1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "components/omnibox/browser/scored_history_match.h"
12 #include "base/logging.h"
13 #include "base/numerics/safe_conversions.h"
14 #include "base/strings/string_number_conversions.h"
15 #include "base/strings/string_split.h"
16 #include "base/strings/string_util.h"
17 #include "base/strings/utf_offset_string_conversions.h"
18 #include "base/strings/utf_string_conversions.h"
19 #include "components/bookmarks/browser/bookmark_utils.h"
20 #include "components/omnibox/browser/history_url_provider.h"
21 #include "components/omnibox/browser/omnibox_field_trial.h"
22 #include "components/omnibox/browser/url_prefix.h"
26 // The number of days of recency scores to precompute.
27 const int kDaysToPrecomputeRecencyScoresFor
= 366;
29 // The number of raw term score buckets use; raw term scores greater this are
30 // capped at the score of the largest bucket.
31 const int kMaxRawTermScore
= 30;
33 // Pre-computed information to speed up calculating recency scores.
34 // |days_ago_to_recency_score| is a simple array mapping how long ago a page was
35 // visited (in days) to the recency score we should assign it. This allows easy
36 // lookups of scores without requiring math. This is initialized by
37 // InitDaysAgoToRecencyScoreArray called by
38 // ScoredHistoryMatch::Init().
39 float days_ago_to_recency_score
[kDaysToPrecomputeRecencyScoresFor
];
41 // Pre-computed information to speed up calculating topicality scores.
42 // |raw_term_score_to_topicality_score| is a simple array mapping how raw terms
43 // scores (a weighted sum of the number of hits for the term, weighted by how
44 // important the hit is: hostname, path, etc.) to the topicality score we should
45 // assign it. This allows easy lookups of scores without requiring math. This
46 // is initialized by InitRawTermScoreToTopicalityScoreArray() called from
47 // ScoredHistoryMatch::Init().
48 float raw_term_score_to_topicality_score
[kMaxRawTermScore
];
50 // Precalculates raw_term_score_to_topicality_score, used in
51 // GetTopicalityScore().
52 void InitRawTermScoreToTopicalityScoreArray() {
53 for (int term_score
= 0; term_score
< kMaxRawTermScore
; ++term_score
) {
54 float topicality_score
;
55 if (term_score
< 10) {
56 // If the term scores less than 10 points (no full-credit hit, or
57 // no combination of hits that score that well), then the topicality
58 // score is linear in the term score.
59 topicality_score
= 0.1 * term_score
;
61 // For term scores of at least ten points, pass them through a log
62 // function so a score of 10 points gets a 1.0 (to meet up exactly
63 // with the linear component) and increases logarithmically until
64 // maxing out at 30 points, with computes to a score around 2.1.
65 topicality_score
= (1.0 + 2.25 * log10(0.1 * term_score
));
67 raw_term_score_to_topicality_score
[term_score
] = topicality_score
;
71 // Pre-calculates days_ago_to_recency_score, used in GetRecencyScore().
