLITE_JUMPIFNULL ){
1888 pc = pOp->p2-1;
1891 break;
1893 }else{
1894 /* Neither operand is NULL. Do a comparison. */
1895 affinity = pOp->p5 & SQLITE_AFF_MASK;
1896 if( affinity>=SQLITE_AFF_NUMERIC ){
1897 if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1898 applyNumericAffinity(pIn1,0);
1900 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1901 applyNumericAffinity(pIn3,0);
1903 }else if( affinity==SQLITE_AFF_TEXT ){
1904 if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){
1905 testcase( pIn1->flags & MEM_Int );
1906 testcase( pIn1->flags & MEM_Real );
1907 sqlite3VdbeMemStringify(pIn1, encoding, 1);
1909 if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){
1910 testcase( pIn3->flags & MEM_Int );
1911 testcase( pIn3->flags & MEM_Real );
1912 sqlite3VdbeMemStringify(pIn3, encoding, 1);
1915 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1916 if( pIn1->flags & MEM_Zero ){
1917 sqlite3VdbeMemExpandBlob(pIn1);
1918 flags1 &= ~MEM_Zero;
1920 if( pIn3->flags & MEM_Zero ){
1921 sqlite3VdbeMemExpandBlob(pIn3);
1922 flags3 &= ~MEM_Zero;
1924 if( db->mallocFailed ) goto no_mem;
1925 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
1927 switch( pOp->opcode ){
1928 case OP_Eq: res = res==0; break;
1929 case OP_Ne: res = res!=0; break;
1930 case OP_Lt: res = res<0; break;
1931 case OP_Le: res = res<=0; break;
1932 case OP_Gt: res = res>0; break;
1933 default: res = res>=0; break;
1936 if( pOp->p5 & SQLITE_STOREP2 ){
1937 pOut = &aMem[pOp->p2];
1938 memAboutToChange(p, pOut);
1939 MemSetTypeFlag(pOut, MEM_Int);
1940 pOut->u.i = res;
1941 REGISTER_TRACE(pOp->p2, pOut);
1942 }else{
1943 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
1944 if( res ){
1945 pc = pOp->p2-1;
1948 /* Undo any changes made by applyAffinity() to the input registers. */
1949 pIn1->flags = flags1;
1950 pIn3->flags = flags3;
1951 break;
1954 /* Opcode: Permutation * * * P4 *
1956 ** Set the permutation used by the OP_Compare operator to be the array
1957 ** of integers in P4.
1959 ** The permutation is only valid until the next OP_Compare that has
1960 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
1961 ** occur immediately prior to the OP_Compare.
1963 case OP_Permutation: {
1964 assert( pOp->p4type==P4_INTARRAY );
1965 assert( pOp->p4.ai );
1966 aPermute = pOp->p4.ai;
1967 break;
1970 /* Opcode: Compare P1 P2 P3 P4 P5
1971 ** Synopsis: r[P1@P3] <-> r[P2@P3]
1973 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1974 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
1975 ** the comparison for use by the next OP_Jump instruct.
1977 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
1978 ** determined by the most recent OP_Permutation operator. If the
1979 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
1980 ** order.
1982 ** P4 is a KeyInfo structure that defines collating sequences and sort
1983 ** orders for the comparison. The permutation applies to registers
1984 ** only. The KeyInfo elements are used sequentially.
1986 ** The comparison is a sort comparison, so NULLs compare equal,
1987 ** NULLs are less than numbers, numbers are less than strings,
1988 ** and strings are less than blobs.
1990 case OP_Compare: {
1991 int n;
1992 int i;
1993 int p1;
1994 int p2;
1995 const KeyInfo *pKeyInfo;
1996 int idx;
1997 CollSeq *pColl; /* Collating sequence to use on this term */
1998 int bRev; /* True for DESCENDING sort order */
2000 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
2001 n = pOp->p3;
2002 pKeyInfo = pOp->p4.pKeyInfo;
2003 assert( n>0 );
2004 assert( pKeyInfo!=0 );
2005 p1 = pOp->p1;
2006 p2 = pOp->p2;
2007 #if SQLITE_DEBUG
2008 if( aPermute ){
2009 int k, mx = 0;
2010 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
2011 assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
2012 assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
2013 }else{
2014 assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
2015 assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
2017 #endif /* SQLITE_DEBUG */
2018 for(i=0; i<n; i++){
2019 idx = aPermute ? aPermute[i] : i;
2020 assert( memIsValid(&aMem[p1+idx]) );
2021 assert( memIsValid(&aMem[p2+idx]) );
2022 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2023 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2024 assert( i<pKeyInfo->nField );
2025 pColl = pKeyInfo->aColl[i];
2026 bRev = pKeyInfo->aSortOrder[i];
2027 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2028 if( iCompare ){
2029 if( bRev ) iCompare = -iCompare;
2030 break;
2033 aPermute = 0;
2034 break;
2037 /* Opcode: Jump P1 P2 P3 * *
2039 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2040 ** in the most recent OP_Compare instruction the P1 vector was less than
2041 ** equal to, or greater than the P2 vector, respectively.
2043 case OP_Jump: { /* jump */
2044 if( iCompare<0 ){
2045 pc = pOp->p1 - 1; VdbeBranchTaken(0,3);
2046 }else if( iCompare==0 ){
2047 pc = pOp->p2 - 1; VdbeBranchTaken(1,3);
2048 }else{
2049 pc = pOp->p3 - 1; VdbeBranchTaken(2,3);
2051 break;
2054 /* Opcode: And P1 P2 P3 * *
2055 ** Synopsis: r[P3]=(r[P1] && r[P2])
2057 ** Take the logical AND of the values in registers P1 and P2 and
2058 ** write the result into register P3.
2060 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2061 ** the other input is NULL. A NULL and true or two NULLs give
2062 ** a NULL output.
2064 /* Opcode: Or P1 P2 P3 * *
2065 ** Synopsis: r[P3]=(r[P1] || r[P2])
2067 ** Take the logical OR of the values in register P1 and P2 and
2068 ** store the answer in register P3.
2070 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2071 ** even if the other input is NULL. A NULL and false or two NULLs
2072 ** give a NULL output.
2074 case OP_And: /* same as TK_AND, in1, in2, out3 */
2075 case OP_Or: { /* same as TK_OR, in1, in2, out3 */
2076 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2077 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2079 pIn1 = &aMem[pOp->p1];
2080 if( pIn1->flags & MEM_Null ){
2081 v1 = 2;
2082 }else{
2083 v1 = sqlite3VdbeIntValue(pIn1)!=0;
2085 pIn2 = &aMem[pOp->p2];
2086 if( pIn2->flags & MEM_Null ){
2087 v2 = 2;
2088 }else{
2089 v2 = sqlite3VdbeIntValue(pIn2)!=0;
2091 if( pOp->opcode==OP_And ){
2092 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2093 v1 = and_logic[v1*3+v2];
2094 }else{
2095 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2096 v1 = or_logic[v1*3+v2];
2098 pOut = &aMem[pOp->p3];
2099 if( v1==2 ){
2100 MemSetTypeFlag(pOut, MEM_Null);
2101 }else{
2102 pOut->u.i = v1;
2103 MemSetTypeFlag(pOut, MEM_Int);
2105 break;
2108 /* Opcode: Not P1 P2 * * *
2109 ** Synopsis: r[P2]= !r[P1]
2111 ** Interpret the value in register P1 as a boolean value. Store the
2112 ** boolean complement in register P2. If the value in register P1 is
2113 ** NULL, then a NULL is stored in P2.
2115 case OP_Not: { /* same as TK_NOT, in1, out2 */
2116 pIn1 = &aMem[pOp->p1];
2117 pOut = &aMem[pOp->p2];
2118 sqlite3VdbeMemSetNull(pOut);
2119 if( (pIn1->flags & MEM_Null)==0 ){
2120 pOut->flags = MEM_Int;
2121 pOut->u.i = !sqlite3VdbeIntValue(pIn1);
2123 break;
2126 /* Opcode: BitNot P1 P2 * * *
2127 ** Synopsis: r[P1]= ~r[P1]
2129 ** Interpret the content of register P1 as an integer. Store the
2130 ** ones-complement of the P1 value into register P2. If P1 holds
2131 ** a NULL then store a NULL in P2.
2133 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
2134 pIn1 = &aMem[pOp->p1];
2135 pOut = &aMem[pOp->p2];
2136 sqlite3VdbeMemSetNull(pOut);
2137 if( (pIn1->flags & MEM_Null)==0 ){
2138 pOut->flags = MEM_Int;
2139 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2141 break;
2144 /* Opcode: Once P1 P2 * * *
2146 ** Check the "once" flag number P1. If it is set, jump to instruction P2.
2147 ** Otherwise, set the flag and fall through to the next instruction.
2148 ** In other words, this opcode causes all following opcodes up through P2
2149 ** (but not including P2) to run just once and to be skipped on subsequent
2150 ** times through the loop.
2152 ** All "once" flags are initially cleared whenever a prepared statement
2153 ** first begins to run.
2155 case OP_Once: { /* jump */
2156 assert( pOp->p1<p->nOnceFlag );
2157 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
2158 if( p->aOnceFlag[pOp->p1] ){
2159 pc = pOp->p2-1;
2160 }else{
2161 p->aOnceFlag[pOp->p1] = 1;
2163 break;
2166 /* Opcode: If P1 P2 P3 * *
2168 ** Jump to P2 if the value in register P1 is true. The value
2169 ** is considered true if it is numeric and non-zero. If the value
2170 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2172 /* Opcode: IfNot P1 P2 P3 * *
2174 ** Jump to P2 if the value in register P1 is False. The value
2175 ** is considered false if it has a numeric value of zero. If the value
2176 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2178 case OP_If: /* jump, in1 */
2179 case OP_IfNot: { /* jump, in1 */
2180 int c;
2181 pIn1 = &aMem[pOp->p1];
2182 if( pIn1->flags & MEM_Null ){
2183 c = pOp->p3;
2184 }else{
2185 #ifdef SQLITE_OMIT_FLOATING_POINT
2186 c = sqlite3VdbeIntValue(pIn1)!=0;
2187 #else
2188 c = sqlite3VdbeRealValue(pIn1)!=0.0;
2189 #endif
2190 if( pOp->opcode==OP_IfNot ) c = !c;
2192 VdbeBranchTaken(c!=0, 2);
2193 if( c ){
2194 pc = pOp->p2-1;
2196 break;
2199 /* Opcode: IsNull P1 P2 * * *
2200 ** Synopsis: if r[P1]==NULL goto P2
2202 ** Jump to P2 if the value in register P1 is NULL.
2204 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
2205 pIn1 = &aMem[pOp->p1];
2206 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2207 if( (pIn1->flags & MEM_Null)!=0 ){
2208 pc = pOp->p2 - 1;
2210 break;
2213 /* Opcode: NotNull P1 P2 * * *
2214 ** Synopsis: if r[P1]!=NULL goto P2
2216 ** Jump to P2 if the value in register P1 is not NULL.
2218 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
2219 pIn1 = &aMem[pOp->p1];
2220 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2221 if( (pIn1->flags & MEM_Null)==0 ){
2222 pc = pOp->p2 - 1;
2224 break;
2227 /* Opcode: Column P1 P2 P3 P4 P5
2228 ** Synopsis: r[P3]=PX
2230 ** Interpret the data that cursor P1 points to as a structure built using
2231 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2232 ** information about the format of the data.) Extract the P2-th column
2233 ** from this record. If there are less that (P2+1)
2234 ** values in the record, extract a NULL.
2236 ** The value extracted is stored in register P3.
2238 ** If the column contains fewer than P2 fields, then extract a NULL. Or,
2239 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2240 ** the result.
2242 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2243 ** then the cache of the cursor is reset prior to extracting the column.
2244 ** The first OP_Column against a pseudo-table after the value of the content
2245 ** register has changed should have this bit set.
2247 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2248 ** the result is guaranteed to only be used as the argument of a length()
2249 ** or typeof() function, respectively. The loading of large blobs can be
2250 ** skipped for length() and all content loading can be skipped for typeof().
2252 case OP_Column: {
2253 i64 payloadSize64; /* Number of bytes in the record */
2254 int p2; /* column number to retrieve */
2255 VdbeCursor *pC; /* The VDBE cursor */
2256 BtCursor *pCrsr; /* The BTree cursor */
2257 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
2258 int len; /* The length of the serialized data for the column */
2259 int i; /* Loop counter */
2260 Mem *pDest; /* Where to write the extracted value */
2261 Mem sMem; /* For storing the record being decoded */
2262 const u8 *zData; /* Part of the record being decoded */
2263 const u8 *zHdr; /* Next unparsed byte of the header */
2264 const u8 *zEndHdr; /* Pointer to first byte after the header */
2265 u32 offset; /* Offset into the data */
2266 u32 szField; /* Number of bytes in the content of a field */
2267 u32 avail; /* Number of bytes of available data */
2268 u32 t; /* A type code from the record header */
2269 u16 fx; /* pDest->flags value */
2270 Mem *pReg; /* PseudoTable input register */
2272 p2 = pOp->p2;
2273 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
2274 pDest = &aMem[pOp->p3];
2275 memAboutToChange(p, pDest);
2276 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2277 pC = p->apCsr[pOp->p1];
2278 assert( pC!=0 );
2279 assert( p2<pC->nField );
2280 aOffset = pC->aOffset;
2281 #ifndef SQLITE_OMIT_VIRTUALTABLE
2282 assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
2283 #endif
2284 pCrsr = pC->pCursor;
2285 assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
2286 assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */
2288 /* If the cursor cache is stale, bring it up-to-date */
2289 rc = sqlite3VdbeCursorMoveto(pC);
2290 if( rc ) goto abort_due_to_error;
2291 if( pC->cacheStatus!=p->cacheCtr ){
2292 if( pC->nullRow ){
2293 if( pCrsr==0 ){
2294 assert( pC->pseudoTableReg>0 );
2295 pReg = &aMem[pC->pseudoTableReg];
2296 assert( pReg->flags & MEM_Blob );
2297 assert( memIsValid(pReg) );
2298 pC->payloadSize = pC->szRow = avail = pReg->n;
2299 pC->aRow = (u8*)pReg->z;
2300 }else{
2301 sqlite3VdbeMemSetNull(pDest);
2302 goto op_column_out;
2304 }else{
2305 assert( pCrsr );
2306 if( pC->isTable==0 ){
2307 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2308 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2309 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
2310 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2311 ** payload size, so it is impossible for payloadSize64 to be
2312 ** larger than 32 bits. */
2313 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2314 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
2315 pC->payloadSize = (u32)payloadSize64;
2316 }else{
2317 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2318 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
2319 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
2320 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
2322 assert( avail<=65536 ); /* Maximum page size is 64KiB */
2323 if( pC->payloadSize <= (u32)avail ){
2324 pC->szRow = pC->payloadSize;
2325 }else{
2326 pC->szRow = avail;
2328 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2329 goto too_big;
2332 pC->cacheStatus = p->cacheCtr;
2333 pC->iHdrOffset = getVarint32(pC->aRow, offset);
2334 pC->nHdrParsed = 0;
2335 aOffset[0] = offset;
2337 /* Make sure a corrupt database has not given us an oversize header.
2338 ** Do this now to avoid an oversize memory allocation.
2340 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2341 ** types use so much data space that there can only be 4096 and 32 of
2342 ** them, respectively. So the maximum header length results from a
2343 ** 3-byte type for each of the maximum of 32768 columns plus three
2344 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2346 if( offset > 98307 || offset > pC->payloadSize ){
2347 rc = SQLITE_CORRUPT_BKPT;
2348 goto op_column_error;
2351 if( avail<offset ){
2352 /* pC->aRow does not have to hold the entire row, but it does at least
2353 ** need to cover the header of the record. If pC->aRow does not contain
2354 ** the complete header, then set it to zero, forcing the header to be
2355 ** dynamically allocated. */
2356 pC->aRow = 0;
2357 pC->szRow = 0;
2360 /* The following goto is an optimization. It can be omitted and
2361 ** everything will still work. But OP_Column is measurably faster
2362 ** by skipping the subsequent conditional, which is always true.
2364 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
2365 goto op_column_read_header;
2368 /* Make sure at least the first p2+1 entries of the header have been
2369 ** parsed and valid information is in aOffset[] and pC->aType[].
2371 if( pC->nHdrParsed<=p2 ){
2372 /* If there is more header available for parsing in the record, try
2373 ** to extract additional fields up through the p2+1-th field
2375 op_column_read_header:
2376 if( pC->iHdrOffset<aOffset[0] ){
2377 /* Make sure zData points to enough of the record to cover the header. */
2378 if( pC->aRow==0 ){
2379 memset(&sMem, 0, sizeof(sMem));
2380 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0],
2381 !pC->isTable, &sMem);
2382 if( rc!=SQLITE_OK ){
2383 goto op_column_error;
2385 zData = (u8*)sMem.z;
2386 }else{
2387 zData = pC->aRow;
2390 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2391 i = pC->nHdrParsed;
2392 offset = aOffset[i];
2393 zHdr = zData + pC->iHdrOffset;
2394 zEndHdr = zData + aOffset[0];
2395 assert( i<=p2 && zHdr<zEndHdr );
2397 if( zHdr[0]<0x80 ){
2398 t = zHdr[0];
2399 zHdr++;
2400 }else{
2401 zHdr += sqlite3GetVarint32(zHdr, &t);
2403 pC->aType[i] = t;
2404 szField = sqlite3VdbeSerialTypeLen(t);
2405 offset += szField;
2406 if( offset<szField ){ /* True if offset overflows */
2407 zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2408 break;
2410 i++;
2411 aOffset[i] = offset;
2412 }while( i<=p2 && zHdr<zEndHdr );
2413 pC->nHdrParsed = i;
2414 pC->iHdrOffset = (u32)(zHdr - zData);
2415 if( pC->aRow==0 ){
2416 sqlite3VdbeMemRelease(&sMem);
2417 sMem.flags = MEM_Null;
2420 /* The record is corrupt if any of the following are true:
2421 ** (1) the bytes of the header extend past the declared header size
2422 ** (zHdr>zEndHdr)
2423 ** (2) the entire header was used but not all data was used
2424 ** (zHdr==zEndHdr && offset!=pC->payloadSize)
2425 ** (3) the end of the data extends beyond the end of the record.
2426 ** (offset > pC->payloadSize)
2428 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize))
2429 || (offset > pC->payloadSize)
2431 rc = SQLITE_CORRUPT_BKPT;
2432 goto op_column_error;
2436 /* If after trying to extra new entries from the header, nHdrParsed is
2437 ** still not up to p2, that means that the record has fewer than p2
2438 ** columns. So the result will be either the default value or a NULL.
2440 if( pC->nHdrParsed<=p2 ){
2441 if( pOp->p4type==P4_MEM ){
2442 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2443 }else{
2444 sqlite3VdbeMemSetNull(pDest);
2446 goto op_column_out;
2450 /* Extract the content for the p2+1-th column. Control can only
2451 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2452 ** all valid.
