1. With introduction of compressed formats, e.g. ETC1, the number of
[chromium-blink-merge.git] / cc / quads / draw_polygon.cc
blobcdb94d0e33b364b6f0818a8f5c6d2f534109ac61
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/quads/draw_polygon.h"
7 #include <vector>
9 #include "cc/output/bsp_compare_result.h"
10 #include "cc/quads/draw_quad.h"
12 namespace {
13 // This allows for some imperfection in the normal comparison when checking if
14 // two pieces of geometry are coplanar.
15 static const float coplanar_dot_epsilon = 0.001f;
16 // This threshold controls how "thick" a plane is. If a point's distance is
17 // <= |compare_threshold|, then it is considered on the plane. Only when this
18 // boundary is crossed do we consider doing splitting.
19 static const float compare_threshold = 1.0f;
20 // |split_threshold| is lower in this case because we want the points created
21 // during splitting to be well within the range of |compare_threshold| for
22 // comparison purposes. The splitting operation will produce intersection points
23 // that fit within a tighter distance to the splitting plane as a result of this
24 // value. By using a value >= |compare_threshold| we run the risk of creating
25 // points that SHOULD be intersecting the "thick plane", but actually fail to
26 // test positively for it because |split_threshold| allowed them to be outside
27 // this range.
28 // This is really supposd to be compare_threshold / 2.0f, but that would
29 // create another static initializer.
30 static const float split_threshold = 0.5f;
32 static const float normalized_threshold = 0.001f;
33 } // namespace
35 namespace cc {
37 DrawPolygon::DrawPolygon() {
40 DrawPolygon::DrawPolygon(const DrawQuad* original,
41 const std::vector<gfx::Point3F>& in_points,
42 const gfx::Vector3dF& normal,
43 int draw_order_index)
44 : order_index_(draw_order_index), original_ref_(original), is_split_(true) {
45 for (size_t i = 0; i < in_points.size(); i++) {
46 points_.push_back(in_points[i]);
48 normal_ = normal;
51 // This takes the original DrawQuad that this polygon should be based on,
52 // a visible content rect to make the 4 corner points from, and a transformation
53 // to move it and its normal into screen space.
54 DrawPolygon::DrawPolygon(const DrawQuad* original_ref,
55 const gfx::RectF& visible_layer_rect,
56 const gfx::Transform& transform,
57 int draw_order_index)
58 : normal_(0.0f, 0.0f, 1.0f),
59 order_index_(draw_order_index),
60 original_ref_(original_ref),
61 is_split_(false) {
62 gfx::Point3F points[8];
63 int num_vertices_in_clipped_quad;
64 gfx::QuadF send_quad(visible_layer_rect);
66 // Doing this mapping here is very important, since we can't just transform
67 // the points without clipping and not run into strange geometry issues when
68 // crossing w = 0. At this point, in the constructor, we know that we're
69 // working with a quad, so we can reuse the MathUtil::MapClippedQuad3d
70 // function instead of writing a generic polygon version of it.
71 MathUtil::MapClippedQuad3d(
72 transform, send_quad, points, &num_vertices_in_clipped_quad);
73 for (int i = 0; i < num_vertices_in_clipped_quad; i++) {
74 points_.push_back(points[i]);
76 ApplyTransformToNormal(transform);
79 DrawPolygon::~DrawPolygon() {
82 scoped_ptr<DrawPolygon> DrawPolygon::CreateCopy() {
83 scoped_ptr<DrawPolygon> new_polygon(new DrawPolygon());
84 new_polygon->order_index_ = order_index_;
85 new_polygon->original_ref_ = original_ref_;
86 new_polygon->points_.reserve(points_.size());
87 new_polygon->points_ = points_;
88 new_polygon->normal_.set_x(normal_.x());
89 new_polygon->normal_.set_y(normal_.y());
90 new_polygon->normal_.set_z(normal_.z());
91 return new_polygon.Pass();
94 float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const {
95 return gfx::DotProduct(point - points_[0], normal_);
98 // Checks whether or not shape a lies on the front or back side of b, or
99 // whether they should be considered coplanar. If on the back side, we
100 // say A_BEFORE_B because it should be drawn in that order.
101 // Assumes that layers are split and there are no intersecting planes.
102 BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a,
103 const DrawPolygon& b) {
104 // Let's make sure that both of these are normalized.
105 DCHECK_GE(normalized_threshold, std::abs(a.normal_.LengthSquared() - 1.0f));
106 DCHECK_GE(normalized_threshold, std::abs(b.normal_.LengthSquared() - 1.0f));
107 // Right away let's check if they're coplanar
108 double dot = gfx::DotProduct(a.normal_, b.normal_);
109 float sign = 0.0f;
110 bool normal_match = false;
111 // This check assumes that the normals are normalized.