72 void InitDaysAgoToRecencyScoreArray() {
73 for (int days_ago
= 0; days_ago
< kDaysToPrecomputeRecencyScoresFor
;
75 int unnormalized_recency_score
;
77 unnormalized_recency_score
= 100;
78 } else if (days_ago
<= 14) {
79 // Linearly extrapolate between 4 and 14 days so 14 days has a score
81 unnormalized_recency_score
= 70 + (14 - days_ago
) * (100 - 70) / (14 - 4);
82 } else if (days_ago
<= 31) {
83 // Linearly extrapolate between 14 and 31 days so 31 days has a score
85 unnormalized_recency_score
= 50 + (31 - days_ago
) * (70 - 50) / (31 - 14);
86 } else if (days_ago
<= 90) {
87 // Linearly extrapolate between 30 and 90 days so 90 days has a score
89 unnormalized_recency_score
= 30 + (90 - days_ago
) * (50 - 30) / (90 - 30);
91 // Linearly extrapolate between 90 and 365 days so 365 days has a score
93 unnormalized_recency_score
=
94 10 + (365 - days_ago
) * (20 - 10) / (365 - 90);
96 days_ago_to_recency_score
[days_ago
] = unnormalized_recency_score
/ 100.0;
98 DCHECK_LE(days_ago_to_recency_score
[days_ago
],
99 days_ago_to_recency_score
[days_ago
- 1]);
107 const size_t ScoredHistoryMatch::kMaxVisitsToScore
= 10;
108 bool ScoredHistoryMatch::also_do_hup_like_scoring_
= false;
109 int ScoredHistoryMatch::bookmark_value_
= 1;
110 bool ScoredHistoryMatch::fix_frequency_bugs_
= false;
111 bool ScoredHistoryMatch::allow_tld_matches_
= false;
112 bool ScoredHistoryMatch::allow_scheme_matches_
= false;
113 size_t ScoredHistoryMatch::num_title_words_to_allow_
= 10u;
114 bool ScoredHistoryMatch::hqp_experimental_scoring_enabled_
= false;
115 float ScoredHistoryMatch::topicality_threshold_
= -1;
116 std::vector
<ScoredHistoryMatch::ScoreMaxRelevance
>*
117 ScoredHistoryMatch::hqp_relevance_buckets_
= nullptr;
119 ScoredHistoryMatch::ScoredHistoryMatch()
120 : ScoredHistoryMatch(history::URLRow(),
131 ScoredHistoryMatch::ScoredHistoryMatch(
132 const history::URLRow
& row
,
133 const VisitInfoVector
& visits
,
134 const std::string
& languages
,
135 const base::string16
& lower_string
,
136 const String16Vector
& terms_vector
,
137 const WordStarts
& terms_to_word_starts_offsets
,
138 const RowWordStarts
& word_starts
,
139 bool is_url_bookmarked
,
141 : HistoryMatch(row
, 0, false, false), raw_score(0), can_inline(false) {
142 // NOTE: Call Init() before doing any validity checking to ensure that the
143 // class is always initialized after an instance has been constructed. In
144 // particular, this ensures that the class is initialized after an instance
145 // has been constructed via the no-args constructor.
146 ScoredHistoryMatch::Init();
148 GURL gurl
= row
.url();
149 if (!gurl
.is_valid())
152 // Figure out where each search term appears in the URL and/or page title
153 // so that we can score as well as provide autocomplete highlighting.
154 base::OffsetAdjuster::Adjustments adjustments
;
156 bookmarks::CleanUpUrlForMatching(gurl
, languages
, &adjustments
);
157 base::string16 title
= bookmarks::CleanUpTitleForMatching(row
.title());
159 for (const auto& term
: terms_vector
) {
160 TermMatches url_term_matches
= MatchTermInString(term
, url
, term_num
);
161 TermMatches title_term_matches
= MatchTermInString(term
, title
, term_num
);
162 if (url_term_matches
.empty() && title_term_matches
.empty()) {
163 // A term was not found in either URL or title - reject.
166 url_matches
.insert(url_matches
.end(), url_term_matches
.begin(),
167 url_term_matches
.end());
168 title_matches
.insert(title_matches
.end(), title_term_matches
.begin(),
169 title_term_matches
.end());
173 // Sort matches by offset and eliminate any which overlap.
174 // TODO(mpearson): Investigate whether this has any meaningful
175 // effect on scoring. (It's necessary at some point: removing
176 // overlaps and sorting is needed to decide what to highlight in the
177 // suggestion string. But this sort and de-overlap doesn't have to
178 // be done before scoring.)
179 url_matches
= SortAndDeoverlapMatches(url_matches
);
180 title_matches
= SortAndDeoverlapMatches(title_matches
);
182 // We can inline autocomplete a match if:
183 // 1) there is only one search term
184 // 2) AND the match begins immediately after one of the prefixes in
185 // URLPrefix such as http://www and https:// (note that one of these
186 // is the empty prefix, for cases where the user has typed the scheme)
187 // 3) AND the search string does not end in whitespace (making it look to
188 // the IMUI as though there is a single search term when actually there
189 // is a second, empty term).
190 // |best_inlineable_prefix| stores the inlineable prefix computed in
191 // clause (2) or NULL if no such prefix exists. (The URL is not inlineable.)