2454 assert( p2<pC->nHdrParsed );
2455 assert( rc==SQLITE_OK );
2456 assert( sqlite3VdbeCheckMemInvariants(pDest) );
2457 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
2458 t = pC->aType[p2];
2459 if( pC->szRow>=aOffset[p2+1] ){
2460 /* This is the common case where the desired content fits on the original
2461 ** page - where the content is not on an overflow page */
2462 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
2463 }else{
2464 /* This branch happens only when content is on overflow pages */
2465 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2466 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2467 || (len = sqlite3VdbeSerialTypeLen(t))==0
2469 /* Content is irrelevant for
2470 ** 1. the typeof() function,
2471 ** 2. the length(X) function if X is a blob, and
2472 ** 3. if the content length is zero.
2473 ** So we might as well use bogus content rather than reading
2474 ** content from disk. NULL will work for the value for strings
2475 ** and blobs and whatever is in the payloadSize64 variable
2476 ** will work for everything else. */
2477 sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest);
2478 }else{
2479 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
2480 pDest);
2481 if( rc!=SQLITE_OK ){
2482 goto op_column_error;
2484 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2485 pDest->flags &= ~MEM_Ephem;
2488 pDest->enc = encoding;
2490 op_column_out:
2491 /* If the column value is an ephemeral string, go ahead and persist
2492 ** that string in case the cursor moves before the column value is
2493 ** used. The following code does the equivalent of Deephemeralize()
2494 ** but does it faster. */
2495 if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){
2496 fx = pDest->flags & (MEM_Str|MEM_Blob);
2497 assert( fx!=0 );
2498 zData = (const u8*)pDest->z;
2499 len = pDest->n;
2500 if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem;
2501 memcpy(pDest->z, zData, len);
2502 pDest->z[len] = 0;
2503 pDest->z[len+1] = 0;
2504 pDest->flags = fx|MEM_Term;
2506 op_column_error:
2507 UPDATE_MAX_BLOBSIZE(pDest);
2508 REGISTER_TRACE(pOp->p3, pDest);
2509 break;
2512 /* Opcode: Affinity P1 P2 * P4 *
2513 ** Synopsis: affinity(r[P1@P2])
2515 ** Apply affinities to a range of P2 registers starting with P1.
2517 ** P4 is a string that is P2 characters long. The nth character of the
2518 ** string indicates the column affinity that should be used for the nth
2519 ** memory cell in the range.
2521 case OP_Affinity: {
2522 const char *zAffinity; /* The affinity to be applied */
2523 char cAff; /* A single character of affinity */
2525 zAffinity = pOp->p4.z;
2526 assert( zAffinity!=0 );
2527 assert( zAffinity[pOp->p2]==0 );
2528 pIn1 = &aMem[pOp->p1];
2529 while( (cAff = *(zAffinity++))!=0 ){
2530 assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
2531 assert( memIsValid(pIn1) );
2532 applyAffinity(pIn1, cAff, encoding);
2533 pIn1++;
2535 break;
2538 /* Opcode: MakeRecord P1 P2 P3 P4 *
2539 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2541 ** Convert P2 registers beginning with P1 into the [record format]
2542 ** use as a data record in a database table or as a key
2543 ** in an index. The OP_Column opcode can decode the record later.
2545 ** P4 may be a string that is P2 characters long. The nth character of the
2546 ** string indicates the column affinity that should be used for the nth
2547 ** field of the index key.
2549 ** The mapping from character to affinity is given by the SQLITE_AFF_
2550 ** macros defined in sqliteInt.h.
2552 ** If P4 is NULL then all index fields have the affinity NONE.
2554 case OP_MakeRecord: {
2555 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2556 Mem *pRec; /* The new record */
2557 u64 nData; /* Number of bytes of data space */
2558 int nHdr; /* Number of bytes of header space */
2559 i64 nByte; /* Data space required for this record */
2560 int nZero; /* Number of zero bytes at the end of the record */
2561 int nVarint; /* Number of bytes in a varint */
2562 u32 serial_type; /* Type field */
2563 Mem *pData0; /* First field to be combined into the record */
2564 Mem *pLast; /* Last field of the record */
2565 int nField; /* Number of fields in the record */
2566 char *zAffinity; /* The affinity string for the record */
2567 int file_format; /* File format to use for encoding */
2568 int i; /* Space used in zNewRecord[] header */
2569 int j; /* Space used in zNewRecord[] content */
2570 int len; /* Length of a field */
2572 /* Assuming the record contains N fields, the record format looks
2573 ** like this:
2575 ** ------------------------------------------------------------------------
2576 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2577 ** ------------------------------------------------------------------------
2579 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2580 ** and so forth.
2582 ** Each type field is a varint representing the serial type of the
2583 ** corresponding data element (see sqlite3VdbeSerialType()). The
2584 ** hdr-size field is also a varint which is the offset from the beginning
2585 ** of the record to data0.
2587 nData = 0; /* Number of bytes of data space */
2588 nHdr = 0; /* Number of bytes of header space */
2589 nZero = 0; /* Number of zero bytes at the end of the record */
2590 nField = pOp->p1;
2591 zAffinity = pOp->p4.z;
2592 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
2593 pData0 = &aMem[nField];
2594 nField = pOp->p2;
2595 pLast = &pData0[nField-1];
2596 file_format = p->minWriteFileFormat;
2598 /* Identify the output register */
2599 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2600 pOut = &aMem[pOp->p3];
2601 memAboutToChange(p, pOut);
2603 /* Apply the requested affinity to all inputs
2605 assert( pData0<=pLast );
2606 if( zAffinity ){
2607 pRec = pData0;
2609 applyAffinity(pRec++, *(zAffinity++), encoding);
2610 assert( zAffinity[0]==0 || pRec<=pLast );
2611 }while( zAffinity[0] );
2614 /* Loop through the elements that will make up the record to figure
2615 ** out how much space is required for the new record.
2617 pRec = pLast;
2619 assert( memIsValid(pRec) );
2620 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format);
2621 len = sqlite3VdbeSerialTypeLen(serial_type);
2622 if( pRec->flags & MEM_Zero ){
2623 if( nData ){
2624 sqlite3VdbeMemExpandBlob(pRec);
2625 }else{
2626 nZero += pRec->u.nZero;
2627 len -= pRec->u.nZero;
2630 nData += len;
2631 testcase( serial_type==127 );
2632 testcase( serial_type==128 );
2633 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
2634 }while( (--pRec)>=pData0 );
2636 /* Add the initial header varint and total the size */
2637 testcase( nHdr==126 );
2638 testcase( nHdr==127 );
2639 if( nHdr<=126 ){
2640 /* The common case */
2641 nHdr += 1;
2642 }else{
2643 /* Rare case of a really large header */
2644 nVarint = sqlite3VarintLen(nHdr);
2645 nHdr += nVarint;
2646 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
2648 nByte = nHdr+nData;
2649 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2650 goto too_big;
2653 /* Make sure the output register has a buffer large enough to store
2654 ** the new record. The output register (pOp->p3) is not allowed to
2655 ** be one of the input registers (because the following call to
2656 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
2658 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
2659 goto no_mem;
2661 zNewRecord = (u8 *)pOut->z;
2663 /* Write the record */
2664 i = putVarint32(zNewRecord, nHdr);
2665 j = nHdr;
2666 assert( pData0<=pLast );
2667 pRec = pData0;
2669 serial_type = pRec->uTemp;
2670 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
2671 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
2672 }while( (++pRec)<=pLast );
2673 assert( i==nHdr );
2674 assert( j==nByte );
2676 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
2677 pOut->n = (int)nByte;
2678 pOut->flags = MEM_Blob;
2679 if( nZero ){
2680 pOut->u.nZero = nZero;
2681 pOut->flags |= MEM_Zero;
2683 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
2684 REGISTER_TRACE(pOp->p3, pOut);
2685 UPDATE_MAX_BLOBSIZE(pOut);
2686 break;
2689 /* Opcode: Count P1 P2 * * *
2690 ** Synopsis: r[P2]=count()
2692 ** Store the number of entries (an integer value) in the table or index
2693 ** opened by cursor P1 in register P2
2695 #ifndef SQLITE_OMIT_BTREECOUNT
2696 case OP_Count: { /* out2-prerelease */
2697 i64 nEntry;
2698 BtCursor *pCrsr;
2700 pCrsr = p->apCsr[pOp->p1]->pCursor;
2701 assert( pCrsr );
2702 nEntry = 0; /* Not needed. Only used to silence a warning. */
2703 rc = sqlite3BtreeCount(pCrsr, &nEntry);
2704 pOut->u.i = nEntry;
2705 break;
2707 #endif
2709 /* Opcode: Savepoint P1 * * P4 *
2711 ** Open, release or rollback the savepoint named by parameter P4, depending
2712 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2713 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2715 case OP_Savepoint: {
2716 int p1; /* Value of P1 operand */
2717 char *zName; /* Name of savepoint */
2718 int nName;
2719 Savepoint *pNew;
2720 Savepoint *pSavepoint;
2721 Savepoint *pTmp;
2722 int iSavepoint;
2723 int ii;
2725 p1 = pOp->p1;
2726 zName = pOp->p4.z;
2728 /* Assert that the p1 parameter is valid. Also that if there is no open
2729 ** transaction, then there cannot be any savepoints.
2731 assert( db->pSavepoint==0 || db->autoCommit==0 );
2732 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2733 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2734 assert( checkSavepointCount(db) );
2735 assert( p->bIsReader );
2737 if( p1==SAVEPOINT_BEGIN ){
2738 if( db->nVdbeWrite>0 ){
2739 /* A new savepoint cannot be created if there are active write
2740 ** statements (i.e. open read/write incremental blob handles).
2742 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2743 "SQL statements in progress");
2744 rc = SQLITE_BUSY;
2745 }else{
2746 nName = sqlite3Strlen30(zName);
2748 #ifndef SQLITE_OMIT_VIRTUALTABLE
2749 /* This call is Ok even if this savepoint is actually a transaction
2750 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2751 ** If this is a transaction savepoint being opened, it is guaranteed
2752 ** that the db->aVTrans[] array is empty. */
2753 assert( db->autoCommit==0 || db->nVTrans==0 );
2754 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2755 db->nStatement+db->nSavepoint);
2756 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2757 #endif
2759 /* Create a new savepoint structure. */
2760 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2761 if( pNew ){
2762 pNew->zName = (char *)&pNew[1];
2763 memcpy(pNew->zName, zName, nName+1);
2765 /* If there is no open transaction, then mark this as a special
2766 ** "transaction savepoint". */
2767 if( db->autoCommit ){
2768 db->autoCommit = 0;
2769 db->isTransactionSavepoint = 1;
2770 }else{
2771 db->nSavepoint++;
2774 /* Link the new savepoint into the database handle's list. */
2775 pNew->pNext = db->pSavepoint;
2776 db->pSavepoint = pNew;
2777 pNew->nDeferredCons = db->nDeferredCons;
2778 pNew->nDeferredImmCons = db->nDeferredImmCons;
2781 }else{
2782 iSavepoint = 0;
2784 /* Find the named savepoint. If there is no such savepoint, then an
2785 ** an error is returned to the user. */
2786 for(
2787 pSavepoint = db->pSavepoint;
2788 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2789 pSavepoint = pSavepoint->pNext
2791 iSavepoint++;
2793 if( !pSavepoint ){
2794 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2795 rc = SQLITE_ERROR;
2796 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
2797 /* It is not possible to release (commit) a savepoint if there are
2798 ** active write statements.
2800 sqlite3SetString(&p->zErrMsg, db,
2801 "cannot release savepoint - SQL statements in progress"
2803 rc = SQLITE_BUSY;
2804 }else{
2806 /* Determine whether or not this is a transaction savepoint. If so,
2807 ** and this is a RELEASE command, then the current transaction
2808 ** is committed.
2810 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2811 if( isTransaction && p1==SAVEPOINT_RELEASE ){
2812 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2813 goto vdbe_return;
2815 db->autoCommit = 1;
2816 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2817 p->pc = pc;
2818 db->autoCommit = 0;
2819 p->rc = rc = SQLITE_BUSY;
2820 goto vdbe_return;
2822 db->isTransactionSavepoint = 0;
2823 rc = p->rc;
2824 }else{
2825 int isSchemaChange;
2826 iSavepoint = db->nSavepoint - iSavepoint - 1;
2827 if( p1==SAVEPOINT_ROLLBACK ){
2828 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
2829 for(ii=0; ii<db->nDb; ii++){
2830 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
2831 SQLITE_ABORT_ROLLBACK,
2832 isSchemaChange==0);
2833 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2835 }else{
2836 isSchemaChange = 0;
2838 for(ii=0; ii<db->nDb; ii++){
2839 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2840 if( rc!=SQLITE_OK ){
2841 goto abort_due_to_error;
2844 if( isSchemaChange ){
2845 sqlite3ExpirePreparedStatements(db);
2846 sqlite3ResetAllSchemasOfConnection(db);
2847 db->flags = (db->flags | SQLITE_InternChanges);
2851 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2852 ** savepoints nested inside of the savepoint being operated on. */
2853 while( db->pSavepoint!=pSavepoint ){
2854 pTmp = db->pSavepoint;
2855 db->pSavepoint = pTmp->pNext;
2856 sqlite3DbFree(db, pTmp);
2857 db->nSavepoint--;
2860 /* If it is a RELEASE, then destroy the savepoint being operated on
2861 ** too. If it is a ROLLBACK TO, then set the number of deferred
2862 ** constraint violations present in the database to the value stored
2863 ** when the savepoint was created. */
2864 if( p1==SAVEPOINT_RELEASE ){
2865 assert( pSavepoint==db->pSavepoint );
2866 db->pSavepoint = pSavepoint->pNext;
2867 sqlite3DbFree(db, pSavepoint);
2868 if( !isTransaction ){
2869 db->nSavepoint--;
2871 }else{
2872 db->nDeferredCons = pSavepoint->nDeferredCons;
2873 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
2876 if( !isTransaction ){
2877 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2878 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2883 break;
2886 /* Opcode: AutoCommit P1 P2 * * *
2888 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
2889 ** back any currently active btree transactions. If there are any active
2890 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2891 ** there are active writing VMs or active VMs that use shared cache.
2893 ** This instruction causes the VM to halt.
2895 case OP_AutoCommit: {
2896 int desiredAutoCommit;
2897 int iRollback;
2898 int turnOnAC;
2900 desiredAutoCommit = pOp->p1;
2901 iRollback = pOp->p2;
2902 turnOnAC = desiredAutoCommit && !db->autoCommit;
2903 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
2904 assert( desiredAutoCommit==1 || iRollback==0 );
2905 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
2906 assert( p->bIsReader );
2908 #if 0
2909 if( turnOnAC && iRollback && db->nVdbeActive>1 ){
2910 /* If this instruction implements a ROLLBACK and other VMs are
2911 ** still running, and a transaction is active, return an error indicating
2912 ** that the other VMs must complete first.
2914 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2915 "SQL statements in progress");
2916 rc = SQLITE_BUSY;
2917 }else
2918 #endif
2919 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
2920 /* If this instruction implements a COMMIT and other VMs are writing
2921 ** return an error indicating that the other VMs must complete first.
2923 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2924 "SQL statements in progress");
2925 rc = SQLITE_BUSY;
2926 }else if( desiredAutoCommit!=db->autoCommit ){
2927 if( iRollback ){
2928 assert( desiredAutoCommit==1 );
2929 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2930 db->autoCommit = 1;
2931 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2932 goto vdbe_return;
2933 }else{
2934 db->autoCommit = (u8)desiredAutoCommit;
2935 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2936 p->pc = pc;
2937 db->autoCommit = (u8)(1-desiredAutoCommit);
2938 p->rc = rc = SQLITE_BUSY;
2939 goto vdbe_return;
2942 assert( db->nStatement==0 );
2943 sqlite3CloseSavepoints(db);
2944 if( p->rc==SQLITE_OK ){
2945 rc = SQLITE_DONE;
2946 }else{
2947 rc = SQLITE_ERROR;
2949 goto vdbe_return;
2950 }else{
2951 sqlite3SetString(&p->zErrMsg, db,
2952 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
2953 (iRollback)?"cannot rollback - no transaction is active":
2954 "cannot commit - no transaction is active"));
2956 rc = SQLITE_ERROR;
2958 break;
2961 /* Opcode: Transaction P1 P2 P3 P4 P5
2963 ** Begin a transaction on database P1 if a transaction is not already
2964 ** active.
2965 ** If P2 is non-zero, then a write-transaction is started, or if a
2966 ** read-transaction is already active, it is upgraded to a write-transaction.
2967 ** If P2 is zero, then a read-transaction is started.
2969 ** P1 is the index of the database file on which the transaction is
2970 ** started. Index 0 is the main database file and index 1 is the
2971 ** file used for temporary tables. Indices of 2 or more are used for
2972 ** attached databases.
2974 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2975 ** true (this flag is set if the Vdbe may modify more than one row and may
2976 ** throw an ABORT exception), a statement transaction may also be opened.
2977 ** More specifically, a statement transaction is opened iff the database
2978 ** connection is currently not in autocommit mode, or if there are other
2979 ** active statements. A statement transaction allows the changes made by this
2980 ** VDBE to be rolled back after an error without having to roll back the
2981 ** entire transaction. If no error is encountered, the statement transaction
2982 ** will automatically commit when the VDBE halts.
2984 ** If P5!=0 then this opcode also checks the schema cookie against P3
2985 ** and the schema generation counter against P4.
2986 ** The cookie changes its value whenever the database schema changes.
2987 ** This operation is used to detect when that the cookie has changed
2988 ** and that the current process needs to reread the schema. If the schema
2989 ** cookie in P3 differs from the schema cookie in the database header or
2990 ** if the schema generation counter in P4 differs from the current
2991 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
2992 ** halts. The sqlite3_step() wrapper function might then reprepare the
2993 ** statement and rerun it from the beginning.
2995 case OP_Transaction: {
2996 Btree *pBt;
2997 int iMeta;
2998 int iGen;
3000 assert( p->bIsReader );
3001 assert( p->readOnly==0 || pOp->p2==0 );
3002 assert( pOp->p1>=0 && pOp->p1<db->nDb );
3003 assert( DbMaskTest(p->btreeMask, pOp->p1) );
3004 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3005 rc = SQLITE_READONLY;
3006 goto abort_due_to_error;
3008 pBt = db->aDb[pOp->p1].pBt;
3010 if( pBt ){
3011 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
3012 if( rc==SQLITE_BUSY ){
3013 p->pc = pc;
3014 p->rc = rc = SQLITE_BUSY;
3015 goto vdbe_return;
3017 if( rc!=SQLITE_OK ){
3018 goto abort_due_to_error;
3021 if( pOp->p2 && p->usesStmtJournal
3022 && (db->autoCommit==0 || db->nVdbeRead>1)
3024 assert( sqlite3BtreeIsInTrans(pBt) );
3025 if( p->iStatement==0 ){
3026 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3027 db->nStatement++;
3028 p->iStatement = db->nSavepoint + db->nStatement;
3031 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3032 if( rc==SQLITE_OK ){
3033 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3036 /* Store the current value of the database handles deferred constraint
3037 ** counter. If the statement transaction needs to be rolled back,
3038 ** the value of this counter needs to be restored too. */
3039 p->nStmtDefCons = db->nDeferredCons;
3040 p->nStmtDefImmCons = db->nDeferredImmCons;
3043 /* Gather the schema version number for checking */
3044 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3045 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3046 }else{
3047 iGen = iMeta = 0;
3049 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3050 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3051 sqlite3DbFree(db, p->zErrMsg);
3052 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3053 /* If the schema-cookie from the database file matches the cookie
3054 ** stored with the in-memory representation of the schema, do
3055 ** not reload the schema from the database file.