112 if (std::abs(dot) >= 1.0f - coplanar_dot_epsilon) {
113 normal_match = true;
114 // The normals are matching enough that we only have to test one point.
115 sign = b.SignedPointDistance(a.points_[0]);
116 // Is it on either side of the splitter?
117 if (sign < -compare_threshold) {
118 return BSP_BACK;
121 if (sign > compare_threshold) {
122 return BSP_FRONT;
125 // No it wasn't, so the sign of the dot product of the normals
126 // along with document order determines which side it goes on.
127 if (dot >= 0.0f) {
128 if (a.order_index_ < b.order_index_) {
129 return BSP_COPLANAR_FRONT;
131 return BSP_COPLANAR_BACK;
134 if (a.order_index_ < b.order_index_) {
135 return BSP_COPLANAR_BACK;
137 return BSP_COPLANAR_FRONT;
140 int pos_count = 0;
141 int neg_count = 0;
142 for (size_t i = 0; i < a.points_.size(); i++) {
143 if (!normal_match || (normal_match && i > 0)) {
144 sign = gfx::DotProduct(a.points_[i] - b.points_[0], b.normal_);
147 if (sign < -compare_threshold) {
148 ++neg_count;
149 } else if (sign > compare_threshold) {
150 ++pos_count;
153 if (pos_count && neg_count) {
154 return BSP_SPLIT;
158 if (pos_count) {
159 return BSP_FRONT;
161 return BSP_BACK;
164 static bool LineIntersectPlane(const gfx::Point3F& line_start,
165 const gfx::Point3F& line_end,
166 const gfx::Point3F& plane_origin,
167 const gfx::Vector3dF& plane_normal,
168 gfx::Point3F* intersection,
169 float distance_threshold) {
170 gfx::Vector3dF start_to_origin_vector = plane_origin - line_start;
171 gfx::Vector3dF end_to_origin_vector = plane_origin - line_end;
173 double start_distance = gfx::DotProduct(start_to_origin_vector, plane_normal);
174 double end_distance = gfx::DotProduct(end_to_origin_vector, plane_normal);
176 // The case where one vertex lies on the thick-plane and the other
177 // is outside of it.
178 if (std::abs(start_distance) <= distance_threshold &&
179 std::abs(end_distance) > distance_threshold) {
180 intersection->SetPoint(line_start.x(), line_start.y(), line_start.z());
181 return true;
184 // This is the case where we clearly cross the thick-plane.
185 if ((start_distance > distance_threshold &&
186 end_distance < -distance_threshold) ||
187 (start_distance < -distance_threshold &&
188 end_distance > distance_threshold)) {
189 gfx::Vector3dF v = line_end - line_start;
190 float total_distance = std::abs(start_distance) + std::abs(end_distance);
191 float lerp_factor = std::abs(start_distance) / total_distance;
193 intersection->SetPoint(line_start.x() + (v.x() * lerp_factor),
194 line_start.y() + (v.y() * lerp_factor),
195 line_start.z() + (v.z() * lerp_factor));
197 return true;
199 return false;
202 // This function is separate from ApplyTransform because it is often unnecessary
203 // to transform the normal with the rest of the polygon.
204 // When drawing these polygons, it is necessary to move them back into layer
205 // space before sending them to OpenGL, which requires using ApplyTransform,
206 // but normal information is no longer needed after sorting.
207 void DrawPolygon::ApplyTransformToNormal(const gfx::Transform& transform) {
208 // Now we use the inverse transpose of |transform| to transform the normal.
209 gfx::Transform inverse_transform;
210 bool inverted = transform.GetInverse(&inverse_transform);
211 DCHECK(inverted);
212 if (!inverted)
213 return;
214 inverse_transform.Transpose();
216 gfx::Point3F new_normal(normal_.x(), normal_.y(), normal_.z());
217 inverse_transform.TransformPoint(&new_normal);
218 // Make sure our normal is still normalized.
219 normal_ = gfx::Vector3dF(new_normal.x(), new_normal.y(), new_normal.z());
220 float normal_magnitude = normal_.Length();
221 if (normal_magnitude != 0 && normal_magnitude != 1) {
222 normal_.Scale(1.0f / normal_magnitude);
226 void DrawPolygon::ApplyTransform(const gfx::Transform& transform) {
227 for (size_t i = 0; i < points_.size(); i++) {
228 transform.TransformPoint(&points_[i]);
232 // TransformToScreenSpace assumes we're moving a layer from its layer space
233 // into 3D screen space, which for sorting purposes requires the normal to
234 // be transformed along with the vertices.