192 // Note that using the best prefix here means that when multiple
193 // prefixes match, we'll choose to inline following the longest one.
194 // For a URL like "http://www.washingtonmutual.com", this means
195 // typing "w" will inline "ashington..." instead of "ww.washington...".
196 if (!url_matches
.empty() && (terms_vector
.size() == 1) &&
197 !base::IsUnicodeWhitespace(*lower_string
.rbegin())) {
198 const base::string16 gurl_spec
= base::UTF8ToUTF16(gurl
.spec());
199 const URLPrefix
* best_inlineable_prefix
=
200 URLPrefix::BestURLPrefix(gurl_spec
, terms_vector
[0]);
201 if (best_inlineable_prefix
) {
202 // When inline autocompleting this match, we're going to use the part of
203 // the URL following the end of the matching text. However, it's possible
204 // that FormatUrl(), when formatting this suggestion for display,
205 // mucks with the text. We need to ensure that the text we're thinking
206 // about highlighting isn't in the middle of a mucked sequence. In
207 // particular, for the omnibox input of "x" or "xn", we may get a match
208 // in a punycoded domain name such as http://www.xn--blahblah.com/.
209 // When FormatUrl() processes the xn--blahblah part of the hostname, it'll
210 // transform the whole thing into a series of unicode characters. It's
211 // impossible to give the user an inline autocompletion of the text
212 // following "x" or "xn" in this case because those characters no longer
213 // exist in the displayed URL string.
215 best_inlineable_prefix
->prefix
.length() + terms_vector
[0].length();
216 base::OffsetAdjuster::UnadjustOffset(adjustments
, &offset
);
217 if (offset
!= base::string16::npos
) {
218 // Initialize innermost_match.
219 // The idea here is that matches that occur in the scheme or
220 // "www." are worse than matches which don't. For the URLs
221 // "http://www.google.com" and "http://wellsfargo.com", we want
222 // the omnibox input "w" to cause the latter URL to rank higher
223 // than the former. Note that this is not the same as checking
224 // whether one match's inlinable prefix has more components than
225 // the other match's, since in this example, both matches would
226 // have an inlinable prefix of "http://", which is one component.
228 // Instead, we look for the overall best (i.e., most components)
229 // prefix of the current URL, and then check whether the inlinable
230 // prefix has that many components. If it does, this is an
231 // "innermost" match, and should be boosted. In the example
232 // above, the best prefixes for the two URLs have two and one
233 // components respectively, while the inlinable prefixes each
234 // have one component; this means the first match is not innermost
235 // and the second match is innermost, resulting in us boosting the
238 // Now, the code that implements this.
239 // The deepest prefix for this URL regardless of where the match is.
240 const URLPrefix
* best_prefix
=
241 URLPrefix::BestURLPrefix(gurl_spec
, base::string16());
243 // If the URL is inlineable, we must have a match. Note the prefix that
244 // makes it inlineable may be empty.
246 innermost_match
= (best_inlineable_prefix
->num_components
==
247 best_prefix
->num_components
);
252 const float topicality_score
= GetTopicalityScore(
253 terms_vector
.size(), url
, terms_to_word_starts_offsets
, word_starts
);
254 const float frequency_score
= GetFrequency(now
, is_url_bookmarked
, visits
);
255 raw_score
= base::saturated_cast
<int>(GetFinalRelevancyScore(
256 topicality_score
, frequency_score
, *hqp_relevance_buckets_
));
258 if (also_do_hup_like_scoring_
&& can_inline
) {
259 // HistoryURL-provider-like scoring gives any match that is
260 // capable of being inlined a certain minimum score. Some of these
261 // are given a higher score that lets them be shown in inline.
262 // This test here derives from the test in
263 // HistoryURLProvider::PromoteMatchForInlineAutocomplete().
264 const bool promote_to_inline
=
265 (row
.typed_count() > 1) || (IsHostOnly() && (row
.typed_count() == 1));
268 ? HistoryURLProvider::kScoreForBestInlineableResult
269 : HistoryURLProvider::kBaseScoreForNonInlineableResult
;
271 // Also, if the user types the hostname of a host with a typed
272 // visit, then everything from that host get given inlineable scores
273 // (because the URL-that-you-typed will go first and everything
274 // else will be assigned one minus the previous score, as coded
275 // at the end of HistoryURLProvider::DoAutocomplete().
