1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "media/cast/sender/vp8_encoder.h"
7 #include "base/logging.h"
8 #include "media/base/video_frame.h"
9 #include "media/cast/cast_defines.h"
10 #include "third_party/libvpx/source/libvpx/vpx/vp8cx.h"
17 // After a pause in the video stream, what is the maximum duration amount to
18 // pass to the encoder for the next frame (in terms of 1/max_fps sized periods)?
19 // This essentially controls the encoded size of the first frame that follows a
20 // pause in the video stream.
21 const int kRestartFramePeriods
= 3;
25 Vp8Encoder::Vp8Encoder(const VideoSenderConfig
& video_config
)
26 : cast_config_(video_config
),
27 use_multiple_video_buffers_(
28 cast_config_
.max_number_of_video_buffers_used
==
29 kNumberOfVp8VideoBuffers
),
30 key_frame_requested_(true),
31 bitrate_kbit_(cast_config_
.start_bitrate
/ 1000),
32 last_encoded_frame_id_(kStartFrameId
),
33 last_acked_frame_id_(kStartFrameId
),
34 undroppable_frames_(0) {
35 config_
.g_timebase
.den
= 0; // Not initialized.
37 for (int i
= 0; i
< kNumberOfVp8VideoBuffers
; ++i
) {
38 buffer_state_
[i
].frame_id
= last_encoded_frame_id_
;
39 buffer_state_
[i
].state
= kBufferStartState
;
42 // VP8 have 3 buffers available for prediction, with
43 // max_number_of_video_buffers_used set to 1 we maximize the coding efficiency
44 // however in this mode we can not skip frames in the receiver to catch up
45 // after a temporary network outage; with max_number_of_video_buffers_used
46 // set to 3 we allow 2 frames to be skipped by the receiver without error
48 DCHECK(cast_config_
.max_number_of_video_buffers_used
== 1 ||
49 cast_config_
.max_number_of_video_buffers_used
==
50 kNumberOfVp8VideoBuffers
)
51 << "Invalid argument";
53 thread_checker_
.DetachFromThread();
56 Vp8Encoder::~Vp8Encoder() {
57 DCHECK(thread_checker_
.CalledOnValidThread());
59 vpx_codec_destroy(&encoder_
);
62 void Vp8Encoder::Initialize() {
63 DCHECK(thread_checker_
.CalledOnValidThread());
64 DCHECK(!is_initialized());
65 // The encoder will be created/configured when the first frame encode is
69 void Vp8Encoder::ConfigureForNewFrameSize(const gfx::Size
& frame_size
) {
70 if (is_initialized()) {
71 // Workaround for VP8 bug: If the new size is strictly less-than-or-equal to
72 // the old size, in terms of area, the existing encoder instance can
73 // continue. Otherwise, completely tear-down and re-create a new encoder to
74 // avoid a shutdown crash.
75 if (frame_size
.GetArea() <= gfx::Size(config_
.g_w
, config_
.g_h
).GetArea() &&
76 !use_multiple_video_buffers_
) {
77 DVLOG(1) << "Continuing to use existing encoder at smaller frame size: "
78 << gfx::Size(config_
.g_w
, config_
.g_h
).ToString() << " --> "
79 << frame_size
.ToString();
80 config_
.g_w
= frame_size
.width();
81 config_
.g_h
= frame_size
.height();
82 if (vpx_codec_enc_config_set(&encoder_
, &config_
) == VPX_CODEC_OK
)
84 DVLOG(1) << "libvpx rejected the attempt to use a smaller frame size in "
85 "the current instance.";
88 DVLOG(1) << "Destroying/Re-Creating encoder for larger frame size: "
89 << gfx::Size(config_
.g_w
, config_
.g_h
).ToString() << " --> "
90 << frame_size
.ToString();
91 vpx_codec_destroy(&encoder_
);
93 DVLOG(1) << "Creating encoder for the first frame; size: "
94 << frame_size
.ToString();
97 // Reset multi-buffer mode state.
98 last_acked_frame_id_
= last_encoded_frame_id_
;
99 undroppable_frames_
= 0;
100 for (int i
= 0; i
< kNumberOfVp8VideoBuffers
; ++i
) {
101 buffer_state_
[i
].frame_id
= last_encoded_frame_id_
;
102 buffer_state_
[i
].state
= kBufferStartState
;
105 // Populate encoder configuration with default values.
106 CHECK_EQ(vpx_codec_enc_config_default(vpx_codec_vp8_cx(), &config_
, 0),
109 config_
.g_threads
= cast_config_
.number_of_encode_threads
;
110 config_
.g_w
= frame_size
.width();
111 config_
.g_h
= frame_size
.height();
112 // Set the timebase to match that of base::TimeDelta.
113 config_
.g_timebase
.num
= 1;
114 config_
.g_timebase
.den
= base::Time::kMicrosecondsPerSecond
;
115 if (use_multiple_video_buffers_
) {
116 // We must enable error resilience when we use multiple buffers, due to
117 // codec requirements.
118 config_
.g_error_resilient
= 1;
120 // |g_pass| and |g_lag_in_frames| must be "one pass" and zero, respectively,
121 // in order for VP8 to support changing frame sizes during encoding:
122 config_
.g_pass
= VPX_RC_ONE_PASS
;
123 config_
.g_lag_in_frames
= 0; // Immediate data output for each frame.
125 // Rate control settings.
126 config_
.rc_dropframe_thresh
= 0; // The encoder may not drop any frames.