235 void DrawPolygon::TransformToScreenSpace(const gfx::Transform& transform) {
236 ApplyTransform(transform);
237 ApplyTransformToNormal(transform);
240 // In the case of TransformToLayerSpace, we assume that we are giving the
241 // inverse transformation back to the polygon to move it back into layer space
242 // but we can ignore the costly process of applying the inverse to the normal
243 // since we know the normal will just reset to its original state.
244 void DrawPolygon::TransformToLayerSpace(
245 const gfx::Transform& inverse_transform) {
246 ApplyTransform(inverse_transform);
247 normal_ = gfx::Vector3dF(0.0f, 0.0f, -1.0f);
250 bool DrawPolygon::Split(const DrawPolygon& splitter,
251 scoped_ptr<DrawPolygon>* front,
252 scoped_ptr<DrawPolygon>* back) {
253 gfx::Point3F intersections[2];
254 std::vector<gfx::Point3F> out_points[2];
255 // vertex_before stores the index of the vertex before its matching
256 // intersection.
257 // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane
258 // which resulted in the line/plane intersection giving us intersections[0].
259 size_t vertex_before[2];
260 size_t points_size = points_.size();
261 size_t current_intersection = 0;
263 size_t current_vertex = 0;
264 // We will only have two intersection points because we assume all polygons
265 // are convex.
266 while (current_intersection < 2) {
267 if (LineIntersectPlane(points_[(current_vertex % points_size)],
268 points_[(current_vertex + 1) % points_size],
269 splitter.points_[0],
270 splitter.normal_,
271 &intersections[current_intersection],
272 split_threshold)) {
273 vertex_before[current_intersection] = current_vertex % points_size;
274 current_intersection++;
275 // We found both intersection points so we're done already.
276 if (current_intersection == 2) {
277 break;
280 if (current_vertex++ > (points_size)) {
281 break;
284 DCHECK_EQ(current_intersection, static_cast<size_t>(2));
286 // Since we found both the intersection points, we can begin building the
287 // vertex set for both our new polygons.
288 size_t start1 = (vertex_before[0] + 1) % points_size;
289 size_t start2 = (vertex_before[1] + 1) % points_size;
290 size_t points_remaining = points_size;
292 // First polygon.
293 out_points[0].push_back(intersections[0]);
294 DCHECK_GE(vertex_before[1], start1);
295 for (size_t i = start1; i <= vertex_before[1]; i++) {
296 out_points[0].push_back(points_[i]);
297 --points_remaining;
299 out_points[0].push_back(intersections[1]);
301 // Second polygon.
302 out_points[1].push_back(intersections[1]);
303 size_t index = start2;
304 for (size_t i = 0; i < points_remaining; i++) {
305 out_points[1].push_back(points_[index % points_size]);
306 ++index;
308 out_points[1].push_back(intersections[0]);
310 // Give both polygons the original splitting polygon's ID, so that they'll
311 // still be sorted properly in co-planar instances.
312 scoped_ptr<DrawPolygon> poly1(
313 new DrawPolygon(original_ref_, out_points[0], normal_, order_index_));
314 scoped_ptr<DrawPolygon> poly2(
315 new DrawPolygon(original_ref_, out_points[1], normal_, order_index_));
317 DCHECK_GE(poly1->points().size(), 3u);
318 DCHECK_GE(poly2->points().size(), 3u);
320 if (SideCompare(*poly1, splitter) == BSP_FRONT) {
321 *front = poly1.Pass();
322 *back = poly2.Pass();
323 } else {
324 *front = poly2.Pass();
325 *back = poly1.Pass();
327 return true;
330 // This algorithm takes the first vertex in the polygon and uses that as a
331 // pivot point to fan out and create quads from the rest of the vertices.
332 // |offset| starts off as the second vertex, and then |op1| and |op2| indicate
333 // offset+1 and offset+2 respectively.
334 // After the first quad is created, the first vertex in the next quad is the
335 // same as all the rest, the pivot point. The second vertex in the next quad is
336 // the old |op2|, the last vertex added to the previous quad. This continues
337 // until all points are exhausted.
338 // The special case here is where there are only 3 points remaining, in which
339 // case we use the same values for vertex 3 and 4 to make a degenerate quad
340 // that represents a triangle.
341 void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const {
342 if (points_.size() <= 2)
343 return;
345 gfx::PointF first(points_[0].x(), points_[0].y());
346 size_t offset = 1;
347 while (offset < points_.size() - 1) {
348 size_t op1 = offset + 1;
349 size_t op2 = offset + 2;
350 if (op2 >= points_.size()) {
351 // It's going to be a degenerate triangle.
352 op2 = op1;
354 quads->push_back(
355 gfx::QuadF(first,
356 gfx::PointF(points_[offset].x(), points_[offset].y()),
357 gfx::PointF(points_[op1].x(), points_[op1].y()),
358 gfx::PointF(points_[op2].x(), points_[op2].y())));
359 offset = op2;
363 } // namespace cc