3057 ** If virtual-tables are in use, this is not just an optimization.
3058 ** Often, v-tables store their data in other SQLite tables, which
3059 ** are queried from within xNext() and other v-table methods using
3060 ** prepared queries. If such a query is out-of-date, we do not want to
3061 ** discard the database schema, as the user code implementing the
3062 ** v-table would have to be ready for the sqlite3_vtab structure itself
3063 ** to be invalidated whenever sqlite3_step() is called from within
3064 ** a v-table method.
3066 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3067 sqlite3ResetOneSchema(db, pOp->p1);
3069 p->expired = 1;
3070 rc = SQLITE_SCHEMA;
3072 break;
3075 /* Opcode: ReadCookie P1 P2 P3 * *
3077 ** Read cookie number P3 from database P1 and write it into register P2.
3078 ** P3==1 is the schema version. P3==2 is the database format.
3079 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
3080 ** the main database file and P1==1 is the database file used to store
3081 ** temporary tables.
3083 ** There must be a read-lock on the database (either a transaction
3084 ** must be started or there must be an open cursor) before
3085 ** executing this instruction.
3087 case OP_ReadCookie: { /* out2-prerelease */
3088 int iMeta;
3089 int iDb;
3090 int iCookie;
3092 assert( p->bIsReader );
3093 iDb = pOp->p1;
3094 iCookie = pOp->p3;
3095 assert( pOp->p3<SQLITE_N_BTREE_META );
3096 assert( iDb>=0 && iDb<db->nDb );
3097 assert( db->aDb[iDb].pBt!=0 );
3098 assert( DbMaskTest(p->btreeMask, iDb) );
3100 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3101 pOut->u.i = iMeta;
3102 break;
3105 /* Opcode: SetCookie P1 P2 P3 * *
3107 ** Write the content of register P3 (interpreted as an integer)
3108 ** into cookie number P2 of database P1. P2==1 is the schema version.
3109 ** P2==2 is the database format. P2==3 is the recommended pager cache
3110 ** size, and so forth. P1==0 is the main database file and P1==1 is the
3111 ** database file used to store temporary tables.
3113 ** A transaction must be started before executing this opcode.
3115 case OP_SetCookie: { /* in3 */
3116 Db *pDb;
3117 assert( pOp->p2<SQLITE_N_BTREE_META );
3118 assert( pOp->p1>=0 && pOp->p1<db->nDb );
3119 assert( DbMaskTest(p->btreeMask, pOp->p1) );
3120 assert( p->readOnly==0 );
3121 pDb = &db->aDb[pOp->p1];
3122 assert( pDb->pBt!=0 );
3123 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3124 pIn3 = &aMem[pOp->p3];
3125 sqlite3VdbeMemIntegerify(pIn3);
3126 /* See note about index shifting on OP_ReadCookie */
3127 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3128 if( pOp->p2==BTREE_SCHEMA_VERSION ){
3129 /* When the schema cookie changes, record the new cookie internally */
3130 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
3131 db->flags |= SQLITE_InternChanges;
3132 }else if( pOp->p2==BTREE_FILE_FORMAT ){
3133 /* Record changes in the file format */
3134 pDb->pSchema->file_format = (u8)pIn3->u.i;
3136 if( pOp->p1==1 ){
3137 /* Invalidate all prepared statements whenever the TEMP database
3138 ** schema is changed. Ticket #1644 */
3139 sqlite3ExpirePreparedStatements(db);
3140 p->expired = 0;
3142 break;
3145 /* Opcode: OpenRead P1 P2 P3 P4 P5
3146 ** Synopsis: root=P2 iDb=P3
3148 ** Open a read-only cursor for the database table whose root page is
3149 ** P2 in a database file. The database file is determined by P3.
3150 ** P3==0 means the main database, P3==1 means the database used for
3151 ** temporary tables, and P3>1 means used the corresponding attached
3152 ** database. Give the new cursor an identifier of P1. The P1
3153 ** values need not be contiguous but all P1 values should be small integers.
3154 ** It is an error for P1 to be negative.
3156 ** If P5!=0 then use the content of register P2 as the root page, not
3157 ** the value of P2 itself.
3159 ** There will be a read lock on the database whenever there is an
3160 ** open cursor. If the database was unlocked prior to this instruction
3161 ** then a read lock is acquired as part of this instruction. A read
3162 ** lock allows other processes to read the database but prohibits
3163 ** any other process from modifying the database. The read lock is
3164 ** released when all cursors are closed. If this instruction attempts
3165 ** to get a read lock but fails, the script terminates with an
3166 ** SQLITE_BUSY error code.
3168 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3169 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3170 ** structure, then said structure defines the content and collating
3171 ** sequence of the index being opened. Otherwise, if P4 is an integer
3172 ** value, it is set to the number of columns in the table.
3174 ** See also: OpenWrite, ReopenIdx
3176 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3177 ** Synopsis: root=P2 iDb=P3
3179 ** The ReopenIdx opcode works exactly like ReadOpen except that it first
3180 ** checks to see if the cursor on P1 is already open with a root page
3181 ** number of P2 and if it is this opcode becomes a no-op. In other words,
3182 ** if the cursor is already open, do not reopen it.
3184 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3185 ** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
3186 ** every other ReopenIdx or OpenRead for the same cursor number.
3188 ** See the OpenRead opcode documentation for additional information.
3190 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3191 ** Synopsis: root=P2 iDb=P3
3193 ** Open a read/write cursor named P1 on the table or index whose root
3194 ** page is P2. Or if P5!=0 use the content of register P2 to find the
3195 ** root page.
3197 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3198 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3199 ** structure, then said structure defines the content and collating
3200 ** sequence of the index being opened. Otherwise, if P4 is an integer
3201 ** value, it is set to the number of columns in the table, or to the
3202 ** largest index of any column of the table that is actually used.
3204 ** This instruction works just like OpenRead except that it opens the cursor
3205 ** in read/write mode. For a given table, there can be one or more read-only
3206 ** cursors or a single read/write cursor but not both.
3208 ** See also OpenRead.
3210 case OP_ReopenIdx: {
3211 VdbeCursor *pCur;
3213 assert( pOp->p5==0 );
3214 assert( pOp->p4type==P4_KEYINFO );
3215 pCur = p->apCsr[pOp->p1];
3216 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3217 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
3218 break;
3220 /* If the cursor is not currently open or is open on a different
3221 ** index, then fall through into OP_OpenRead to force a reopen */
3223 case OP_OpenRead:
3224 case OP_OpenWrite: {
3225 int nField;
3226 KeyInfo *pKeyInfo;
3227 int p2;
3228 int iDb;
3229 int wrFlag;
3230 Btree *pX;
3231 VdbeCursor *pCur;
3232 Db *pDb;
3234 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
3235 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
3236 assert( p->bIsReader );
3237 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3238 || p->readOnly==0 );
3240 if( p->expired ){
3241 rc = SQLITE_ABORT_ROLLBACK;
3242 break;
3245 nField = 0;
3246 pKeyInfo = 0;
3247 p2 = pOp->p2;
3248 iDb = pOp->p3;
3249 assert( iDb>=0 && iDb<db->nDb );
3250 assert( DbMaskTest(p->btreeMask, iDb) );
3251 pDb = &db->aDb[iDb];
3252 pX = pDb->pBt;
3253 assert( pX!=0 );
3254 if( pOp->opcode==OP_OpenWrite ){
3255 wrFlag = 1;
3256 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3257 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3258 p->minWriteFileFormat = pDb->pSchema->file_format;
3260 }else{
3261 wrFlag = 0;
3263 if( pOp->p5 & OPFLAG_P2ISREG ){
3264 assert( p2>0 );
3265 assert( p2<=(p->nMem-p->nCursor) );
3266 pIn2 = &aMem[p2];
3267 assert( memIsValid(pIn2) );
3268 assert( (pIn2->flags & MEM_Int)!=0 );
3269 sqlite3VdbeMemIntegerify(pIn2);
3270 p2 = (int)pIn2->u.i;
3271 /* The p2 value always comes from a prior OP_CreateTable opcode and
3272 ** that opcode will always set the p2 value to 2 or more or else fail.
3273 ** If there were a failure, the prepared statement would have halted
3274 ** before reaching this instruction. */
3275 if( NEVER(p2<2) ) {
3276 rc = SQLITE_CORRUPT_BKPT;
3277 goto abort_due_to_error;
3280 if( pOp->p4type==P4_KEYINFO ){
3281 pKeyInfo = pOp->p4.pKeyInfo;
3282 assert( pKeyInfo->enc==ENC(db) );
3283 assert( pKeyInfo->db==db );
3284 nField = pKeyInfo->nField+pKeyInfo->nXField;
3285 }else if( pOp->p4type==P4_INT32 ){
3286 nField = pOp->p4.i;
3288 assert( pOp->p1>=0 );
3289 assert( nField>=0 );
3290 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
3291 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
3292 if( pCur==0 ) goto no_mem;
3293 pCur->nullRow = 1;
3294 pCur->isOrdered = 1;
3295 pCur->pgnoRoot = p2;
3296 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3297 pCur->pKeyInfo = pKeyInfo;
3298 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3299 sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));
3301 /* Set the VdbeCursor.isTable variable. Previous versions of
3302 ** SQLite used to check if the root-page flags were sane at this point
3303 ** and report database corruption if they were not, but this check has
3304 ** since moved into the btree layer. */
3305 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3306 break;
3309 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3310 ** Synopsis: nColumn=P2
3312 ** Open a new cursor P1 to a transient table.
3313 ** The cursor is always opened read/write even if
3314 ** the main database is read-only. The ephemeral
3315 ** table is deleted automatically when the cursor is closed.
3317 ** P2 is the number of columns in the ephemeral table.
3318 ** The cursor points to a BTree table if P4==0 and to a BTree index
3319 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
3320 ** that defines the format of keys in the index.
3322 ** The P5 parameter can be a mask of the BTREE_* flags defined
3323 ** in btree.h. These flags control aspects of the operation of
3324 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3325 ** added automatically.
3327 /* Opcode: OpenAutoindex P1 P2 * P4 *
3328 ** Synopsis: nColumn=P2
3330 ** This opcode works the same as OP_OpenEphemeral. It has a
3331 ** different name to distinguish its use. Tables created using
3332 ** by this opcode will be used for automatically created transient
3333 ** indices in joins.
3335 case OP_OpenAutoindex:
3336 case OP_OpenEphemeral: {
3337 VdbeCursor *pCx;
3338 KeyInfo *pKeyInfo;
3340 static const int vfsFlags =
3341 SQLITE_OPEN_READWRITE |
3342 SQLITE_OPEN_CREATE |
3343 SQLITE_OPEN_EXCLUSIVE |
3344 SQLITE_OPEN_DELETEONCLOSE |
3345 SQLITE_OPEN_TRANSIENT_DB;
3346 assert( pOp->p1>=0 );
3347 assert( pOp->p2>=0 );
3348 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3349 if( pCx==0 ) goto no_mem;
3350 pCx->nullRow = 1;
3351 pCx->isEphemeral = 1;
3352 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3353 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3354 if( rc==SQLITE_OK ){
3355 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
3357 if( rc==SQLITE_OK ){
3358 /* If a transient index is required, create it by calling
3359 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3360 ** opening it. If a transient table is required, just use the
3361 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3363 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3364 int pgno;
3365 assert( pOp->p4type==P4_KEYINFO );
3366 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
3367 if( rc==SQLITE_OK ){
3368 assert( pgno==MASTER_ROOT+1 );
3369 assert( pKeyInfo->db==db );
3370 assert( pKeyInfo->enc==ENC(db) );
3371 pCx->pKeyInfo = pKeyInfo;
3372 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor);
3374 pCx->isTable = 0;
3375 }else{
3376 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
3377 pCx->isTable = 1;
3380 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3381 break;
3384 /* Opcode: SorterOpen P1 P2 P3 P4 *
3386 ** This opcode works like OP_OpenEphemeral except that it opens
3387 ** a transient index that is specifically designed to sort large
3388 ** tables using an external merge-sort algorithm.
3390 ** If argument P3 is non-zero, then it indicates that the sorter may
3391 ** assume that a stable sort considering the first P3 fields of each
3392 ** key is sufficient to produce the required results.
3394 case OP_SorterOpen: {
3395 VdbeCursor *pCx;
3397 assert( pOp->p1>=0 );
3398 assert( pOp->p2>=0 );
3399 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3400 if( pCx==0 ) goto no_mem;
3401 pCx->pKeyInfo = pOp->p4.pKeyInfo;
3402 assert( pCx->pKeyInfo->db==db );
3403 assert( pCx->pKeyInfo->enc==ENC(db) );
3404 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
3405 break;
3408 /* Opcode: SequenceTest P1 P2 * * *
3409 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3411 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3412 ** to P2. Regardless of whether or not the jump is taken, increment the
3413 ** the sequence value.
3415 case OP_SequenceTest: {
3416 VdbeCursor *pC;
3417 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3418 pC = p->apCsr[pOp->p1];
3419 assert( pC->pSorter );
3420 if( (pC->seqCount++)==0 ){
3421 pc = pOp->p2 - 1;
3423 break;
3426 /* Opcode: OpenPseudo P1 P2 P3 * *
3427 ** Synopsis: P3 columns in r[P2]
3429 ** Open a new cursor that points to a fake table that contains a single
3430 ** row of data. The content of that one row is the content of memory
3431 ** register P2. In other words, cursor P1 becomes an alias for the
3432 ** MEM_Blob content contained in register P2.
3434 ** A pseudo-table created by this opcode is used to hold a single
3435 ** row output from the sorter so that the row can be decomposed into
3436 ** individual columns using the OP_Column opcode. The OP_Column opcode
3437 ** is the only cursor opcode that works with a pseudo-table.
3439 ** P3 is the number of fields in the records that will be stored by
3440 ** the pseudo-table.
3442 case OP_OpenPseudo: {
3443 VdbeCursor *pCx;
3445 assert( pOp->p1>=0 );
3446 assert( pOp->p3>=0 );
3447 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
3448 if( pCx==0 ) goto no_mem;
3449 pCx->nullRow = 1;
3450 pCx->pseudoTableReg = pOp->p2;
3451 pCx->isTable = 1;
3452 assert( pOp->p5==0 );
3453 break;
3456 /* Opcode: Close P1 * * * *
3458 ** Close a cursor previously opened as P1. If P1 is not
3459 ** currently open, this instruction is a no-op.
3461 case OP_Close: {
3462 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3463 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3464 p->apCsr[pOp->p1] = 0;
3465 break;
3468 /* Opcode: SeekGE P1 P2 P3 P4 *
3469 ** Synopsis: key=r[P3@P4]
3471 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3472 ** use the value in register P3 as the key. If cursor P1 refers
3473 ** to an SQL index, then P3 is the first in an array of P4 registers
3474 ** that are used as an unpacked index key.
3476 ** Reposition cursor P1 so that it points to the smallest entry that
3477 ** is greater than or equal to the key value. If there are no records
3478 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3480 ** This opcode leaves the cursor configured to move in forward order,
3481 ** from the beginning toward the end. In other words, the cursor is
3482 ** configured to use Next, not Prev.
3484 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
3486 /* Opcode: SeekGT P1 P2 P3 P4 *
3487 ** Synopsis: key=r[P3@P4]
3489 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3490 ** use the value in register P3 as a key. If cursor P1 refers
3491 ** to an SQL index, then P3 is the first in an array of P4 registers
3492 ** that are used as an unpacked index key.
3494 ** Reposition cursor P1 so that it points to the smallest entry that
3495 ** is greater than the key value. If there are no records greater than
3496 ** the key and P2 is not zero, then jump to P2.
3498 ** This opcode leaves the cursor configured to move in forward order,
3499 ** from the beginning toward the end. In other words, the cursor is
3500 ** configured to use Next, not Prev.
3502 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
3504 /* Opcode: SeekLT P1 P2 P3 P4 *
3505 ** Synopsis: key=r[P3@P4]
3507 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3508 ** use the value in register P3 as a key. If cursor P1 refers
3509 ** to an SQL index, then P3 is the first in an array of P4 registers
3510 ** that are used as an unpacked index key.
3512 ** Reposition cursor P1 so that it points to the largest entry that
3513 ** is less than the key value. If there are no records less than
3514 ** the key and P2 is not zero, then jump to P2.
3516 ** This opcode leaves the cursor configured to move in reverse order,
3517 ** from the end toward the beginning. In other words, the cursor is
3518 ** configured to use Prev, not Next.
3520 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
3522 /* Opcode: SeekLE P1 P2 P3 P4 *
3523 ** Synopsis: key=r[P3@P4]
3525 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3526 ** use the value in register P3 as a key. If cursor P1 refers
3527 ** to an SQL index, then P3 is the first in an array of P4 registers
3528 ** that are used as an unpacked index key.
3530 ** Reposition cursor P1 so that it points to the largest entry that
3531 ** is less than or equal to the key value. If there are no records
3532 ** less than or equal to the key and P2 is not zero, then jump to P2.
3534 ** This opcode leaves the cursor configured to move in reverse order,
3535 ** from the end toward the beginning. In other words, the cursor is
3536 ** configured to use Prev, not Next.