276 if (base::UTF8ToUTF16(gurl
.host()) == terms_vector
[0])
277 hup_like_score
= HistoryURLProvider::kScoreForBestInlineableResult
;
279 // HistoryURLProvider has the function PromoteOrCreateShorterSuggestion()
280 // that's meant to promote prefixes of the best match (if they've
281 // been visited enough related to the best match) or
282 // create/promote host-only suggestions (even if they've never
283 // been typed). The code is complicated and we don't try to
284 // duplicate the logic here. Instead, we handle a simple case: in
285 // low-typed-count ranges, give host-only matches (i.e.,
286 // http://www.foo.com/ vs. http://www.foo.com/bar.html) a boost so
287 // that the host-only match outscores all the other matches that
288 // would normally have the same base score. This behavior is not
289 // identical to what happens in HistoryURLProvider even in these
290 // low typed count ranges--sometimes it will create/promote when
291 // this test does not (indeed, we cannot create matches like HUP
292 // can) and vice versa--but the underlying philosophy is similar.
293 if (!promote_to_inline
&& IsHostOnly())
296 // All the other logic to goes into hup-like-scoring happens in
297 // the tie-breaker case of MatchScoreGreater().
299 // Incorporate hup_like_score into raw_score.
300 raw_score
= std::max(raw_score
, hup_like_score
);
303 // Now that we're done processing this entry, correct the offsets of the
304 // matches in |url_matches| so they point to offsets in the original URL
305 // spec, not the cleaned-up URL string that we used for matching.
306 std::vector
<size_t> offsets
= OffsetsFromTermMatches(url_matches
);
307 base::OffsetAdjuster::UnadjustOffsets(adjustments
, &offsets
);
308 url_matches
= ReplaceOffsetsInTermMatches(url_matches
, offsets
);
311 ScoredHistoryMatch::~ScoredHistoryMatch() {
314 // Comparison function for sorting ScoredMatches by their scores with
315 // intelligent tie-breaking.
316 bool ScoredHistoryMatch::MatchScoreGreater(const ScoredHistoryMatch
& m1
,
317 const ScoredHistoryMatch
& m2
) {
318 if (m1
.raw_score
!= m2
.raw_score
)
319 return m1
.raw_score
> m2
.raw_score
;
321 // This tie-breaking logic is inspired by / largely copied from the
322 // ordering logic in history_url_provider.cc CompareHistoryMatch().
324 // A URL that has been typed at all is better than one that has never been
325 // typed. (Note "!"s on each side.)
326 if (!m1
.url_info
.typed_count() != !m2
.url_info
.typed_count())
327 return m1
.url_info
.typed_count() > m2
.url_info
.typed_count();
329 // Innermost matches (matches after any scheme or "www.") are better than
330 // non-innermost matches.
331 if (m1
.innermost_match
!= m2
.innermost_match
)
332 return m1
.innermost_match
;
334 // URLs that have been typed more often are better.
335 if (m1
.url_info
.typed_count() != m2
.url_info
.typed_count())
336 return m1
.url_info
.typed_count() > m2
.url_info
.typed_count();
338 // For URLs that have each been typed once, a host (alone) is better
339 // than a page inside.
340 if (m1
.url_info
.typed_count() == 1) {
341 if (m1
.IsHostOnly() != m2
.IsHostOnly())
342 return m1
.IsHostOnly();
345 // URLs that have been visited more often are better.
346 if (m1
.url_info
.visit_count() != m2
.url_info
.visit_count())
347 return m1
.url_info
.visit_count() > m2
.url_info
.visit_count();
349 // URLs that have been visited more recently are better.
350 return m1
.url_info
.last_visit() > m2
.url_info
.last_visit();
354 TermMatches
ScoredHistoryMatch::FilterTermMatchesByWordStarts(
355 const TermMatches
& term_matches
,
356 const WordStarts
& terms_to_word_starts_offsets
,
357 const WordStarts
& word_starts
,
360 // Return early if no filtering is needed.