3538 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
3540 case OP_SeekLT: /* jump, in3 */
3541 case OP_SeekLE: /* jump, in3 */
3542 case OP_SeekGE: /* jump, in3 */
3543 case OP_SeekGT: { /* jump, in3 */
3544 int res;
3545 int oc;
3546 VdbeCursor *pC;
3547 UnpackedRecord r;
3548 int nField;
3549 i64 iKey; /* The rowid we are to seek to */
3551 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3552 assert( pOp->p2!=0 );
3553 pC = p->apCsr[pOp->p1];
3554 assert( pC!=0 );
3555 assert( pC->pseudoTableReg==0 );
3556 assert( OP_SeekLE == OP_SeekLT+1 );
3557 assert( OP_SeekGE == OP_SeekLT+2 );
3558 assert( OP_SeekGT == OP_SeekLT+3 );
3559 assert( pC->isOrdered );
3560 assert( pC->pCursor!=0 );
3561 oc = pOp->opcode;
3562 pC->nullRow = 0;
3563 #ifdef SQLITE_DEBUG
3564 pC->seekOp = pOp->opcode;
3565 #endif
3566 if( pC->isTable ){
3567 /* The input value in P3 might be of any type: integer, real, string,
3568 ** blob, or NULL. But it needs to be an integer before we can do
3569 ** the seek, so convert it. */
3570 pIn3 = &aMem[pOp->p3];
3571 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
3572 applyNumericAffinity(pIn3, 0);
3574 iKey = sqlite3VdbeIntValue(pIn3);
3576 /* If the P3 value could not be converted into an integer without
3577 ** loss of information, then special processing is required... */
3578 if( (pIn3->flags & MEM_Int)==0 ){
3579 if( (pIn3->flags & MEM_Real)==0 ){
3580 /* If the P3 value cannot be converted into any kind of a number,
3581 ** then the seek is not possible, so jump to P2 */
3582 pc = pOp->p2 - 1; VdbeBranchTaken(1,2);
3583 break;
3586 /* If the approximation iKey is larger than the actual real search
3587 ** term, substitute >= for > and < for <=. e.g. if the search term
3588 ** is 4.9 and the integer approximation 5:
3590 ** (x > 4.9) -> (x >= 5)
3591 ** (x <= 4.9) -> (x < 5)
3593 if( pIn3->u.r<(double)iKey ){
3594 assert( OP_SeekGE==(OP_SeekGT-1) );
3595 assert( OP_SeekLT==(OP_SeekLE-1) );
3596 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3597 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
3600 /* If the approximation iKey is smaller than the actual real search
3601 ** term, substitute <= for < and > for >=. */
3602 else if( pIn3->u.r>(double)iKey ){
3603 assert( OP_SeekLE==(OP_SeekLT+1) );
3604 assert( OP_SeekGT==(OP_SeekGE+1) );
3605 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3606 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
3609 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
3610 pC->movetoTarget = iKey; /* Used by OP_Delete */
3611 if( rc!=SQLITE_OK ){
3612 goto abort_due_to_error;
3614 }else{
3615 nField = pOp->p4.i;
3616 assert( pOp->p4type==P4_INT32 );
3617 assert( nField>0 );
3618 r.pKeyInfo = pC->pKeyInfo;
3619 r.nField = (u16)nField;
3621 /* The next line of code computes as follows, only faster:
3622 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
3623 ** r.default_rc = -1;
3624 ** }else{
3625 ** r.default_rc = +1;
3626 ** }
3628 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3629 assert( oc!=OP_SeekGT || r.default_rc==-1 );
3630 assert( oc!=OP_SeekLE || r.default_rc==-1 );
3631 assert( oc!=OP_SeekGE || r.default_rc==+1 );
3632 assert( oc!=OP_SeekLT || r.default_rc==+1 );
3634 r.aMem = &aMem[pOp->p3];
3635 #ifdef SQLITE_DEBUG
3636 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3637 #endif
3638 ExpandBlob(r.aMem);
3639 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
3640 if( rc!=SQLITE_OK ){
3641 goto abort_due_to_error;
3644 pC->deferredMoveto = 0;
3645 pC->cacheStatus = CACHE_STALE;
3646 #ifdef SQLITE_TEST
3647 sqlite3_search_count++;
3648 #endif
3649 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
3650 if( res<0 || (res==0 && oc==OP_SeekGT) ){
3651 res = 0;
3652 rc = sqlite3BtreeNext(pC->pCursor, &res);
3653 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3654 }else{
3655 res = 0;
3657 }else{
3658 assert( oc==OP_SeekLT || oc==OP_SeekLE );
3659 if( res>0 || (res==0 && oc==OP_SeekLT) ){
3660 res = 0;
3661 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3662 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3663 }else{
3664 /* res might be negative because the table is empty. Check to
3665 ** see if this is the case.
3667 res = sqlite3BtreeEof(pC->pCursor);
3670 assert( pOp->p2>0 );
3671 VdbeBranchTaken(res!=0,2);
3672 if( res ){
3673 pc = pOp->p2 - 1;
3675 break;
3678 /* Opcode: Seek P1 P2 * * *
3679 ** Synopsis: intkey=r[P2]
3681 ** P1 is an open table cursor and P2 is a rowid integer. Arrange
3682 ** for P1 to move so that it points to the rowid given by P2.
3684 ** This is actually a deferred seek. Nothing actually happens until
3685 ** the cursor is used to read a record. That way, if no reads
3686 ** occur, no unnecessary I/O happens.
3688 case OP_Seek: { /* in2 */
3689 VdbeCursor *pC;
3691 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3692 pC = p->apCsr[pOp->p1];
3693 assert( pC!=0 );
3694 assert( pC->pCursor!=0 );
3695 assert( pC->isTable );
3696 pC->nullRow = 0;
3697 pIn2 = &aMem[pOp->p2];
3698 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3699 pC->deferredMoveto = 1;
3700 break;
3704 /* Opcode: Found P1 P2 P3 P4 *
3705 ** Synopsis: key=r[P3@P4]
3707 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3708 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3709 ** record.
3711 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3712 ** is a prefix of any entry in P1 then a jump is made to P2 and
3713 ** P1 is left pointing at the matching entry.
3715 ** This operation leaves the cursor in a state where it can be
3716 ** advanced in the forward direction. The Next instruction will work,
3717 ** but not the Prev instruction.
3719 ** See also: NotFound, NoConflict, NotExists. SeekGe
3721 /* Opcode: NotFound P1 P2 P3 P4 *
3722 ** Synopsis: key=r[P3@P4]
3724 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3725 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3726 ** record.
3728 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3729 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3730 ** does contain an entry whose prefix matches the P3/P4 record then control
3731 ** falls through to the next instruction and P1 is left pointing at the
3732 ** matching entry.
3734 ** This operation leaves the cursor in a state where it cannot be
3735 ** advanced in either direction. In other words, the Next and Prev
3736 ** opcodes do not work after this operation.
3738 ** See also: Found, NotExists, NoConflict
3740 /* Opcode: NoConflict P1 P2 P3 P4 *
3741 ** Synopsis: key=r[P3@P4]
3743 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3744 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3745 ** record.
3747 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3748 ** contains any NULL value, jump immediately to P2. If all terms of the
3749 ** record are not-NULL then a check is done to determine if any row in the
3750 ** P1 index btree has a matching key prefix. If there are no matches, jump
3751 ** immediately to P2. If there is a match, fall through and leave the P1
3752 ** cursor pointing to the matching row.
3754 ** This opcode is similar to OP_NotFound with the exceptions that the
3755 ** branch is always taken if any part of the search key input is NULL.
3757 ** This operation leaves the cursor in a state where it cannot be
3758 ** advanced in either direction. In other words, the Next and Prev
3759 ** opcodes do not work after this operation.
3761 ** See also: NotFound, Found, NotExists
3763 case OP_NoConflict: /* jump, in3 */
3764 case OP_NotFound: /* jump, in3 */
3765 case OP_Found: { /* jump, in3 */
3766 int alreadyExists;
3767 int ii;
3768 VdbeCursor *pC;
3769 int res;
3770 char *pFree;
3771 UnpackedRecord *pIdxKey;
3772 UnpackedRecord r;
3773 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
3775 #ifdef SQLITE_TEST
3776 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
3777 #endif
3779 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3780 assert( pOp->p4type==P4_INT32 );
3781 pC = p->apCsr[pOp->p1];
3782 assert( pC!=0 );
3783 #ifdef SQLITE_DEBUG
3784 pC->seekOp = pOp->opcode;
3785 #endif
3786 pIn3 = &aMem[pOp->p3];
3787 assert( pC->pCursor!=0 );
3788 assert( pC->isTable==0 );
3789 pFree = 0; /* Not needed. Only used to suppress a compiler warning. */
3790 if( pOp->p4.i>0 ){
3791 r.pKeyInfo = pC->pKeyInfo;
3792 r.nField = (u16)pOp->p4.i;
3793 r.aMem = pIn3;
3794 for(ii=0; ii<r.nField; ii++){
3795 assert( memIsValid(&r.aMem[ii]) );
3796 ExpandBlob(&r.aMem[ii]);
3797 #ifdef SQLITE_DEBUG
3798 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
3799 #endif
3801 pIdxKey = &r;
3802 }else{
3803 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3804 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3806 if( pIdxKey==0 ) goto no_mem;
3807 assert( pIn3->flags & MEM_Blob );
3808 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
3809 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
3811 pIdxKey->default_rc = 0;
3812 if( pOp->opcode==OP_NoConflict ){
3813 /* For the OP_NoConflict opcode, take the jump if any of the
3814 ** input fields are NULL, since any key with a NULL will not
3815 ** conflict */
3816 for(ii=0; ii<r.nField; ii++){
3817 if( r.aMem[ii].flags & MEM_Null ){
3818 pc = pOp->p2 - 1; VdbeBranchTaken(1,2);
3819 break;
3823 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
3824 if( pOp->p4.i==0 ){
3825 sqlite3DbFree(db, pFree);
3827 if( rc!=SQLITE_OK ){
3828 break;
3830 pC->seekResult = res;
3831 alreadyExists = (res==0);
3832 pC->nullRow = 1-alreadyExists;
3833 pC->deferredMoveto = 0;
3834 pC->cacheStatus = CACHE_STALE;
3835 if( pOp->opcode==OP_Found ){
3836 VdbeBranchTaken(alreadyExists!=0,2);
3837 if( alreadyExists ) pc = pOp->p2 - 1;
3838 }else{
3839 VdbeBranchTaken(alreadyExists==0,2);
3840 if( !alreadyExists ) pc = pOp->p2 - 1;
3842 break;
3845 /* Opcode: NotExists P1 P2 P3 * *
3846 ** Synopsis: intkey=r[P3]
3848 ** P1 is the index of a cursor open on an SQL table btree (with integer
3849 ** keys). P3 is an integer rowid. If P1 does not contain a record with
3850 ** rowid P3 then jump immediately to P2. If P1 does contain a record
3851 ** with rowid P3 then leave the cursor pointing at that record and fall
3852 ** through to the next instruction.
3854 ** The OP_NotFound opcode performs the same operation on index btrees
3855 ** (with arbitrary multi-value keys).
3857 ** This opcode leaves the cursor in a state where it cannot be advanced
3858 ** in either direction. In other words, the Next and Prev opcodes will
3859 ** not work following this opcode.
3861 ** See also: Found, NotFound, NoConflict
3863 case OP_NotExists: { /* jump, in3 */
3864 VdbeCursor *pC;
3865 BtCursor *pCrsr;
3866 int res;
3867 u64 iKey;
3869 pIn3 = &aMem[pOp->p3];
3870 assert( pIn3->flags & MEM_Int );
3871 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3872 pC = p->apCsr[pOp->p1];
3873 assert( pC!=0 );
3874 #ifdef SQLITE_DEBUG
3875 pC->seekOp = 0;
3876 #endif
3877 assert( pC->isTable );
3878 assert( pC->pseudoTableReg==0 );
3879 pCrsr = pC->pCursor;
3880 assert( pCrsr!=0 );
3881 res = 0;
3882 iKey = pIn3->u.i;
3883 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
3884 pC->movetoTarget = iKey; /* Used by OP_Delete */
3885 pC->nullRow = 0;
3886 pC->cacheStatus = CACHE_STALE;
3887 pC->deferredMoveto = 0;
3888 VdbeBranchTaken(res!=0,2);
3889 if( res!=0 ){
3890 pc = pOp->p2 - 1;
3892 pC->seekResult = res;
3893 break;
3896 /* Opcode: Sequence P1 P2 * * *
3897 ** Synopsis: r[P2]=cursor[P1].ctr++
3899 ** Find the next available sequence number for cursor P1.
3900 ** Write the sequence number into register P2.
3901 ** The sequence number on the cursor is incremented after this
3902 ** instruction.
3904 case OP_Sequence: { /* out2-prerelease */
3905 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3906 assert( p->apCsr[pOp->p1]!=0 );
3907 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
3908 break;
3912 /* Opcode: NewRowid P1 P2 P3 * *
3913 ** Synopsis: r[P2]=rowid
3915 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
3916 ** The record number is not previously used as a key in the database
3917 ** table that cursor P1 points to. The new record number is written
3918 ** written to register P2.
3920 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3921 ** the largest previously generated record number. No new record numbers are
3922 ** allowed to be less than this value. When this value reaches its maximum,
3923 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
3924 ** generated record number. This P3 mechanism is used to help implement the
3925 ** AUTOINCREMENT feature.
3927 case OP_NewRowid: { /* out2-prerelease */
3928 i64 v; /* The new rowid */
3929 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3930 int res; /* Result of an sqlite3BtreeLast() */
3931 int cnt; /* Counter to limit the number of searches */
3932 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
3933 VdbeFrame *pFrame; /* Root frame of VDBE */
3935 v = 0;
3936 res = 0;
3937 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3938 pC = p->apCsr[pOp->p1];
3939 assert( pC!=0 );
3940 if( NEVER(pC->pCursor==0) ){
3941 /* The zero initialization above is all that is needed */
3942 }else{
3943 /* The next rowid or record number (different terms for the same
3944 ** thing) is obtained in a two-step algorithm.
3946 ** First we attempt to find the largest existing rowid and add one
3947 ** to that. But if the largest existing rowid is already the maximum
3948 ** positive integer, we have to fall through to the second
3949 ** probabilistic algorithm
3951 ** The second algorithm is to select a rowid at random and see if
3952 ** it already exists in the table. If it does not exist, we have
3953 ** succeeded. If the random rowid does exist, we select a new one
3954 ** and try again, up to 100 times.
3956 assert( pC->isTable );
3958 #ifdef SQLITE_32BIT_ROWID
3959 # define MAX_ROWID 0x7fffffff
3960 #else
3961 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3962 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3963 ** to provide the constant while making all compilers happy.
3965 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
3966 #endif
3968 if( !pC->useRandomRowid ){
3969 rc = sqlite3BtreeLast(pC->pCursor, &res);
3970 if( rc!=SQLITE_OK ){
3971 goto abort_due_to_error;
3973 if( res ){
3974 v = 1; /* IMP: R-61914-48074 */
3975 }else{
3976 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
3977 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3978 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
3979 if( v>=MAX_ROWID ){
3980 pC->useRandomRowid = 1;
3981 }else{
3982 v++; /* IMP: R-29538-34987 */
3987 #ifndef SQLITE_OMIT_AUTOINCREMENT
3988 if( pOp->p3 ){
3989 /* Assert that P3 is a valid memory cell. */
3990 assert( pOp->p3>0 );
3991 if( p->pFrame ){
3992 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
3993 /* Assert that P3 is a valid memory cell. */
3994 assert( pOp->p3<=pFrame->nMem );
3995 pMem = &pFrame->aMem[pOp->p3];
3996 }else{
3997 /* Assert that P3 is a valid memory cell. */
3998 assert( pOp->p3<=(p->nMem-p->nCursor) );
3999 pMem = &aMem[pOp->p3];
4000 memAboutToChange(p, pMem);
4002 assert( memIsValid(pMem) );
4004 REGISTER_TRACE(pOp->p3, pMem);
4005 sqlite3VdbeMemIntegerify(pMem);
4006 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
4007 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4008 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
4009 goto abort_due_to_error;
4011 if( v<pMem->u.i+1 ){
4012 v = pMem->u.i + 1;
4014 pMem->u.i = v;
4016 #endif
4017 if( pC->useRandomRowid ){
4018 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4019 ** largest possible integer (9223372036854775807) then the database
4020 ** engine starts picking positive candidate ROWIDs at random until
4021 ** it finds one that is not previously used. */
4022 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
4023 ** an AUTOINCREMENT table. */
4024 cnt = 0;
4026 sqlite3_randomness(sizeof(v), &v);
4027 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
4028 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
4029 0, &res))==SQLITE_OK)
4030 && (res==0)
4031 && (++cnt<100));
4032 if( rc==SQLITE_OK && res==0 ){
4033 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
4034 goto abort_due_to_error;
4036 assert( v>0 ); /* EV: R-40812-03570 */
4038 pC->deferredMoveto = 0;
4039 pC->cacheStatus = CACHE_STALE;
4041 pOut->u.i = v;
4042 break;
4045 /* Opcode: Insert P1 P2 P3 P4 P5
4046 ** Synopsis: intkey=r[P3] data=r[P2]
4048 ** Write an entry into the table of cursor P1. A new entry is
4049 ** created if it doesn't already exist or the data for an existing
4050 ** entry is overwritten. The data is the value MEM_Blob stored in register
4051 ** number P2. The key is stored in register P3. The key must
4052 ** be a MEM_Int.
4054 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4055 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
4056 ** then rowid is stored for subsequent return by the
4057 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4059 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4060 ** the last seek operation (OP_NotExists) was a success, then this
4061 ** operation will not attempt to find the appropriate row before doing
4062 ** the insert but will instead overwrite the row that the cursor is
4063 ** currently pointing to. Presumably, the prior OP_NotExists opcode
4064 ** has already positioned the cursor correctly. This is an optimization
4065 ** that boosts performance by avoiding redundant seeks.
4067 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4068 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4069 ** is part of an INSERT operation. The difference is only important to
4070 ** the update hook.
4072 ** Parameter P4 may point to a string containing the table-name, or
4073 ** may be NULL. If it is not NULL, then the update-hook
4074 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4076 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4077 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4078 ** and register P2 becomes ephemeral. If the cursor is changed, the
4079 ** value of register P2 will then change. Make sure this does not
4080 ** cause any problems.)
4082 ** This instruction only works on tables. The equivalent instruction
4083 ** for indices is OP_IdxInsert.
4085 /* Opcode: InsertInt P1 P2 P3 P4 P5
4086 ** Synopsis: intkey=P3 data=r[P2]
4088 ** This works exactly like OP_Insert except that the key is the
4089 ** integer value P3, not the value of the integer stored in register P3.
4091 case OP_Insert:
4092 case OP_InsertInt: {
4093 Mem *pData; /* MEM cell holding data for the record to be inserted */
4094 Mem *pKey; /* MEM cell holding key for the record */
4095 i64 iKey; /* The integer ROWID or key for the record to be inserted */
4096 VdbeCursor *pC; /* Cursor to table into which insert is written */
4097 int nZero; /* Number of zero-bytes to append */
4098 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4099 const char *zDb; /* database name - used by the update hook */
4100 const char *zTbl; /* Table name - used by the opdate hook */
4101 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4103 pData = &aMem[pOp->p2];
4104 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4105 assert( memIsValid(pData) );
4106 pC = p->apCsr[pOp->p1];
4107 assert( pC!=0 );
4108 assert( pC->pCursor!=0 );
4109 assert( pC->pseudoTableReg==0 );
4110 assert( pC->isTable );
4111 REGISTER_TRACE(pOp->p2, pData);
4113 if( pOp->opcode==OP_Insert ){
4114 pKey = &aMem[pOp->p3];
4115 assert( pKey->flags & MEM_Int );
4116 assert( memIsValid(pKey) );
4117 REGISTER_TRACE(pOp->p3, pKey);
4118 iKey = pKey->u.i;
4119 }else{
4120 assert( pOp->opcode==OP_InsertInt );
4121 iKey = pOp->p3;
4124 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4125 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
4126 if( pData->flags & MEM_Null ){
4127 pData->z = 0;
4128 pData->n = 0;
4129 }else{
4130 assert( pData->flags & (MEM_Blob|MEM_Str) );
4132 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4133 if( pData->flags & MEM_Zero ){
4134 nZero = pData->u.nZero;
4135 }else{
4136 nZero = 0;
4138 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4139 pData->z, pData->n, nZero,
4140 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
4142 pC->deferredMoveto = 0;
4143 pC->cacheStatus = CACHE_STALE;
4145 /* Invoke the update-hook if required. */
4146 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4147 zDb = db->aDb[pC->iDb].zName;
4148 zTbl = pOp->p4.z;
4149 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
4150 assert( pC->isTable );
4151 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4152 assert( pC->iDb>=0 );
4154 break;
4157 /* Opcode: Delete P1 P2 * P4 *
4159 ** Delete the record at which the P1 cursor is currently pointing.
4161 ** The cursor will be left pointing at either the next or the previous
4162 ** record in the table. If it is left pointing at the next record, then
4163 ** the next Next instruction will be a no-op. Hence it is OK to delete
4164 ** a record from within a Next loop.
4166 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
4167 ** incremented (otherwise not).
4169 ** P1 must not be pseudo-table. It has to be a real table with
4170 ** multiple rows.
4172 ** If P4 is not NULL, then it is the name of the table that P1 is
4173 ** pointing to. The update hook will be invoked, if it exists.
4174 ** If P4 is not NULL then the P1 cursor must have been positioned
4175 ** using OP_NotFound prior to invoking this opcode.
4177 case OP_Delete: {
4178 VdbeCursor *pC;
4180 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4181 pC = p->apCsr[pOp->p1];
4182 assert( pC!=0 );
4183 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
4184 assert( pC->deferredMoveto==0 );
4186 #ifdef SQLITE_DEBUG
4187 /* The seek operation that positioned the cursor prior to OP_Delete will
4188 ** have also set the pC->movetoTarget field to the rowid of the row that
4189 ** is being deleted */
4190 if( pOp->p4.z && pC->isTable ){
4191 i64 iKey = 0;
4192 sqlite3BtreeKeySize(pC->pCursor, &iKey);
4193 assert( pC->movetoTarget==iKey );
4195 #endif
4197 rc = sqlite3BtreeDelete(pC->pCursor);
4198 pC->cacheStatus = CACHE_STALE;
4200 /* Invoke the update-hook if required. */
4201 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){
4202 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
4203 db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
4204 assert( pC->iDb>=0 );
4206 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
4207 break;
4209 /* Opcode: ResetCount * * * * *
4211 ** The value of the change counter is copied to the database handle
4212 ** change counter (returned by subsequent calls to sqlite3_changes()).
4213 ** Then the VMs internal change counter resets to 0.
4214 ** This is used by trigger programs.
4216 case OP_ResetCount: {
4217 sqlite3VdbeSetChanges(db, p->nChange);
4218 p->nChange = 0;
4219 break;
4222 /* Opcode: SorterCompare P1 P2 P3 P4
4223 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
4225 ** P1 is a sorter cursor. This instruction compares a prefix of the
4226 ** record blob in register P3 against a prefix of the entry that
4227 ** the sorter cursor currently points to. Only the first P4 fields
4228 ** of r[P3] and the sorter record are compared.
4230 ** If either P3 or the sorter contains a NULL in one of their significant
4231 ** fields (not counting the P4 fields at the end which are ignored) then
4232 ** the comparison is assumed to be equal.
4234 ** Fall through to next instruction if the two records compare equal to
4235 ** each other. Jump to P2 if they are different.
4237 case OP_SorterCompare: {
4238 VdbeCursor *pC;
4239 int res;
4240 int nKeyCol;
4242 pC = p->apCsr[pOp->p1];
4243 assert( isSorter(pC) );
4244 assert( pOp->p4type==P4_INT32 );
4245 pIn3 = &aMem[pOp->p3];
4246 nKeyCol = pOp->p4.i;
4247 res = 0;
4248 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
4249 VdbeBranchTaken(res!=0,2);
4250 if( res ){
4251 pc = pOp->p2-1;
4253 break;
4256 /* Opcode: SorterData P1 P2 P3 * *
4257 ** Synopsis: r[P2]=data
4259 ** Write into register P2 the current sorter data for sorter cursor P1.
4260 ** Then clear the column header cache on cursor P3.
4262 ** This opcode is normally use to move a record out of the sorter and into
4263 ** a register that is the source for a pseudo-table cursor created using
4264 ** OpenPseudo. That pseudo-table cursor is the one that is identified by
4265 ** parameter P3. Clearing the P3 column cache as part of this opcode saves
4266 ** us from having to issue a separate NullRow instruction to clear that cache.
4268 case OP_SorterData: {
4269 VdbeCursor *pC;
4271 pOut = &aMem[pOp->p2];
4272 pC = p->apCsr[pOp->p1];
4273 assert( isSorter(pC) );
4274 rc = sqlite3VdbeSorterRowkey(pC, pOut);
4275 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
4276 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4277 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
4278 break;
4281 /* Opcode: RowData P1 P2 * * *
4282 ** Synopsis: r[P2]=data
4284 ** Write into register P2 the complete row data for cursor P1.
4285 ** There is no interpretation of the data.
4286 ** It is just copied onto the P2 register exactly as
4287 ** it is found in the database file.
4289 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4290 ** of a real table, not a pseudo-table.
4292 /* Opcode: RowKey P1 P2 * * *
4293 ** Synopsis: r[P2]=key
4295 ** Write into register P2 the complete row key for cursor P1.
4296 ** There is no interpretation of the data.
4297 ** The key is copied onto the P2 register exactly as
4298 ** it is found in the database file.
4300 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4301 ** of a real table, not a pseudo-table.
4303 case OP_RowKey:
4304 case OP_RowData: {
4305 VdbeCursor *pC;
4306 BtCursor *pCrsr;
4307 u32 n;
4308 i64 n64;
4310 pOut = &aMem[pOp->p2];
4311 memAboutToChange(p, pOut);
4313 /* Note that RowKey and RowData are really exactly the same instruction */
4314 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4315 pC = p->apCsr[pOp->p1];
4316 assert( isSorter(pC)==0 );
4317 assert( pC->isTable || pOp->opcode!=OP_RowData );
4318 assert( pC->isTable==0 || pOp->opcode==OP_RowData );
4319 assert( pC!=0 );
4320 assert( pC->nullRow==0 );
4321 assert( pC->pseudoTableReg==0 );
4322 assert( pC->pCursor!=0 );
4323 pCrsr = pC->pCursor;
4325 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4326 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4327 ** the cursor. If this where not the case, on of the following assert()s
4328 ** would fail. Should this ever change (because of changes in the code
4329 ** generator) then the fix would be to insert a call to
4330 ** sqlite3VdbeCursorMoveto().
4332 assert( pC->deferredMoveto==0 );
4333 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4334 #if 0 /* Not required due to the previous to assert() statements */
4335 rc = sqlite3VdbeCursorMoveto(pC);
4336 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4337 #endif
4339 if( pC->isTable==0 ){
4340 assert( !pC->isTable );
4341 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
4342 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
4343 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
4344 goto too_big;
4346 n = (u32)n64;
4347 }else{
4348 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
4349 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
4350 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4351 goto too_big;
4354 testcase( n==0 );
4355 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
4356 goto no_mem;
4358 pOut->n = n;
4359 MemSetTypeFlag(pOut, MEM_Blob);
4360 if( pC->isTable==0 ){
4361 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4362 }else{
4363 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
4365 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
4366 UPDATE_MAX_BLOBSIZE(pOut);
4367 REGISTER_TRACE(pOp->p2, pOut);
4368 break;
4371 /* Opcode: Rowid P1 P2 * * *
4372 ** Synopsis: r[P2]=rowid
4374 ** Store in register P2 an integer which is the key of the table entry that
4375 ** P1 is currently point to.
4377 ** P1 can be either an ordinary table or a virtual table. There used to
4378 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4379 ** one opcode now works for both table types.
4381 case OP_Rowid: { /* out2-prerelease */
4382 VdbeCursor *pC;
4383 i64 v;
4384 sqlite3_vtab *pVtab;
4385 const sqlite3_module *pModule;
4387 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4388 pC = p->apCsr[pOp->p1];
4389 assert( pC!=0 );
4390 assert( pC->pseudoTableReg==0 || pC->nullRow );
4391 if( pC->nullRow ){
4392 pOut->flags = MEM_Null;
4393 break;
4394 }else if( pC->deferredMoveto ){
4395 v = pC->movetoTarget;
4396 #ifndef SQLITE_OMIT_VIRTUALTABLE
4397 }else if( pC->pVtabCursor ){
4398 pVtab = pC->pVtabCursor->pVtab;
4399 pModule = pVtab->pModule;
4400 assert( pModule->xRowid );
4401 rc = pModule->xRowid(pC->pVtabCursor, &v);
4402 sqlite3VtabImportErrmsg(p, pVtab);
4403 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4404 }else{
4405 assert( pC->pCursor!=0 );
4406 rc = sqlite3VdbeCursorRestore(pC);
4407 if( rc ) goto abort_due_to_error;
4408 if( pC->nullRow ){
4409 pOut->flags = MEM_Null;
4410 break;
4412 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4413 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */
4415 pOut->u.i = v;
4416 break;
4419 /* Opcode: NullRow P1 * * * *
4421 ** Move the cursor P1 to a null row. Any OP_Column operations
4422 ** that occur while the cursor is on the null row will always
4423 ** write a NULL.
4425 case OP_NullRow: {
4426 VdbeCursor *pC;
4428 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4429 pC = p->apCsr[pOp->p1];
4430 assert( pC!=0 );
4431 pC->nullRow = 1;
4432 pC->cacheStatus = CACHE_STALE;
4433 if( pC->pCursor ){
4434 sqlite3BtreeClearCursor(pC->pCursor);
4436 break;
4439 /* Opcode: Last P1 P2 * * *
4441 ** The next use of the Rowid or Column or Prev instruction for P1
4442 ** will refer to the last entry in the database table or index.
4443 ** If the table or index is empty and P2>0, then jump immediately to P2.
4444 ** If P2 is 0 or if the table or index is not empty, fall through
4445 ** to the following instruction.
4447 ** This opcode leaves the cursor configured to move in reverse order,
4448 ** from the end toward the beginning. In other words, the cursor is
4449 ** configured to use Prev, not Next.
4451 case OP_Last: { /* jump */
4452 VdbeCursor *pC;
4453 BtCursor *pCrsr;
4454 int res;
4456 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4457 pC = p->apCsr[pOp->p1];
4458 assert( pC!=0 );
4459 pCrsr = pC->pCursor;
4460 res = 0;
4461 assert( pCrsr!=0 );
4462 rc = sqlite3BtreeLast(pCrsr, &res);
4463 pC->nullRow = (u8)res;
4464 pC->deferredMoveto = 0;
4465 pC->cacheStatus = CACHE_STALE;
4466 #ifdef SQLITE_DEBUG
4467 pC->seekOp = OP_Last;
4468 #endif
4469 if( pOp->p2>0 ){
4470 VdbeBranchTaken(res!=0,2);
4471 if( res ) pc = pOp->p2 - 1;
4473 break;
4477 /* Opcode: Sort P1 P2 * * *
4479 ** This opcode does exactly the same thing as OP_Rewind except that
4480 ** it increments an undocumented global variable used for testing.
4482 ** Sorting is accomplished by writing records into a sorting index,
4483 ** then rewinding that index and playing it back from beginning to
4484 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4485 ** rewinding so that the global variable will be incremented and
4486 ** regression tests can determine whether or not the optimizer is
4487 ** correctly optimizing out sorts.
4489 case OP_SorterSort: /* jump */
4490 case OP_Sort: { /* jump */
4491 #ifdef SQLITE_TEST
4492 sqlite3_sort_count++;
4493 sqlite3_search_count--;
4494 #endif
4495 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
4496 /* Fall through into OP_Rewind */
4498 /* Opcode: Rewind P1 P2 * * *
4500 ** The next use of the Rowid or Column or Next instruction for P1
4501 ** will refer to the first entry in the database table or index.
4502 ** If the table or index is empty and P2>0, then jump immediately to P2.
4503 ** If P2 is 0 or if the table or index is not empty, fall through
4504 ** to the following instruction.
4506 ** This opcode leaves the cursor configured to move in forward order,
4507 ** from the beginning toward the end. In other words, the cursor is
4508 ** configured to use Next, not Prev.
4510 case OP_Rewind: { /* jump */
4511 VdbeCursor *pC;
4512 BtCursor *pCrsr;
4513 int res;
4515 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4516 pC = p->apCsr[pOp->p1];
4517 assert( pC!=0 );
4518 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
4519 res = 1;
4520 #ifdef SQLITE_DEBUG
4521 pC->seekOp = OP_Rewind;
4522 #endif
4523 if( isSorter(pC) ){
4524 rc = sqlite3VdbeSorterRewind(pC, &res);
4525 }else{
4526 pCrsr = pC->pCursor;
4527 assert( pCrsr );
4528 rc = sqlite3BtreeFirst(pCrsr, &res);
4529 pC->deferredMoveto = 0;
4530 pC->cacheStatus = CACHE_STALE;
4532 pC->nullRow = (u8)res;
4533 assert( pOp->p2>0 && pOp->p2<p->nOp );
4534 VdbeBranchTaken(res!=0,2);
4535 if( res ){
4536 pc = pOp->p2 - 1;
4538 break;
4541 /* Opcode: Next P1 P2 P3 P4 P5
4543 ** Advance cursor P1 so that it points to the next key/data pair in its
4544 ** table or index. If there are no more key/value pairs then fall through
4545 ** to the following instruction. But if the cursor advance was successful,
4546 ** jump immediately to P2.
4548 ** The Next opcode is only valid following an SeekGT, SeekGE, or
4549 ** OP_Rewind opcode used to position the cursor. Next is not allowed
4550 ** to follow SeekLT, SeekLE, or OP_Last.
4552 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
4553 ** been opened prior to this opcode or the program will segfault.
4555 ** The P3 value is a hint to the btree implementation. If P3==1, that
4556 ** means P1 is an SQL index and that this instruction could have been
4557 ** omitted if that index had been unique. P3 is usually 0. P3 is
4558 ** always either 0 or 1.
4560 ** P4 is always of type P4_ADVANCE. The function pointer points to
4561 ** sqlite3BtreeNext().
4563 ** If P5 is positive and the jump is taken, then event counter
4564 ** number P5-1 in the prepared statement is incremented.
4566 ** See also: Prev, NextIfOpen
4568 /* Opcode: NextIfOpen P1 P2 P3 P4 P5
4570 ** This opcode works just like Next except that if cursor P1 is not
4571 ** open it behaves a no-op.
4573 /* Opcode: Prev P1 P2 P3 P4 P5
4575 ** Back up cursor P1 so that it points to the previous key/data pair in its
4576 ** table or index. If there is no previous key/value pairs then fall through
4577 ** to the following instruction. But if the cursor backup was successful,
4578 ** jump immediately to P2.
4581 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
4582 ** OP_Last opcode used to position the cursor. Prev is not allowed
4583 ** to follow SeekGT, SeekGE, or OP_Rewind.
4585 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
4586 ** not open then the behavior is undefined.
4588 ** The P3 value is a hint to the btree implementation. If P3==1, that
4589 ** means P1 is an SQL index and that this instruction could have been
4590 ** omitted if that index had been unique. P3 is usually 0. P3 is
4591 ** always either 0 or 1.
4593 ** P4 is always of type P4_ADVANCE. The function pointer points to
4594 ** sqlite3BtreePrevious().
4596 ** If P5 is positive and the jump is taken, then event counter
4597 ** number P5-1 in the prepared statement is incremented.
4599 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5
4601 ** This opcode works just like Prev except that if cursor P1 is not
4602 ** open it behaves a no-op.
4604 case OP_SorterNext: { /* jump */
4605 VdbeCursor *pC;
4606 int res;
4608 pC = p->apCsr[pOp->p1];
4609 assert( isSorter(pC) );
4610 res = 0;
4611 rc = sqlite3VdbeSorterNext(db, pC, &res);
4612 goto next_tail;
4613 case OP_PrevIfOpen: /* jump */
4614 case OP_NextIfOpen: /* jump */
4615 if( p->apCsr[pOp->p1]==0 ) break;
4616 /* Fall through */
4617 case OP_Prev: /* jump */
4618 case OP_Next: /* jump */
4619 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4620 assert( pOp->p5<ArraySize(p->aCounter) );
4621 pC = p->apCsr[pOp->p1];
4622 res = pOp->p3;
4623 assert( pC!=0 );
4624 assert( pC->deferredMoveto==0 );
4625 assert( pC->pCursor );
4626 assert( res==0 || (res==1 && pC->isTable==0) );
4627 testcase( res==1 );
4628 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4629 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4630 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4631 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
4633 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4634 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4635 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4636 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
4637 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
4638 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
4639 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
4640 || pC->seekOp==OP_Last );
4642 rc = pOp->p4.xAdvance(pC->pCursor, &res);
4643 next_tail:
4644 pC->cacheStatus = CACHE_STALE;
4645 VdbeBranchTaken(res==0,2);
4646 if( res==0 ){
4647 pC->nullRow = 0;
4648 pc = pOp->p2 - 1;
4649 p->aCounter[pOp->p5]++;
4650 #ifdef SQLITE_TEST
4651 sqlite3_search_count++;
4652 #endif
4653 }else{
4654 pC->nullRow = 1;
4656 goto check_for_interrupt;
4659 /* Opcode: IdxInsert P1 P2 P3 * P5
4660 ** Synopsis: key=r[P2]
4662 ** Register P2 holds an SQL index key made using the
4663 ** MakeRecord instructions. This opcode writes that key
4664 ** into the index P1. Data for the entry is nil.
4666 ** P3 is a flag that provides a hint to the b-tree layer that this
4667 ** insert is likely to be an append.
4669 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
4670 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
4671 ** then the change counter is unchanged.
4673 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
4674 ** just done a seek to the spot where the new entry is to be inserted.
4675 ** This flag avoids doing an extra seek.
4677 ** This instruction only works for indices. The equivalent instruction
4678 ** for tables is OP_Insert.
4680 case OP_SorterInsert: /* in2 */
4681 case OP_IdxInsert: { /* in2 */
4682 VdbeCursor *pC;
4683 BtCursor *pCrsr;
4684 int nKey;
4685 const char *zKey;
4687 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4688 pC = p->apCsr[pOp->p1];
4689 assert( pC!=0 );
4690 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
4691 pIn2 = &aMem[pOp->p2];
4692 assert( pIn2->flags & MEM_Blob );
4693 pCrsr = pC->pCursor;
4694 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4695 assert( pCrsr!=0 );
4696 assert( pC->isTable==0 );
4697 rc = ExpandBlob(pIn2);
4698 if( rc==SQLITE_OK ){
4699 if( isSorter(pC) ){
4700 rc = sqlite3VdbeSorterWrite(pC, pIn2);
4701 }else{
4702 nKey = pIn2->n;
4703 zKey = pIn2->z;
4704 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4705 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4707 assert( pC->deferredMoveto==0 );
4708 pC->cacheStatus = CACHE_STALE;
4711 break;
4714 /* Opcode: IdxDelete P1 P2 P3 * *
4715 ** Synopsis: key=r[P2@P3]
4717 ** The content of P3 registers starting at register P2 form
4718 ** an unpacked index key. This opcode removes that entry from the
4719 ** index opened by cursor P1.
4721 case OP_IdxDelete: {
4722 VdbeCursor *pC;
4723 BtCursor *pCrsr;
4724 int res;
4725 UnpackedRecord r;
4727 assert( pOp->p3>0 );
4728 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
4729 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4730 pC = p->apCsr[pOp->p1];
4731 assert( pC!=0 );
4732 pCrsr = pC->pCursor;
4733 assert( pCrsr!=0 );
4734 assert( pOp->p5==0 );
4735 r.pKeyInfo = pC->pKeyInfo;
4736 r.nField = (u16)pOp->p3;
4737 r.default_rc = 0;
4738 r.aMem = &aMem[pOp->p2];
4739 #ifdef SQLITE_DEBUG
4740 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4741 #endif
4742 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4743 if( rc==SQLITE_OK && res==0 ){
4744 rc = sqlite3BtreeDelete(pCrsr);
4746 assert( pC->deferredMoveto==0 );
4747 pC->cacheStatus = CACHE_STALE;
4748 break;
4751 /* Opcode: IdxRowid P1 P2 * * *
4752 ** Synopsis: r[P2]=rowid
4754 ** Write into register P2 an integer which is the last entry in the record at
4755 ** the end of the index key pointed to by cursor P1. This integer should be
4756 ** the rowid of the table entry to which this index entry points.