361 if (start_pos
== std::string::npos
)
363 TermMatches filtered_matches
;
364 WordStarts::const_iterator next_word_starts
= word_starts
.begin();
365 WordStarts::const_iterator end_word_starts
= word_starts
.end();
366 for (const auto& term_match
: term_matches
) {
367 const size_t term_offset
=
368 terms_to_word_starts_offsets
[term_match
.term_num
];
369 // Advance next_word_starts until it's >= the position of the term we're
370 // considering (adjusted for where the word begins within the term).
371 while ((next_word_starts
!= end_word_starts
) &&
372 (*next_word_starts
< (term_match
.offset
+ term_offset
)))
374 // Add the match if it's before the position we start filtering at or
375 // after the position we stop filtering at (assuming we have a position
376 // to stop filtering at) or if it's at a word boundary.
377 if ((term_match
.offset
< start_pos
) ||
378 ((end_pos
!= std::string::npos
) && (term_match
.offset
>= end_pos
)) ||
379 ((next_word_starts
!= end_word_starts
) &&
380 (*next_word_starts
== term_match
.offset
+ term_offset
)))
381 filtered_matches
.push_back(term_match
);
383 return filtered_matches
;
387 void ScoredHistoryMatch::Init() {
388 static bool initialized
= false;
394 also_do_hup_like_scoring_
= OmniboxFieldTrial::HQPAlsoDoHUPLikeScoring();
395 bookmark_value_
= OmniboxFieldTrial::HQPBookmarkValue();
396 fix_frequency_bugs_
= OmniboxFieldTrial::HQPFixFrequencyScoringBugs();
397 allow_tld_matches_
= OmniboxFieldTrial::HQPAllowMatchInTLDValue();
398 allow_scheme_matches_
= OmniboxFieldTrial::HQPAllowMatchInSchemeValue();
399 num_title_words_to_allow_
= OmniboxFieldTrial::HQPNumTitleWordsToAllow();
401 InitRawTermScoreToTopicalityScoreArray();
402 InitDaysAgoToRecencyScoreArray();
403 InitHQPExperimentalParams();
406 float ScoredHistoryMatch::GetTopicalityScore(
408 const base::string16
& url
,
409 const WordStarts
& terms_to_word_starts_offsets
,
410 const RowWordStarts
& word_starts
) {
411 // A vector that accumulates per-term scores. The strongest match--a
412 // match in the hostname at a word boundary--is worth 10 points.
413 // Everything else is less. In general, a match that's not at a word
414 // boundary is worth about 1/4th or 1/5th of a match at the word boundary
415 // in the same part of the URL/title.
416 DCHECK_GT(num_terms
, 0);
417 std::vector
<int> term_scores(num_terms
, 0);
418 WordStarts::const_iterator next_word_starts
=
419 word_starts
.url_word_starts_
.begin();
420 WordStarts::const_iterator end_word_starts
=
421 word_starts
.url_word_starts_
.end();
422 const size_t question_mark_pos
= url
.find('?');
423 const size_t colon_pos
= url
.find(':');
424 // The + 3 skips the // that probably appears in the protocol
425 // after the colon. If the protocol doesn't have two slashes after
426 // the colon, that's okay--all this ends up doing is starting our
427 // search for the next / a few characters into the hostname. The
428 // only times this can cause problems is if we have a protocol without
429 // a // after the colon and the hostname is only one or two characters.
430 // This isn't worth worrying about.
431 const size_t end_of_hostname_pos
= (colon_pos
!= std::string::npos
)
432 ? url
.find('/', colon_pos
+ 3)
434 size_t last_part_of_hostname_pos
= (end_of_hostname_pos
!= std::string::npos
)
435 ? url
.rfind('.', end_of_hostname_pos
)
437 // Loop through all URL matches and score them appropriately.
438 // First, filter all matches not at a word boundary and in the path (or
440 url_matches
= FilterTermMatchesByWordStarts(
441 url_matches
, terms_to_word_starts_offsets
, word_starts
.url_word_starts_
,
442 end_of_hostname_pos
, std::string::npos
);
443 if (colon_pos
!= std::string::npos
) {
444 // Also filter matches not at a word boundary and in the scheme.