4758 ** See also: Rowid, MakeRecord.
4760 case OP_IdxRowid: { /* out2-prerelease */
4761 BtCursor *pCrsr;
4762 VdbeCursor *pC;
4763 i64 rowid;
4765 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4766 pC = p->apCsr[pOp->p1];
4767 assert( pC!=0 );
4768 pCrsr = pC->pCursor;
4769 assert( pCrsr!=0 );
4770 pOut->flags = MEM_Null;
4771 assert( pC->isTable==0 );
4772 assert( pC->deferredMoveto==0 );
4774 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
4775 ** out from under the cursor. That will never happend for an IdxRowid
4776 ** opcode, hence the NEVER() arround the check of the return value.
4778 rc = sqlite3VdbeCursorRestore(pC);
4779 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4781 if( !pC->nullRow ){
4782 rowid = 0; /* Not needed. Only used to silence a warning. */
4783 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
4784 if( rc!=SQLITE_OK ){
4785 goto abort_due_to_error;
4787 pOut->u.i = rowid;
4788 pOut->flags = MEM_Int;
4790 break;
4793 /* Opcode: IdxGE P1 P2 P3 P4 P5
4794 ** Synopsis: key=r[P3@P4]
4796 ** The P4 register values beginning with P3 form an unpacked index
4797 ** key that omits the PRIMARY KEY. Compare this key value against the index
4798 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4799 ** fields at the end.
4801 ** If the P1 index entry is greater than or equal to the key value
4802 ** then jump to P2. Otherwise fall through to the next instruction.
4804 /* Opcode: IdxGT P1 P2 P3 P4 P5
4805 ** Synopsis: key=r[P3@P4]
4807 ** The P4 register values beginning with P3 form an unpacked index
4808 ** key that omits the PRIMARY KEY. Compare this key value against the index
4809 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4810 ** fields at the end.
4812 ** If the P1 index entry is greater than the key value
4813 ** then jump to P2. Otherwise fall through to the next instruction.
4815 /* Opcode: IdxLT P1 P2 P3 P4 P5
4816 ** Synopsis: key=r[P3@P4]
4818 ** The P4 register values beginning with P3 form an unpacked index
4819 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
4820 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4821 ** ROWID on the P1 index.
4823 ** If the P1 index entry is less than the key value then jump to P2.
4824 ** Otherwise fall through to the next instruction.
4826 /* Opcode: IdxLE P1 P2 P3 P4 P5
4827 ** Synopsis: key=r[P3@P4]
4829 ** The P4 register values beginning with P3 form an unpacked index
4830 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
4831 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4832 ** ROWID on the P1 index.
4834 ** If the P1 index entry is less than or equal to the key value then jump
4835 ** to P2. Otherwise fall through to the next instruction.
4837 case OP_IdxLE: /* jump */
4838 case OP_IdxGT: /* jump */
4839 case OP_IdxLT: /* jump */
4840 case OP_IdxGE: { /* jump */
4841 VdbeCursor *pC;
4842 int res;
4843 UnpackedRecord r;
4845 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4846 pC = p->apCsr[pOp->p1];
4847 assert( pC!=0 );
4848 assert( pC->isOrdered );
4849 assert( pC->pCursor!=0);
4850 assert( pC->deferredMoveto==0 );
4851 assert( pOp->p5==0 || pOp->p5==1 );
4852 assert( pOp->p4type==P4_INT32 );
4853 r.pKeyInfo = pC->pKeyInfo;
4854 r.nField = (u16)pOp->p4.i;
4855 if( pOp->opcode<OP_IdxLT ){
4856 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
4857 r.default_rc = -1;
4858 }else{
4859 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
4860 r.default_rc = 0;
4862 r.aMem = &aMem[pOp->p3];
4863 #ifdef SQLITE_DEBUG
4864 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4865 #endif
4866 res = 0; /* Not needed. Only used to silence a warning. */
4867 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
4868 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
4869 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
4870 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
4871 res = -res;
4872 }else{
4873 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
4874 res++;
4876 VdbeBranchTaken(res>0,2);
4877 if( res>0 ){
4878 pc = pOp->p2 - 1 ;
4880 break;
4883 /* Opcode: Destroy P1 P2 P3 * *
4885 ** Delete an entire database table or index whose root page in the database
4886 ** file is given by P1.
4888 ** The table being destroyed is in the main database file if P3==0. If
4889 ** P3==1 then the table to be clear is in the auxiliary database file
4890 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4892 ** If AUTOVACUUM is enabled then it is possible that another root page
4893 ** might be moved into the newly deleted root page in order to keep all
4894 ** root pages contiguous at the beginning of the database. The former
4895 ** value of the root page that moved - its value before the move occurred -
4896 ** is stored in register P2. If no page
4897 ** movement was required (because the table being dropped was already
4898 ** the last one in the database) then a zero is stored in register P2.
4899 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
4901 ** See also: Clear
4903 case OP_Destroy: { /* out2-prerelease */
4904 int iMoved;
4905 int iCnt;
4906 Vdbe *pVdbe;
4907 int iDb;
4909 assert( p->readOnly==0 );
4910 #ifndef SQLITE_OMIT_VIRTUALTABLE
4911 iCnt = 0;
4912 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
4913 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader
4914 && pVdbe->inVtabMethod<2 && pVdbe->pc>=0
4916 iCnt++;
4919 #else
4920 iCnt = db->nVdbeRead;
4921 #endif
4922 pOut->flags = MEM_Null;
4923 if( iCnt>1 ){
4924 rc = SQLITE_LOCKED;
4925 p->errorAction = OE_Abort;
4926 }else{
4927 iDb = pOp->p3;
4928 assert( iCnt==1 );
4929 assert( DbMaskTest(p->btreeMask, iDb) );
4930 iMoved = 0; /* Not needed. Only to silence a warning. */
4931 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
4932 pOut->flags = MEM_Int;
4933 pOut->u.i = iMoved;
4934 #ifndef SQLITE_OMIT_AUTOVACUUM
4935 if( rc==SQLITE_OK && iMoved!=0 ){
4936 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4937 /* All OP_Destroy operations occur on the same btree */
4938 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4939 resetSchemaOnFault = iDb+1;
4941 #endif
4943 break;
4946 /* Opcode: Clear P1 P2 P3
4948 ** Delete all contents of the database table or index whose root page
4949 ** in the database file is given by P1. But, unlike Destroy, do not
4950 ** remove the table or index from the database file.
4952 ** The table being clear is in the main database file if P2==0. If
4953 ** P2==1 then the table to be clear is in the auxiliary database file
4954 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4956 ** If the P3 value is non-zero, then the table referred to must be an
4957 ** intkey table (an SQL table, not an index). In this case the row change
4958 ** count is incremented by the number of rows in the table being cleared.
4959 ** If P3 is greater than zero, then the value stored in register P3 is
4960 ** also incremented by the number of rows in the table being cleared.
4962 ** See also: Destroy
4964 case OP_Clear: {
4965 int nChange;
4967 nChange = 0;
4968 assert( p->readOnly==0 );
4969 assert( DbMaskTest(p->btreeMask, pOp->p2) );
4970 rc = sqlite3BtreeClearTable(
4971 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4973 if( pOp->p3 ){
4974 p->nChange += nChange;
4975 if( pOp->p3>0 ){
4976 assert( memIsValid(&aMem[pOp->p3]) );
4977 memAboutToChange(p, &aMem[pOp->p3]);
4978 aMem[pOp->p3].u.i += nChange;
4981 break;
4984 /* Opcode: ResetSorter P1 * * * *
4986 ** Delete all contents from the ephemeral table or sorter
4987 ** that is open on cursor P1.
4989 ** This opcode only works for cursors used for sorting and
4990 ** opened with OP_OpenEphemeral or OP_SorterOpen.
4992 case OP_ResetSorter: {
4993 VdbeCursor *pC;
4995 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4996 pC = p->apCsr[pOp->p1];
4997 assert( pC!=0 );
4998 if( pC->pSorter ){
4999 sqlite3VdbeSorterReset(db, pC->pSorter);
5000 }else{
5001 assert( pC->isEphemeral );
5002 rc = sqlite3BtreeClearTableOfCursor(pC->pCursor);
5004 break;
5007 /* Opcode: CreateTable P1 P2 * * *
5008 ** Synopsis: r[P2]=root iDb=P1
5010 ** Allocate a new table in the main database file if P1==0 or in the
5011 ** auxiliary database file if P1==1 or in an attached database if
5012 ** P1>1. Write the root page number of the new table into
5013 ** register P2
5015 ** The difference between a table and an index is this: A table must
5016 ** have a 4-byte integer key and can have arbitrary data. An index
5017 ** has an arbitrary key but no data.
5019 ** See also: CreateIndex
5021 /* Opcode: CreateIndex P1 P2 * * *
5022 ** Synopsis: r[P2]=root iDb=P1
5024 ** Allocate a new index in the main database file if P1==0 or in the
5025 ** auxiliary database file if P1==1 or in an attached database if
5026 ** P1>1. Write the root page number of the new table into
5027 ** register P2.
5029 ** See documentation on OP_CreateTable for additional information.
5031 case OP_CreateIndex: /* out2-prerelease */
5032 case OP_CreateTable: { /* out2-prerelease */
5033 int pgno;
5034 int flags;
5035 Db *pDb;
5037 pgno = 0;
5038 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5039 assert( DbMaskTest(p->btreeMask, pOp->p1) );
5040 assert( p->readOnly==0 );
5041 pDb = &db->aDb[pOp->p1];
5042 assert( pDb->pBt!=0 );
5043 if( pOp->opcode==OP_CreateTable ){
5044 /* flags = BTREE_INTKEY; */
5045 flags = BTREE_INTKEY;
5046 }else{
5047 flags = BTREE_BLOBKEY;
5049 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
5050 pOut->u.i = pgno;
5051 break;
5054 /* Opcode: ParseSchema P1 * * P4 *
5056 ** Read and parse all entries from the SQLITE_MASTER table of database P1
5057 ** that match the WHERE clause P4.
5059 ** This opcode invokes the parser to create a new virtual machine,
5060 ** then runs the new virtual machine. It is thus a re-entrant opcode.
5062 case OP_ParseSchema: {
5063 int iDb;
5064 const char *zMaster;
5065 char *zSql;
5066 InitData initData;
5068 /* Any prepared statement that invokes this opcode will hold mutexes
5069 ** on every btree. This is a prerequisite for invoking
5070 ** sqlite3InitCallback().
5072 #ifdef SQLITE_DEBUG
5073 for(iDb=0; iDb<db->nDb; iDb++){
5074 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5076 #endif
5078 iDb = pOp->p1;
5079 assert( iDb>=0 && iDb<db->nDb );
5080 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
5081 /* Used to be a conditional */ {
5082 zMaster = SCHEMA_TABLE(iDb);
5083 initData.db = db;
5084 initData.iDb = pOp->p1;
5085 initData.pzErrMsg = &p->zErrMsg;
5086 zSql = sqlite3MPrintf(db,
5087 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
5088 db->aDb[iDb].zName, zMaster, pOp->p4.z);
5089 if( zSql==0 ){
5090 rc = SQLITE_NOMEM;
5091 }else{
5092 assert( db->init.busy==0 );
5093 db->init.busy = 1;
5094 initData.rc = SQLITE_OK;
5095 assert( !db->mallocFailed );
5096 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5097 if( rc==SQLITE_OK ) rc = initData.rc;
5098 sqlite3DbFree(db, zSql);
5099 db->init.busy = 0;
5102 if( rc ) sqlite3ResetAllSchemasOfConnection(db);
5103 if( rc==SQLITE_NOMEM ){
5104 goto no_mem;
5106 break;
5109 #if !defined(SQLITE_OMIT_ANALYZE)
5110 /* Opcode: LoadAnalysis P1 * * * *
5112 ** Read the sqlite_stat1 table for database P1 and load the content
5113 ** of that table into the internal index hash table. This will cause
5114 ** the analysis to be used when preparing all subsequent queries.
5116 case OP_LoadAnalysis: {
5117 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5118 rc = sqlite3AnalysisLoad(db, pOp->p1);
5119 break;
5121 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
5123 /* Opcode: DropTable P1 * * P4 *
5125 ** Remove the internal (in-memory) data structures that describe
5126 ** the table named P4 in database P1. This is called after a table
5127 ** is dropped from disk (using the Destroy opcode) in order to keep
5128 ** the internal representation of the
5129 ** schema consistent with what is on disk.
5131 case OP_DropTable: {
5132 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
5133 break;
5136 /* Opcode: DropIndex P1 * * P4 *
5138 ** Remove the internal (in-memory) data structures that describe
5139 ** the index named P4 in database P1. This is called after an index
5140 ** is dropped from disk (using the Destroy opcode)
5141 ** in order to keep the internal representation of the
5142 ** schema consistent with what is on disk.
5144 case OP_DropIndex: {
5145 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
5146 break;
5149 /* Opcode: DropTrigger P1 * * P4 *
5151 ** Remove the internal (in-memory) data structures that describe
5152 ** the trigger named P4 in database P1. This is called after a trigger
5153 ** is dropped from disk (using the Destroy opcode) in order to keep
5154 ** the internal representation of the
5155 ** schema consistent with what is on disk.
5157 case OP_DropTrigger: {
5158 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
5159 break;
5163 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
5164 /* Opcode: IntegrityCk P1 P2 P3 * P5
5166 ** Do an analysis of the currently open database. Store in
5167 ** register P1 the text of an error message describing any problems.
5168 ** If no problems are found, store a NULL in register P1.
5170 ** The register P3 contains the maximum number of allowed errors.
5171 ** At most reg(P3) errors will be reported.
5172 ** In other words, the analysis stops as soon as reg(P1) errors are
5173 ** seen. Reg(P1) is updated with the number of errors remaining.
5175 ** The root page numbers of all tables in the database are integer
5176 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
5177 ** total.
5179 ** If P5 is not zero, the check is done on the auxiliary database
5180 ** file, not the main database file.
5182 ** This opcode is used to implement the integrity_check pragma.
5184 case OP_IntegrityCk: {
5185 int nRoot; /* Number of tables to check. (Number of root pages.) */
5186 int *aRoot; /* Array of rootpage numbers for tables to be checked */
5187 int j; /* Loop counter */
5188 int nErr; /* Number of errors reported */
5189 char *z; /* Text of the error report */
5190 Mem *pnErr; /* Register keeping track of errors remaining */
5192 assert( p->bIsReader );
5193 nRoot = pOp->p2;
5194 assert( nRoot>0 );
5195 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
5196 if( aRoot==0 ) goto no_mem;
5197 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
5198 pnErr = &aMem[pOp->p3];
5199 assert( (pnErr->flags & MEM_Int)!=0 );
5200 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
5201 pIn1 = &aMem[pOp->p1];
5202 for(j=0; j<nRoot; j++){
5203 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
5205 aRoot[j] = 0;
5206 assert( pOp->p5<db->nDb );
5207 assert( DbMaskTest(p->btreeMask, pOp->p5) );
5208 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
5209 (int)pnErr->u.i, &nErr);
5210 sqlite3DbFree(db, aRoot);
5211 pnErr->u.i -= nErr;
5212 sqlite3VdbeMemSetNull(pIn1);
5213 if( nErr==0 ){
5214 assert( z==0 );
5215 }else if( z==0 ){
5216 goto no_mem;
5217 }else{
5218 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
5220 UPDATE_MAX_BLOBSIZE(pIn1);
5221 sqlite3VdbeChangeEncoding(pIn1, encoding);
5222 break;
5224 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5226 /* Opcode: RowSetAdd P1 P2 * * *
5227 ** Synopsis: rowset(P1)=r[P2]
5229 ** Insert the integer value held by register P2 into a boolean index
5230 ** held in register P1.
5232 ** An assertion fails if P2 is not an integer.
5234 case OP_RowSetAdd: { /* in1, in2 */
5235 pIn1 = &aMem[pOp->p1];
5236 pIn2 = &aMem[pOp->p2];
5237 assert( (pIn2->flags & MEM_Int)!=0 );
5238 if( (pIn1->flags & MEM_RowSet)==0 ){
5239 sqlite3VdbeMemSetRowSet(pIn1);
5240 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5242 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
5243 break;
5246 /* Opcode: RowSetRead P1 P2 P3 * *
5247 ** Synopsis: r[P3]=rowset(P1)
5249 ** Extract the smallest value from boolean index P1 and put that value into
5250 ** register P3. Or, if boolean index P1 is initially empty, leave P3
5251 ** unchanged and jump to instruction P2.
5253 case OP_RowSetRead: { /* jump, in1, out3 */
5254 i64 val;
5256 pIn1 = &aMem[pOp->p1];
5257 if( (pIn1->flags & MEM_RowSet)==0
5258 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
5260 /* The boolean index is empty */
5261 sqlite3VdbeMemSetNull(pIn1);
5262 pc = pOp->p2 - 1;
5263 VdbeBranchTaken(1,2);
5264 }else{
5265 /* A value was pulled from the index */
5266 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
5267 VdbeBranchTaken(0,2);
5269 goto check_for_interrupt;
5272 /* Opcode: RowSetTest P1 P2 P3 P4
5273 ** Synopsis: if r[P3] in rowset(P1) goto P2
5275 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5276 ** contains a RowSet object and that RowSet object contains
5277 ** the value held in P3, jump to register P2. Otherwise, insert the
5278 ** integer in P3 into the RowSet and continue on to the
5279 ** next opcode.
5281 ** The RowSet object is optimized for the case where successive sets
5282 ** of integers, where each set contains no duplicates. Each set
5283 ** of values is identified by a unique P4 value. The first set
5284 ** must have P4==0, the final set P4=-1. P4 must be either -1 or
5285 ** non-negative. For non-negative values of P4 only the lower 4
5286 ** bits are significant.
5288 ** This allows optimizations: (a) when P4==0 there is no need to test
5289 ** the rowset object for P3, as it is guaranteed not to contain it,
5290 ** (b) when P4==-1 there is no need to insert the value, as it will
5291 ** never be tested for, and (c) when a value that is part of set X is
5292 ** inserted, there is no need to search to see if the same value was
5293 ** previously inserted as part of set X (only if it was previously
5294 ** inserted as part of some other set).
5296 case OP_RowSetTest: { /* jump, in1, in3 */
5297 int iSet;
5298 int exists;
5300 pIn1 = &aMem[pOp->p1];
5301 pIn3 = &aMem[pOp->p3];
5302 iSet = pOp->p4.i;
5303 assert( pIn3->flags&MEM_Int );
5305 /* If there is anything other than a rowset object in memory cell P1,
5306 ** delete it now and initialize P1 with an empty rowset
5308 if( (pIn1->flags & MEM_RowSet)==0 ){
5309 sqlite3VdbeMemSetRowSet(pIn1);
5310 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5313 assert( pOp->p4type==P4_INT32 );
5314 assert( iSet==-1 || iSet>=0 );
5315 if( iSet ){
5316 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
5317 VdbeBranchTaken(exists!=0,2);
5318 if( exists ){
5319 pc = pOp->p2 - 1;
5320 break;
5323 if( iSet>=0 ){
5324 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
5326 break;
5330 #ifndef SQLITE_OMIT_TRIGGER
5332 /* Opcode: Program P1 P2 P3 P4 P5
5334 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5336 ** P1 contains the address of the memory cell that contains the first memory
5337 ** cell in an array of values used as arguments to the sub-program. P2
5338 ** contains the address to jump to if the sub-program throws an IGNORE
5339 ** exception using the RAISE() function. Register P3 contains the address
5340 ** of a memory cell in this (the parent) VM that is used to allocate the
5341 ** memory required by the sub-vdbe at runtime.
5343 ** P4 is a pointer to the VM containing the trigger program.
5345 ** If P5 is non-zero, then recursive program invocation is enabled.
5347 case OP_Program: { /* jump */
5348 int nMem; /* Number of memory registers for sub-program */
5349 int nByte; /* Bytes of runtime space required for sub-program */
5350 Mem *pRt; /* Register to allocate runtime space */
5351 Mem *pMem; /* Used to iterate through memory cells */
5352 Mem *pEnd; /* Last memory cell in new array */
5353 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5354 SubProgram *pProgram; /* Sub-program to execute */
5355 void *t; /* Token identifying trigger */
5357 pProgram = pOp->p4.pProgram;
5358 pRt = &aMem[pOp->p3];
5359 assert( pProgram->nOp>0 );
5361 /* If the p5 flag is clear, then recursive invocation of triggers is
5362 ** disabled for backwards compatibility (p5 is set if this sub-program
5363 ** is really a trigger, not a foreign key action, and the flag set
5364 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5366 ** It is recursive invocation of triggers, at the SQL level, that is
5367 ** disabled. In some cases a single trigger may generate more than one
5368 ** SubProgram (if the trigger may be executed with more than one different
5369 ** ON CONFLICT algorithm). SubProgram structures associated with a
5370 ** single trigger all have the same value for the SubProgram.token
5371 ** variable. */
5372 if( pOp->p5 ){
5373 t = pProgram->token;
5374 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5375 if( pFrame ) break;
5378 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
5379 rc = SQLITE_ERROR;
5380 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
5381 break;
5384 /* Register pRt is used to store the memory required to save the state
5385 ** of the current program, and the memory required at runtime to execute
5386 ** the trigger program. If this trigger has been fired before, then pRt
5387 ** is already allocated. Otherwise, it must be initialized. */
5388 if( (pRt->flags&MEM_Frame)==0 ){
5389 /* SubProgram.nMem is set to the number of memory cells used by the
5390 ** program stored in SubProgram.aOp. As well as these, one memory
5391 ** cell is required for each cursor used by the program. Set local
5392 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5394 nMem = pProgram->nMem + pProgram->nCsr;
5395 nByte = ROUND8(sizeof(VdbeFrame))
5396 + nMem * sizeof(Mem)
5397 + pProgram->nCsr * sizeof(VdbeCursor *)
5398 + pProgram->nOnce * sizeof(u8);
5399 pFrame = sqlite3DbMallocZero(db, nByte);
5400 if( !pFrame ){
5401 goto no_mem;
5403 sqlite3VdbeMemRelease(pRt);
5404 pRt->flags = MEM_Frame;
5405 pRt->u.pFrame = pFrame;
5407 pFrame->v = p;
5408 pFrame->nChildMem = nMem;
5409 pFrame->nChildCsr = pProgram->nCsr;
5410 pFrame->pc = pc;
5411 pFrame->aMem = p->aMem;
5412 pFrame->nMem = p->nMem;
5413 pFrame->apCsr = p->apCsr;
5414 pFrame->nCursor = p->nCursor;
5415 pFrame->aOp = p->aOp;
5416 pFrame->nOp = p->nOp;
5417 pFrame->token = pProgram->token;
5418 pFrame->aOnceFlag = p->aOnceFlag;
5419 pFrame->nOnceFlag = p->nOnceFlag;
5421 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5422 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
5423 pMem->flags = MEM_Undefined;
5424 pMem->db = db;
5426 }else{
5427 pFrame = pRt->u.pFrame;
5428 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5429 assert( pProgram->nCsr==pFrame->nChildCsr );
5430 assert( pc==pFrame->pc );
5433 p->nFrame++;
5434 pFrame->pParent = p->pFrame;
5435 pFrame->lastRowid = lastRowid;
5436 pFrame->nChange = p->nChange;
5437 p->nChange = 0;
5438 p->pFrame = pFrame;
5439 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
5440 p->nMem = pFrame->nChildMem;
5441 p->nCursor = (u16)pFrame->nChildCsr;
5442 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
5443 p->aOp = aOp = pProgram->aOp;
5444 p->nOp = pProgram->nOp;
5445 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5446 p->nOnceFlag = pProgram->nOnce;
5447 pc = -1;
5448 memset(p->aOnceFlag, 0, p->nOnceFlag);
5450 break;
5453 /* Opcode: Param P1 P2 * * *
5455 ** This opcode is only ever present in sub-programs called via the
5456 ** OP_Program instruction. Copy a value currently stored in a memory
5457 ** cell of the calling (parent) frame to cell P2 in the current frames
5458 ** address space. This is used by trigger programs to access the new.*
5459 ** and old.* values.
5461 ** The address of the cell in the parent frame is determined by adding
5462 ** the value of the P1 argument to the value of the P1 argument to the
5463 ** calling OP_Program instruction.
5465 case OP_Param: { /* out2-prerelease */
5466 VdbeFrame *pFrame;
5467 Mem *pIn;
5468 pFrame = p->pFrame;
5469 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
5470 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5471 break;
5474 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5476 #ifndef SQLITE_OMIT_FOREIGN_KEY
5477 /* Opcode: FkCounter P1 P2 * * *
5478 ** Synopsis: fkctr[P1]+=P2
5480 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5481 ** If P1 is non-zero, the database constraint counter is incremented
5482 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5483 ** statement counter is incremented (immediate foreign key constraints).
5485 case OP_FkCounter: {
5486 if( db->flags & SQLITE_DeferFKs ){
5487 db->nDeferredImmCons += pOp->p2;
5488 }else if( pOp->p1 ){
5489 db->nDeferredCons += pOp->p2;
5490 }else{
5491 p->nFkConstraint += pOp->p2;
5493 break;
5496 /* Opcode: FkIfZero P1 P2 * * *
5497 ** Synopsis: if fkctr[P1]==0 goto P2
5499 ** This opcode tests if a foreign key constraint-counter is currently zero.
5500 ** If so, jump to instruction P2. Otherwise, fall through to the next
5501 ** instruction.
5503 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5504 ** is zero (the one that counts deferred constraint violations). If P1 is
5505 ** zero, the jump is taken if the statement constraint-counter is zero
5506 ** (immediate foreign key constraint violations).
5508 case OP_FkIfZero: { /* jump */
5509 if( pOp->p1 ){
5510 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
5511 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
5512 }else{
5513 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
5514 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
5516 break;
5518 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5520 #ifndef SQLITE_OMIT_AUTOINCREMENT
5521 /* Opcode: MemMax P1 P2 * * *
5522 ** Synopsis: r[P1]=max(r[P1],r[P2])
5524 ** P1 is a register in the root frame of this VM (the root frame is
5525 ** different from the current frame if this instruction is being executed
5526 ** within a sub-program). Set the value of register P1 to the maximum of
5527 ** its current value and the value in register P2.
5529 ** This instruction throws an error if the memory cell is not initially
5530 ** an integer.
5532 case OP_MemMax: { /* in2 */
5533 VdbeFrame *pFrame;
5534 if( p->pFrame ){
5535 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5536 pIn1 = &pFrame->aMem[pOp->p1];
5537 }else{
5538 pIn1 = &aMem[pOp->p1];
5540 assert( memIsValid(pIn1) );
5541 sqlite3VdbeMemIntegerify(pIn1);
5542 pIn2 = &aMem[pOp->p2];
5543 sqlite3VdbeMemIntegerify(pIn2);
5544 if( pIn1->u.i<pIn2->u.i){
5545 pIn1->u.i = pIn2->u.i;
5547 break;
5549 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5551 /* Opcode: IfPos P1 P2 * * *
5552 ** Synopsis: if r[P1]>0 goto P2
5554 ** If the value of register P1 is 1 or greater, jump to P2.
5556 ** It is illegal to use this instruction on a register that does
5557 ** not contain an integer. An assertion fault will result if you try.
5559 case OP_IfPos: { /* jump, in1 */
5560 pIn1 = &aMem[pOp->p1];
5561 assert( pIn1->flags&MEM_Int );
5562 VdbeBranchTaken( pIn1->u.i>0, 2);
5563 if( pIn1->u.i>0 ){
5564 pc = pOp->p2 - 1;
5566 break;
5569 /* Opcode: IfNeg P1 P2 P3 * *
5570 ** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2
5572 ** Register P1 must contain an integer. Add literal P3 to the value in
5573 ** register P1 then if the value of register P1 is less than zero, jump to P2.
5575 case OP_IfNeg: { /* jump, in1 */
5576 pIn1 = &aMem[pOp->p1];
5577 assert( pIn1->flags&MEM_Int );
5578 pIn1->u.i += pOp->p3;
5579 VdbeBranchTaken(pIn1->u.i<0, 2);
5580 if( pIn1->u.i<0 ){
5581 pc = pOp->p2 - 1;
5583 break;
5586 /* Opcode: IfZero P1 P2 P3 * *
5587 ** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2
5589 ** The register P1 must contain an integer. Add literal P3 to the
5590 ** value in register P1. If the result is exactly 0, jump to P2.
5592 case OP_IfZero: { /* jump, in1 */
5593 pIn1 = &aMem[pOp->p1];
5594 assert( pIn1->flags&MEM_Int );
5595 pIn1->u.i += pOp->p3;
5596 VdbeBranchTaken(pIn1->u.i==0, 2);
5597 if( pIn1->u.i==0 ){
5598 pc = pOp->p2 - 1;
5600 break;
5603 /* Opcode: AggStep * P2 P3 P4 P5
5604 ** Synopsis: accum=r[P3] step(r[P2@P5])
5606 ** Execute the step function for an aggregate. The
5607 ** function has P5 arguments. P4 is a pointer to the FuncDef
5608 ** structure that specifies the function. Use register
5609 ** P3 as the accumulator.
5611 ** The P5 arguments are taken from register P2 and its
5612 ** successors.
5614 case OP_AggStep: {
5615 int n;
5616 int i;
5617 Mem *pMem;
5618 Mem *pRec;
5619 Mem t;
5620 sqlite3_context ctx;
5621 sqlite3_value **apVal;
5623 n = pOp->p5;
5624 assert( n>=0 );
5625 pRec = &aMem[pOp->p2];
5626 apVal = p->apArg;
5627 assert( apVal || n==0 );
5628 for(i=0; i<n; i++, pRec++){
5629 assert( memIsValid(pRec) );
5630 apVal[i] = pRec;
5631 memAboutToChange(p, pRec);
5633 ctx.pFunc = pOp->p4.pFunc;
5634 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
5635 ctx.pMem = pMem = &aMem[pOp->p3];
5636 pMem->n++;
5637 sqlite3VdbeMemInit(&t, db, MEM_Null);
5638 ctx.pOut = &t;
5639 ctx.isError = 0;
5640 ctx.pVdbe = p;
5641 ctx.iOp = pc;
5642 ctx.skipFlag = 0;
5643 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
5644 if( ctx.isError ){
5645 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&t));
5646 rc = ctx.isError;
5648 if( ctx.skipFlag ){
5649 assert( pOp[-1].opcode==OP_CollSeq );
5650 i = pOp[-1].p1;
5651 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5653 sqlite3VdbeMemRelease(&t);
5654 break;
5657 /* Opcode: AggFinal P1 P2 * P4 *
5658 ** Synopsis: accum=r[P1] N=P2
5660 ** Execute the finalizer function for an aggregate. P1 is
5661 ** the memory location that is the accumulator for the aggregate.
5663 ** P2 is the number of arguments that the step function takes and
5664 ** P4 is a pointer to the FuncDef for this function. The P2
5665 ** argument is not used by this opcode. It is only there to disambiguate
5666 ** functions that can take varying numbers of arguments. The
5667 ** P4 argument is only needed for the degenerate case where
5668 ** the step function was not previously called.
5670 case OP_AggFinal: {
5671 Mem *pMem;
5672 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
5673 pMem = &aMem[pOp->p1];
5674 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
5675 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
5676 if( rc ){
5677 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
5679 sqlite3VdbeChangeEncoding(pMem, encoding);
5680 UPDATE_MAX_BLOBSIZE(pMem);
5681 if( sqlite3VdbeMemTooBig(pMem) ){
5682 goto too_big;
5684 break;
5687 #ifndef SQLITE_OMIT_WAL
5688 /* Opcode: Checkpoint P1 P2 P3 * *
5690 ** Checkpoint database P1. This is a no-op if P1 is not currently in
5691 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
5692 ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
5693 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
5694 ** WAL after the checkpoint into mem[P3+1] and the number of pages
5695 ** in the WAL that have been checkpointed after the checkpoint
5696 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
5697 ** mem[P3+2] are initialized to -1.
5699 case OP_Checkpoint: {
5700 int i; /* Loop counter */
5701 int aRes[3]; /* Results */
5702 Mem *pMem; /* Write results here */
5704 assert( p->readOnly==0 );
5705 aRes[0] = 0;
5706 aRes[1] = aRes[2] = -1;
5707 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5708 || pOp->p2==SQLITE_CHECKPOINT_FULL
5709 || pOp->p2==SQLITE_CHECKPOINT_RESTART
5711 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
5712 if( rc==SQLITE_BUSY ){
5713 rc = SQLITE_OK;
5714 aRes[0] = 1;
5716 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5717 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5719 break;
5721 #endif
5723 #ifndef SQLITE_OMIT_PRAGMA
5724 /* Opcode: JournalMode P1 P2 P3 * *
5726 ** Change the journal mode of database P1 to P3. P3 must be one of the
5727 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5728 ** modes (delete, truncate, persist, off and memory), this is a simple
5729 ** operation. No IO is required.
5731 ** If changing into or out of WAL mode the procedure is more complicated.
5733 ** Write a string containing the final journal-mode to register P2.
5735 case OP_JournalMode: { /* out2-prerelease */
5736 Btree *pBt; /* Btree to change journal mode of */
5737 Pager *pPager; /* Pager associated with pBt */
5738 int eNew; /* New journal mode */
5739 int eOld; /* The old journal mode */
5740 #ifndef SQLITE_OMIT_WAL
5741 const char *zFilename; /* Name of database file for pPager */
5742 #endif
5744 eNew = pOp->p3;
5745 assert( eNew==PAGER_JOURNALMODE_DELETE
5746 || eNew==PAGER_JOURNALMODE_TRUNCATE
5747 || eNew==PAGER_JOURNALMODE_PERSIST
5748 || eNew==PAGER_JOURNALMODE_OFF
5749 || eNew==PAGER_JOURNALMODE_MEMORY
5750 || eNew==PAGER_JOURNALMODE_WAL
5751 || eNew==PAGER_JOURNALMODE_QUERY
5753 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5754 assert( p->readOnly==0 );
5756 pBt = db->aDb[pOp->p1].pBt;
5757 pPager = sqlite3BtreePager(pBt);
5758 eOld = sqlite3PagerGetJournalMode(pPager);
5759 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5760 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
5762 #ifndef SQLITE_OMIT_WAL
5763 zFilename = sqlite3PagerFilename(pPager, 1);
5765 /* Do not allow a transition to journal_mode=WAL for a database
5766 ** in temporary storage or if the VFS does not support shared memory
5768 if( eNew==PAGER_JOURNALMODE_WAL
5769 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
5770 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
5772 eNew = eOld;
5775 if( (eNew!=eOld)
5776 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5778 if( !db->autoCommit || db->nVdbeRead>1 ){
5779 rc = SQLITE_ERROR;
5780 sqlite3SetString(&p->zErrMsg, db,
5781 "cannot change %s wal mode from within a transaction",
5782 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5784 break;
5785 }else{
5787 if( eOld==PAGER_JOURNALMODE_WAL ){
5788 /* If leaving WAL mode, close the log file. If successful, the call
5789 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5790 ** file. An EXCLUSIVE lock may still be held on the database file
5791 ** after a successful return.
5793 rc = sqlite3PagerCloseWal(pPager);
5794 if( rc==SQLITE_OK ){
5795 sqlite3PagerSetJournalMode(pPager, eNew);
5797 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5798 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5799 ** as an intermediate */
5800 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
5803 /* Open a transaction on the database file. Regardless of the journal
5804 ** mode, this transaction always uses a rollback journal.
5806 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5807 if( rc==SQLITE_OK ){
5808 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
5812 #endif /* ifndef SQLITE_OMIT_WAL */
5814 if( rc ){
5815 eNew = eOld;
5817 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
5819 pOut = &aMem[pOp->p2];
5820 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
5821 pOut->z = (char *)sqlite3JournalModename(eNew);
5822 pOut->n = sqlite3Strlen30(pOut->z);
5823 pOut->enc = SQLITE_UTF8;
5824 sqlite3VdbeChangeEncoding(pOut, encoding);
5825 break;
5827 #endif /* SQLITE_OMIT_PRAGMA */
5829 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
5830 /* Opcode: Vacuum * * * * *
5832 ** Vacuum the entire database. This opcode will cause other virtual
5833 ** machines to be created and run. It may not be called from within
5834 ** a transaction.
5836 case OP_Vacuum: {
5837 assert( p->readOnly==0 );
5838 rc = sqlite3RunVacuum(&p->zErrMsg, db);
5839 break;
5841 #endif
5843 #if !defined(SQLITE_OMIT_AUTOVACUUM)
5844 /* Opcode: IncrVacuum P1 P2 * * *
5846 ** Perform a single step of the incremental vacuum procedure on
5847 ** the P1 database. If the vacuum has finished, jump to instruction
5848 ** P2. Otherwise, fall through to the next instruction.
5850 case OP_IncrVacuum: { /* jump */
5851 Btree *pBt;
5853 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5854 assert( DbMaskTest(p->btreeMask, pOp->p1) );
5855 assert( p->readOnly==0 );
5856 pBt = db->aDb[pOp->p1].pBt;
5857 rc = sqlite3BtreeIncrVacuum(pBt);
5858 VdbeBranchTaken(rc==SQLITE_DONE,2);
5859 if( rc==SQLITE_DONE ){
5860 pc = pOp->p2 - 1;
5861 rc = SQLITE_OK;
5863 break;
5865 #endif
5867 /* Opcode: Expire P1 * * * *
5869 ** Cause precompiled statements to expire. When an expired statement
5870 ** is executed using sqlite3_step() it will either automatically
5871 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
5872 ** or it will fail with SQLITE_SCHEMA.
5874 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5875 ** then only the currently executing statement is expired.
5877 case OP_Expire: {
5878 if( !pOp->p1 ){
5879 sqlite3ExpirePreparedStatements(db);
5880 }else{
5881 p->expired = 1;
5883 break;
5886 #ifndef SQLITE_OMIT_SHARED_CACHE
5887 /* Opcode: TableLock P1 P2 P3 P4 *
5888 ** Synopsis: iDb=P1 root=P2 write=P3
5890 ** Obtain a lock on a particular table. This instruction is only used when
5891 ** the shared-cache feature is enabled.