445 url_matches
= FilterTermMatchesByWordStarts(
446 url_matches
, terms_to_word_starts_offsets
, word_starts
.url_word_starts_
,
449 for (const auto& url_match
: url_matches
) {
450 const size_t term_offset
= terms_to_word_starts_offsets
[url_match
.term_num
];
451 // Advance next_word_starts until it's >= the position of the term we're
452 // considering (adjusted for where the word begins within the term).
453 while ((next_word_starts
!= end_word_starts
) &&
454 (*next_word_starts
< (url_match
.offset
+ term_offset
))) {
457 const bool at_word_boundary
=
458 (next_word_starts
!= end_word_starts
) &&
459 (*next_word_starts
== url_match
.offset
+ term_offset
);
460 if ((question_mark_pos
!= std::string::npos
) &&
461 (url_match
.offset
> question_mark_pos
)) {
462 // The match is in a CGI ?... fragment.
463 DCHECK(at_word_boundary
);
464 term_scores
[url_match
.term_num
] += 5;
465 } else if ((end_of_hostname_pos
!= std::string::npos
) &&
466 (url_match
.offset
> end_of_hostname_pos
)) {
467 // The match is in the path.
468 DCHECK(at_word_boundary
);
469 term_scores
[url_match
.term_num
] += 8;
470 } else if ((colon_pos
== std::string::npos
) ||
471 (url_match
.offset
> colon_pos
)) {
472 // The match is in the hostname.
473 if ((last_part_of_hostname_pos
== std::string::npos
) ||
474 (url_match
.offset
< last_part_of_hostname_pos
)) {
475 // Either there are no dots in the hostname or this match isn't
476 // the last dotted component.
477 term_scores
[url_match
.term_num
] += at_word_boundary
? 10 : 2;
479 // The match is in the last part of a dotted hostname (usually this
480 // is the top-level domain .com, .net, etc.).
481 if (allow_tld_matches_
)
482 term_scores
[url_match
.term_num
] += at_word_boundary
? 10 : 0;
485 // The match is in the protocol (a.k.a. scheme).
486 // Matches not at a word boundary should have been filtered already.
487 DCHECK(at_word_boundary
);
488 match_in_scheme
= true;
489 if (allow_scheme_matches_
)
490 term_scores
[url_match
.term_num
] += 10;
493 // Now do the analogous loop over all matches in the title.
494 next_word_starts
= word_starts
.title_word_starts_
.begin();
495 end_word_starts
= word_starts
.title_word_starts_
.end();
497 title_matches
= FilterTermMatchesByWordStarts(
498 title_matches
, terms_to_word_starts_offsets
,
499 word_starts
.title_word_starts_
, 0, std::string::npos
);
500 for (const auto& title_match
: title_matches
) {
501 const size_t term_offset
=
502 terms_to_word_starts_offsets
[title_match
.term_num
];
503 // Advance next_word_starts until it's >= the position of the term we're
504 // considering (adjusted for where the word begins within the term).
505 while ((next_word_starts
!= end_word_starts
) &&
506 (*next_word_starts
< (title_match
.offset
+ term_offset
))) {
510 if (word_num
>= num_title_words_to_allow_
)
511 break; // only count the first ten words
512 DCHECK(next_word_starts
!= end_word_starts
);
513 DCHECK_EQ(*next_word_starts
, title_match
.offset
+ term_offset
)
514 << "not at word boundary";
515 term_scores
[title_match
.term_num
] += 8;
517 // TODO(mpearson): Restore logic for penalizing out-of-order matches.
518 // (Perhaps discount them by 0.8?)
519 // TODO(mpearson): Consider: if the earliest match occurs late in the string,
520 // should we discount it?
521 // TODO(mpearson): Consider: do we want to score based on how much of the
522 // input string the input covers? (I'm leaning toward no.)
524 // Compute the topicality_score as the sum of transformed term_scores.
525 float topicality_score
= 0;
526 for (int term_score
: term_scores
) {
527 // Drop this URL if it seems like a term didn't appear or, more precisely,
528 // didn't appear in a part of the URL or title that we trust enough
529 // to give it credit for. For instance, terms that appear in the middle
530 // of a CGI parameter get no credit. Almost all the matches dropped
531 // due to this test would look stupid if shown to the user.
534 topicality_score
+= raw_term_score_to_topicality_score
[std::min(
535 term_score
, kMaxRawTermScore
- 1)];
537 // TODO(mpearson): If there are multiple terms, consider taking the
538 // geometric mean of per-term scores rather than the arithmetic mean.
540 const float final_topicality_score
= topicality_score
/ num_terms
;
542 // Demote the URL if the topicality score is less than threshold.
543 if (hqp_experimental_scoring_enabled_
&&
544 (final_topicality_score
< topicality_threshold_
)) {
548 return final_topicality_score
;
551 float ScoredHistoryMatch::GetRecencyScore(int last_visit_days_ago
) const {
552 // Lookup the score in days_ago_to_recency_score, treating
553 // everything older than what we've precomputed as the oldest thing
554 // we've precomputed. The std::max is to protect against corruption
555 // in the database (in case last_visit_days_ago is negative).
556 return days_ago_to_recency_score
[std::max(
557 std::min(last_visit_days_ago
, kDaysToPrecomputeRecencyScoresFor
- 1), 0)];
560 float ScoredHistoryMatch::GetFrequency(const base::Time
& now
,
561 const bool bookmarked
,
562 const VisitInfoVector
& visits
) const {
563 // Compute the weighted average |value_of_transition| over the last at
564 // most kMaxVisitsToScore visits, where each visit is weighted using
565 // GetRecencyScore() based on how many days ago it happened. Use
566 // kMaxVisitsToScore as the denominator for the average regardless of
567 // how many visits there were in order to penalize a match that has
568 // fewer visits than kMaxVisitsToScore.
569 float summed_visit_points
= 0;
570 const size_t max_visit_to_score
=
571 std::min(visits
.size(), ScoredHistoryMatch::kMaxVisitsToScore
);
572 for (size_t i
= 0; i
< max_visit_to_score
; ++i
) {
573 const ui::PageTransition page_transition
= fix_frequency_bugs_
?
574 ui::PageTransitionStripQualifier(visits
[i
].second
) : visits
[i
].second
;
575 int value_of_transition
=
576 (page_transition
== ui::PAGE_TRANSITION_TYPED
) ? 20 : 1;
578 value_of_transition
= std::max(value_of_transition
, bookmark_value_
);
579 const float bucket_weight
=
580 GetRecencyScore((now
- visits
[i
].first
).InDays());
581 summed_visit_points
+= (value_of_transition
* bucket_weight
);
583 if (fix_frequency_bugs_
)
584 return summed_visit_points
/ ScoredHistoryMatch::kMaxVisitsToScore
;
585 return visits
.size() * summed_visit_points
/
586 ScoredHistoryMatch::kMaxVisitsToScore
;
590 float ScoredHistoryMatch::GetFinalRelevancyScore(
591 float topicality_score
,
592 float frequency_score
,
593 const std::vector
<ScoreMaxRelevance
>& hqp_relevance_buckets
) {
594 DCHECK(hqp_relevance_buckets
.size() > 0);
595 DCHECK_EQ(hqp_relevance_buckets
[0].first
, 0.0);
597 if (topicality_score
== 0)
599 // Here's how to interpret intermediate_score: Suppose the omnibox
600 // has one input term. Suppose we have a URL for which the omnibox
601 // input term has a single URL hostname hit at a word boundary. (This
602 // implies topicality_score = 1.0.). Then the intermediate_score for
603 // this URL will depend entirely on the frequency_score with
604 // this interpretation:
605 // - a single typed visit more than three months ago, no other visits -> 0.2
606 // - a visit every three days, no typed visits -> 0.706
607 // - a visit every day, no typed visits -> 0.916
608 // - a single typed visit yesterday, no other visits -> 2.0
609 // - a typed visit once a week -> 11.77
610 // - a typed visit every three days -> 14.12
611 // - at least ten typed visits today -> 20.0 (maximum score)
613 // The below code maps intermediate_score to the range [0, 1399].