5893 ** P1 is the index of the database in sqlite3.aDb[] of the database
5894 ** on which the lock is acquired. A readlock is obtained if P3==0 or
5895 ** a write lock if P3==1.
5897 ** P2 contains the root-page of the table to lock.
5899 ** P4 contains a pointer to the name of the table being locked. This is only
5900 ** used to generate an error message if the lock cannot be obtained.
5902 case OP_TableLock: {
5903 u8 isWriteLock = (u8)pOp->p3;
5904 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5905 int p1 = pOp->p1;
5906 assert( p1>=0 && p1<db->nDb );
5907 assert( DbMaskTest(p->btreeMask, p1) );
5908 assert( isWriteLock==0 || isWriteLock==1 );
5909 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5910 if( (rc&0xFF)==SQLITE_LOCKED ){
5911 const char *z = pOp->p4.z;
5912 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5915 break;
5917 #endif /* SQLITE_OMIT_SHARED_CACHE */
5919 #ifndef SQLITE_OMIT_VIRTUALTABLE
5920 /* Opcode: VBegin * * * P4 *
5922 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5923 ** xBegin method for that table.
5925 ** Also, whether or not P4 is set, check that this is not being called from
5926 ** within a callback to a virtual table xSync() method. If it is, the error
5927 ** code will be set to SQLITE_LOCKED.
5929 case OP_VBegin: {
5930 VTable *pVTab;
5931 pVTab = pOp->p4.pVtab;
5932 rc = sqlite3VtabBegin(db, pVTab);
5933 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
5934 break;
5936 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5938 #ifndef SQLITE_OMIT_VIRTUALTABLE
5939 /* Opcode: VCreate P1 * * P4 *
5941 ** P4 is the name of a virtual table in database P1. Call the xCreate method
5942 ** for that table.
5944 case OP_VCreate: {
5945 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
5946 break;
5948 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5950 #ifndef SQLITE_OMIT_VIRTUALTABLE
5951 /* Opcode: VDestroy P1 * * P4 *
5953 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
5954 ** of that table.
5956 case OP_VDestroy: {
5957 p->inVtabMethod = 2;
5958 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
5959 p->inVtabMethod = 0;
5960 break;
5962 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5964 #ifndef SQLITE_OMIT_VIRTUALTABLE
5965 /* Opcode: VOpen P1 * * P4 *
5967 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5968 ** P1 is a cursor number. This opcode opens a cursor to the virtual
5969 ** table and stores that cursor in P1.
5971 case OP_VOpen: {
5972 VdbeCursor *pCur;
5973 sqlite3_vtab_cursor *pVtabCursor;
5974 sqlite3_vtab *pVtab;
5975 sqlite3_module *pModule;
5977 assert( p->bIsReader );
5978 pCur = 0;
5979 pVtabCursor = 0;
5980 pVtab = pOp->p4.pVtab->pVtab;
5981 pModule = (sqlite3_module *)pVtab->pModule;
5982 assert(pVtab && pModule);
5983 rc = pModule->xOpen(pVtab, &pVtabCursor);
5984 sqlite3VtabImportErrmsg(p, pVtab);
5985 if( SQLITE_OK==rc ){
5986 /* Initialize sqlite3_vtab_cursor base class */
5987 pVtabCursor->pVtab = pVtab;
5989 /* Initialize vdbe cursor object */
5990 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
5991 if( pCur ){
5992 pCur->pVtabCursor = pVtabCursor;
5993 }else{
5994 db->mallocFailed = 1;
5995 pModule->xClose(pVtabCursor);
5998 break;
6000 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6002 #ifndef SQLITE_OMIT_VIRTUALTABLE
6003 /* Opcode: VFilter P1 P2 P3 P4 *
6004 ** Synopsis: iplan=r[P3] zplan='P4'
6006 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
6007 ** the filtered result set is empty.
6009 ** P4 is either NULL or a string that was generated by the xBestIndex
6010 ** method of the module. The interpretation of the P4 string is left
6011 ** to the module implementation.
6013 ** This opcode invokes the xFilter method on the virtual table specified
6014 ** by P1. The integer query plan parameter to xFilter is stored in register
6015 ** P3. Register P3+1 stores the argc parameter to be passed to the
6016 ** xFilter method. Registers P3+2..P3+1+argc are the argc
6017 ** additional parameters which are passed to
6018 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
6020 ** A jump is made to P2 if the result set after filtering would be empty.
6022 case OP_VFilter: { /* jump */
6023 int nArg;
6024 int iQuery;
6025 const sqlite3_module *pModule;
6026 Mem *pQuery;
6027 Mem *pArgc;
6028 sqlite3_vtab_cursor *pVtabCursor;
6029 sqlite3_vtab *pVtab;
6030 VdbeCursor *pCur;
6031 int res;
6032 int i;
6033 Mem **apArg;
6035 pQuery = &aMem[pOp->p3];
6036 pArgc = &pQuery[1];
6037 pCur = p->apCsr[pOp->p1];
6038 assert( memIsValid(pQuery) );
6039 REGISTER_TRACE(pOp->p3, pQuery);
6040 assert( pCur->pVtabCursor );
6041 pVtabCursor = pCur->pVtabCursor;
6042 pVtab = pVtabCursor->pVtab;
6043 pModule = pVtab->pModule;
6045 /* Grab the index number and argc parameters */
6046 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
6047 nArg = (int)pArgc->u.i;
6048 iQuery = (int)pQuery->u.i;
6050 /* Invoke the xFilter method */
6052 res = 0;
6053 apArg = p->apArg;
6054 for(i = 0; i<nArg; i++){
6055 apArg[i] = &pArgc[i+1];
6058 p->inVtabMethod = 1;
6059 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
6060 p->inVtabMethod = 0;
6061 sqlite3VtabImportErrmsg(p, pVtab);
6062 if( rc==SQLITE_OK ){
6063 res = pModule->xEof(pVtabCursor);
6065 VdbeBranchTaken(res!=0,2);
6066 if( res ){
6067 pc = pOp->p2 - 1;
6070 pCur->nullRow = 0;
6072 break;
6074 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6076 #ifndef SQLITE_OMIT_VIRTUALTABLE
6077 /* Opcode: VColumn P1 P2 P3 * *
6078 ** Synopsis: r[P3]=vcolumn(P2)
6080 ** Store the value of the P2-th column of
6081 ** the row of the virtual-table that the
6082 ** P1 cursor is pointing to into register P3.
6084 case OP_VColumn: {
6085 sqlite3_vtab *pVtab;
6086 const sqlite3_module *pModule;
6087 Mem *pDest;
6088 sqlite3_context sContext;
6090 VdbeCursor *pCur = p->apCsr[pOp->p1];
6091 assert( pCur->pVtabCursor );
6092 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
6093 pDest = &aMem[pOp->p3];
6094 memAboutToChange(p, pDest);
6095 if( pCur->nullRow ){
6096 sqlite3VdbeMemSetNull(pDest);
6097 break;
6099 pVtab = pCur->pVtabCursor->pVtab;
6100 pModule = pVtab->pModule;
6101 assert( pModule->xColumn );
6102 memset(&sContext, 0, sizeof(sContext));
6103 sContext.pOut = pDest;
6104 MemSetTypeFlag(pDest, MEM_Null);
6105 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
6106 sqlite3VtabImportErrmsg(p, pVtab);
6107 if( sContext.isError ){
6108 rc = sContext.isError;
6110 sqlite3VdbeChangeEncoding(pDest, encoding);
6111 REGISTER_TRACE(pOp->p3, pDest);
6112 UPDATE_MAX_BLOBSIZE(pDest);
6114 if( sqlite3VdbeMemTooBig(pDest) ){
6115 goto too_big;
6117 break;
6119 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6121 #ifndef SQLITE_OMIT_VIRTUALTABLE
6122 /* Opcode: VNext P1 P2 * * *
6124 ** Advance virtual table P1 to the next row in its result set and
6125 ** jump to instruction P2. Or, if the virtual table has reached
6126 ** the end of its result set, then fall through to the next instruction.
6128 case OP_VNext: { /* jump */
6129 sqlite3_vtab *pVtab;
6130 const sqlite3_module *pModule;
6131 int res;
6132 VdbeCursor *pCur;
6134 res = 0;
6135 pCur = p->apCsr[pOp->p1];
6136 assert( pCur->pVtabCursor );
6137 if( pCur->nullRow ){
6138 break;
6140 pVtab = pCur->pVtabCursor->pVtab;
6141 pModule = pVtab->pModule;
6142 assert( pModule->xNext );
6144 /* Invoke the xNext() method of the module. There is no way for the
6145 ** underlying implementation to return an error if one occurs during
6146 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6147 ** data is available) and the error code returned when xColumn or
6148 ** some other method is next invoked on the save virtual table cursor.
6150 p->inVtabMethod = 1;
6151 rc = pModule->xNext(pCur->pVtabCursor);
6152 p->inVtabMethod = 0;
6153 sqlite3VtabImportErrmsg(p, pVtab);
6154 if( rc==SQLITE_OK ){
6155 res = pModule->xEof(pCur->pVtabCursor);
6157 VdbeBranchTaken(!res,2);
6158 if( !res ){
6159 /* If there is data, jump to P2 */
6160 pc = pOp->p2 - 1;
6162 goto check_for_interrupt;
6164 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6166 #ifndef SQLITE_OMIT_VIRTUALTABLE
6167 /* Opcode: VRename P1 * * P4 *
6169 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6170 ** This opcode invokes the corresponding xRename method. The value
6171 ** in register P1 is passed as the zName argument to the xRename method.
6173 case OP_VRename: {
6174 sqlite3_vtab *pVtab;
6175 Mem *pName;
6177 pVtab = pOp->p4.pVtab->pVtab;
6178 pName = &aMem[pOp->p1];
6179 assert( pVtab->pModule->xRename );
6180 assert( memIsValid(pName) );
6181 assert( p->readOnly==0 );
6182 REGISTER_TRACE(pOp->p1, pName);
6183 assert( pName->flags & MEM_Str );
6184 testcase( pName->enc==SQLITE_UTF8 );
6185 testcase( pName->enc==SQLITE_UTF16BE );
6186 testcase( pName->enc==SQLITE_UTF16LE );
6187 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6188 if( rc==SQLITE_OK ){
6189 rc = pVtab->pModule->xRename(pVtab, pName->z);
6190 sqlite3VtabImportErrmsg(p, pVtab);
6191 p->expired = 0;
6193 break;
6195 #endif
6197 #ifndef SQLITE_OMIT_VIRTUALTABLE
6198 /* Opcode: VUpdate P1 P2 P3 P4 P5
6199 ** Synopsis: data=r[P3@P2]
6201 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6202 ** This opcode invokes the corresponding xUpdate method. P2 values
6203 ** are contiguous memory cells starting at P3 to pass to the xUpdate
6204 ** invocation. The value in register (P3+P2-1) corresponds to the
6205 ** p2th element of the argv array passed to xUpdate.
6207 ** The xUpdate method will do a DELETE or an INSERT or both.
6208 ** The argv[0] element (which corresponds to memory cell P3)
6209 ** is the rowid of a row to delete. If argv[0] is NULL then no
6210 ** deletion occurs. The argv[1] element is the rowid of the new
6211 ** row. This can be NULL to have the virtual table select the new
6212 ** rowid for itself. The subsequent elements in the array are
6213 ** the values of columns in the new row.
6215 ** If P2==1 then no insert is performed. argv[0] is the rowid of
6216 ** a row to delete.
6218 ** P1 is a boolean flag. If it is set to true and the xUpdate call
6219 ** is successful, then the value returned by sqlite3_last_insert_rowid()
6220 ** is set to the value of the rowid for the row just inserted.
6222 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6223 ** apply in the case of a constraint failure on an insert or update.
6225 case OP_VUpdate: {
6226 sqlite3_vtab *pVtab;
6227 sqlite3_module *pModule;
6228 int nArg;
6229 int i;
6230 sqlite_int64 rowid;
6231 Mem **apArg;
6232 Mem *pX;
6234 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6235 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6237 assert( p->readOnly==0 );
6238 pVtab = pOp->p4.pVtab->pVtab;
6239 pModule = (sqlite3_module *)pVtab->pModule;
6240 nArg = pOp->p2;
6241 assert( pOp->p4type==P4_VTAB );
6242 if( ALWAYS(pModule->xUpdate) ){
6243 u8 vtabOnConflict = db->vtabOnConflict;
6244 apArg = p->apArg;
6245 pX = &aMem[pOp->p3];
6246 for(i=0; i<nArg; i++){
6247 assert( memIsValid(pX) );
6248 memAboutToChange(p, pX);
6249 apArg[i] = pX;
6250 pX++;
6252 db->vtabOnConflict = pOp->p5;
6253 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
6254 db->vtabOnConflict = vtabOnConflict;
6255 sqlite3VtabImportErrmsg(p, pVtab);
6256 if( rc==SQLITE_OK && pOp->p1 ){
6257 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
6258 db->lastRowid = lastRowid = rowid;
6260 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
6261 if( pOp->p5==OE_Ignore ){
6262 rc = SQLITE_OK;
6263 }else{
6264 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6266 }else{
6267 p->nChange++;
6270 break;
6272 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6274 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6275 /* Opcode: Pagecount P1 P2 * * *
6277 ** Write the current number of pages in database P1 to memory cell P2.
6279 case OP_Pagecount: { /* out2-prerelease */
6280 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
6281 break;
6283 #endif
6286 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6287 /* Opcode: MaxPgcnt P1 P2 P3 * *
6289 ** Try to set the maximum page count for database P1 to the value in P3.
6290 ** Do not let the maximum page count fall below the current page count and
6291 ** do not change the maximum page count value if P3==0.
6293 ** Store the maximum page count after the change in register P2.
6295 case OP_MaxPgcnt: { /* out2-prerelease */
6296 unsigned int newMax;
6297 Btree *pBt;
6299 pBt = db->aDb[pOp->p1].pBt;
6300 newMax = 0;
6301 if( pOp->p3 ){
6302 newMax = sqlite3BtreeLastPage(pBt);
6303 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
6305 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
6306 break;
6308 #endif
6311 /* Opcode: Init * P2 * P4 *
6312 ** Synopsis: Start at P2
6314 ** Programs contain a single instance of this opcode as the very first
6315 ** opcode.
6317 ** If tracing is enabled (by the sqlite3_trace()) interface, then
6318 ** the UTF-8 string contained in P4 is emitted on the trace callback.
6319 ** Or if P4 is blank, use the string returned by sqlite3_sql().
6321 ** If P2 is not zero, jump to instruction P2.
6323 case OP_Init: { /* jump */
6324 char *zTrace;
6325 char *z;
6327 if( pOp->p2 ){
6328 pc = pOp->p2 - 1;
6330 #ifndef SQLITE_OMIT_TRACE
6331 if( db->xTrace
6332 && !p->doingRerun
6333 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6335 z = sqlite3VdbeExpandSql(p, zTrace);
6336 db->xTrace(db->pTraceArg, z);
6337 sqlite3DbFree(db, z);
6339 #ifdef SQLITE_USE_FCNTL_TRACE
6340 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6341 if( zTrace ){
6342 int i;
6343 for(i=0; i<db->nDb; i++){
6344 if( DbMaskTest(p->btreeMask, i)==0 ) continue;
6345 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
6348 #endif /* SQLITE_USE_FCNTL_TRACE */
6349 #ifdef SQLITE_DEBUG
6350 if( (db->flags & SQLITE_SqlTrace)!=0
6351 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6353 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6355 #endif /* SQLITE_DEBUG */
6356 #endif /* SQLITE_OMIT_TRACE */
6357 break;
6361 /* Opcode: Noop * * * * *
6363 ** Do nothing. This instruction is often useful as a jump
6364 ** destination.
6367 ** The magic Explain opcode are only inserted when explain==2 (which
6368 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6369 ** This opcode records information from the optimizer. It is the
6370 ** the same as a no-op. This opcodesnever appears in a real VM program.
6372 default: { /* This is really OP_Noop and OP_Explain */
6373 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
6374 break;
6377 /*****************************************************************************
6378 ** The cases of the switch statement above this line should all be indented
6379 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6380 ** readability. From this point on down, the normal indentation rules are
6381 ** restored.
6382 *****************************************************************************/
6385 #ifdef VDBE_PROFILE
6387 u64 endTime = sqlite3Hwtime();
6388 if( endTime>start ) pOp->cycles += endTime - start;
6389 pOp->cnt++;
6391 #endif
6393 /* The following code adds nothing to the actual functionality
6394 ** of the program. It is only here for testing and debugging.
6395 ** On the other hand, it does burn CPU cycles every time through
6396 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6398 #ifndef NDEBUG
6399 assert( pc>=-1 && pc<p->nOp );
6401 #ifdef SQLITE_DEBUG
6402 if( db->flags & SQLITE_VdbeTrace ){
6403 if( rc!=0 ) printf("rc=%d\n",rc);
6404 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
6405 registerTrace(pOp->p2, &aMem[pOp->p2]);
6407 if( pOp->opflags & OPFLG_OUT3 ){
6408 registerTrace(pOp->p3, &aMem[pOp->p3]);
6411 #endif /* SQLITE_DEBUG */
6412 #endif /* NDEBUG */
6413 } /* The end of the for(;;) loop the loops through opcodes */
6415 /* If we reach this point, it means that execution is finished with
6416 ** an error of some kind.
6418 vdbe_error_halt:
6419 assert( rc );
6420 p->rc = rc;
6421 testcase( sqlite3GlobalConfig.xLog!=0 );
6422 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6423 pc, p->zSql, p->zErrMsg);
6424 sqlite3VdbeHalt(p);
6425 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6426 rc = SQLITE_ERROR;
6427 if( resetSchemaOnFault>0 ){
6428 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
6431 /* This is the only way out of this procedure. We have to
6432 ** release the mutexes on btrees that were acquired at the
6433 ** top. */
6434 vdbe_return:
6435 db->lastRowid = lastRowid;
6436 testcase( nVmStep>0 );
6437 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
6438 sqlite3VdbeLeave(p);
6439 return rc;
6441 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6442 ** is encountered.
6444 too_big:
6445 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
6446 rc = SQLITE_TOOBIG;
6447 goto vdbe_error_halt;
6449 /* Jump to here if a malloc() fails.
6451 no_mem:
6452 db->mallocFailed = 1;
6453 sqlite3SetString(&p->zErrMsg, db, "out of memory");
6454 rc = SQLITE_NOMEM;
6455 goto vdbe_error_halt;
6457 /* Jump to here for any other kind of fatal error. The "rc" variable
6458 ** should hold the error number.
6460 abort_due_to_error:
6461 assert( p->zErrMsg==0 );
6462 if( db->mallocFailed ) rc = SQLITE_NOMEM;
6463 if( rc!=SQLITE_IOERR_NOMEM ){
6464 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
6466 goto vdbe_error_halt;
6468 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
6469 ** flag.
6471 abort_due_to_interrupt:
6472 assert( db->u1.isInterrupted );
6473 rc = SQLITE_INTERRUPT;
6474 p->rc = rc;
6475 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
6476 goto vdbe_error_halt;