615 // HQP default scoring buckets: "0.0:400,1.5:600,12.0:1300,20.0:1399"
616 // We will linearly interpolate the scores between:
617 // 0 to 1.5 --> 400 to 600
618 // 1.5 to 12.0 --> 600 to 1300
619 // 12.0 to 20.0 --> 1300 to 1399
622 // The score maxes out at 1399 (i.e., cannot beat a good inlineable result
623 // from HistoryURL provider).
624 const float intermediate_score
= topicality_score
* frequency_score
;
626 // Find the threshold where intermediate score is greater than bucket.
628 for (; i
< hqp_relevance_buckets
.size(); ++i
) {
629 const ScoreMaxRelevance
& hqp_bucket
= hqp_relevance_buckets
[i
];
630 if (intermediate_score
>= hqp_bucket
.first
) {
633 const ScoreMaxRelevance
& previous_bucket
= hqp_relevance_buckets
[i
- 1];
634 const float slope
= ((hqp_bucket
.second
- previous_bucket
.second
) /
635 (hqp_bucket
.first
- previous_bucket
.first
));
636 return (previous_bucket
.second
+
637 (slope
* (intermediate_score
- previous_bucket
.first
)));
639 // It will reach this stage when the score is > highest bucket score.
640 // Return the highest bucket score.
641 return hqp_relevance_buckets
[i
- 1].second
;
645 void ScoredHistoryMatch::InitHQPExperimentalParams() {
646 // These are default HQP relevance scoring buckets.
647 // See GetFinalRelevancyScore() for details.
648 std::string hqp_relevance_buckets_str
= "0.0:400,1.5:600,12.0:1300,20.0:1399";
650 // Fetch the experiment params if they are any.
651 hqp_experimental_scoring_enabled_
=
652 OmniboxFieldTrial::HQPExperimentalScoringEnabled();
654 if (hqp_experimental_scoring_enabled_
) {
655 // Add the topicality threshold from experiment params.
656 float hqp_experimental_topicality_threhold
=
657 OmniboxFieldTrial::HQPExperimentalTopicalityThreshold();
658 topicality_threshold_
= hqp_experimental_topicality_threhold
;
660 // Add the HQP experimental scoring buckets.
661 std::string hqp_experimental_scoring_buckets
=
662 OmniboxFieldTrial::HQPExperimentalScoringBuckets();
663 if (!hqp_experimental_scoring_buckets
.empty())
664 hqp_relevance_buckets_str
= hqp_experimental_scoring_buckets
;
667 // Parse the hqp_relevance_buckets_str string once and store them in vector
668 // which is easy to access.
669 hqp_relevance_buckets_
=
670 new std::vector
<ScoredHistoryMatch::ScoreMaxRelevance
>();
672 bool is_valid_bucket_str
= GetHQPBucketsFromString(hqp_relevance_buckets_str
,
673 hqp_relevance_buckets_
);
674 DCHECK(is_valid_bucket_str
);
678 bool ScoredHistoryMatch::GetHQPBucketsFromString(
679 const std::string
& buckets_str
,
680 std::vector
<ScoreMaxRelevance
>* hqp_buckets
) {
681 DCHECK(hqp_buckets
!= NULL
);
682 DCHECK(!buckets_str
.empty());
684 base::StringPairs kv_pairs
;
685 if (base::SplitStringIntoKeyValuePairs(buckets_str
, ':', ',', &kv_pairs
)) {
686 for (base::StringPairs::const_iterator it
= kv_pairs
.begin();
687 it
!= kv_pairs
.end(); ++it
) {
688 ScoreMaxRelevance bucket
;
689 bool is_valid_intermediate_score
=
690 base::StringToDouble(it
->first
, &bucket
.first
);
691 DCHECK(is_valid_intermediate_score
);
692 bool is_valid_hqp_score
= base::StringToInt(it
->second
, &bucket
.second
);
693 DCHECK(is_valid_hqp_score
);
694 hqp_buckets
->push_back(bucket
);