127 config_
.rc_resize_allowed
= 0; // TODO(miu): Why not? Investigate this.
128 config_
.rc_end_usage
= VPX_CBR
;
129 config_
.rc_target_bitrate
= bitrate_kbit_
;
130 config_
.rc_min_quantizer
= cast_config_
.min_qp
;
131 config_
.rc_max_quantizer
= cast_config_
.max_qp
;
132 // TODO(miu): Revisit these now that the encoder is being successfully
134 config_
.rc_undershoot_pct
= 100;
135 config_
.rc_overshoot_pct
= 15;
136 // TODO(miu): Document why these rc_buf_*_sz values were chosen and/or
137 // research for better values. Should they be computed from the target
139 config_
.rc_buf_initial_sz
= 500;
140 config_
.rc_buf_optimal_sz
= 600;
141 config_
.rc_buf_sz
= 1000;
143 config_
.kf_mode
= VPX_KF_DISABLED
;
145 vpx_codec_flags_t flags
= 0;
146 CHECK_EQ(vpx_codec_enc_init(&encoder_
, vpx_codec_vp8_cx(), &config_
, flags
),
149 // Raise the threshold for considering macroblocks as static. The default is
150 // zero, so this setting makes the encoder less sensitive to motion. This
151 // lowers the probability of needing to utilize more CPU to search for motion
153 CHECK_EQ(vpx_codec_control(&encoder_
, VP8E_SET_STATIC_THRESHOLD
, 1),
156 // Improve quality by enabling sets of codec features that utilize more CPU.
157 // The default is zero, with increasingly more CPU to be used as the value is
159 // TODO(miu): Document why this value was chosen and expected behaviors.
160 // Should this be dynamic w.r.t. hardware performance?
161 CHECK_EQ(vpx_codec_control(&encoder_
, VP8E_SET_CPUUSED
, -6), VPX_CODEC_OK
);
164 void Vp8Encoder::Encode(const scoped_refptr
<media::VideoFrame
>& video_frame
,
165 const base::TimeTicks
& reference_time
,
166 SenderEncodedFrame
* encoded_frame
) {
167 DCHECK(thread_checker_
.CalledOnValidThread());
168 DCHECK(encoded_frame
);
170 // Note: This is used to compute the |deadline_utilization| and so it uses the
171 // real-world clock instead of the CastEnvironment clock, the latter of which
172 // might be simulated.
173 const base::TimeTicks start_time
= base::TimeTicks::Now();
175 // Initialize on-demand. Later, if the video frame size has changed, update
176 // the encoder configuration.
177 const gfx::Size frame_size
= video_frame
->visible_rect().size();
178 if (!is_initialized() || gfx::Size(config_
.g_w
, config_
.g_h
) != frame_size
)
179 ConfigureForNewFrameSize(frame_size
);
181 uint32 latest_frame_id_to_reference
;
182 Vp8Buffers buffer_to_update
;
183 vpx_codec_flags_t flags
= 0;
184 if (key_frame_requested_
) {
185 flags
= VPX_EFLAG_FORCE_KF
;
187 latest_frame_id_to_reference
= last_encoded_frame_id_
+ 1;
188 // We can pick any buffer as buffer_to_update since we update
190 buffer_to_update
= kLastBuffer
;
192 // Reference all acked frames (buffers).
193 latest_frame_id_to_reference
= GetCodecReferenceFlags(&flags
);
194 buffer_to_update
= GetNextBufferToUpdate();
195 GetCodecUpdateFlags(buffer_to_update
, &flags
);
198 // Wrapper for vpx_codec_encode() to access the YUV data in the |video_frame|.
199 // Only the VISIBLE rectangle within |video_frame| is exposed to the codec.
200 vpx_image_t vpx_image
;
201 vpx_image_t
* const result
= vpx_img_wrap(
207 video_frame
->data(VideoFrame::kYPlane
));
208 DCHECK_EQ(result
, &vpx_image
);
209 vpx_image
.planes
[VPX_PLANE_Y
] =
210 video_frame
->visible_data(VideoFrame::kYPlane
);
211 vpx_image
.planes
[VPX_PLANE_U
] =
212 video_frame
->visible_data(VideoFrame::kUPlane
);
213 vpx_image
.planes
[VPX_PLANE_V
] =
214 video_frame
->visible_data(VideoFrame::kVPlane
);
215 vpx_image
.stride
[VPX_PLANE_Y
] = video_frame
->stride(VideoFrame::kYPlane
);
216 vpx_image
.stride
[VPX_PLANE_U
] = video_frame
->stride(VideoFrame::kUPlane
);
217 vpx_image
.stride
[VPX_PLANE_V
] = video_frame
->stride(VideoFrame::kVPlane
);
219 // The frame duration given to the VP8 codec affects a number of important
220 // behaviors, including: per-frame bandwidth, CPU time spent encoding,
221 // temporal quality trade-offs, and key/golden/alt-ref frame generation
222 // intervals. Bound the prediction to account for the fact that the frame
223 // rate can be highly variable, including long pauses in the video stream.
224 const base::TimeDelta minimum_frame_duration
=
225 base::TimeDelta::FromSecondsD(1.0 / cast_config_
.max_frame_rate
);
226 const base::TimeDelta maximum_frame_duration
=
227 base::TimeDelta::FromSecondsD(static_cast<double>(kRestartFramePeriods
) /
228 cast_config_
.max_frame_rate
);
229 base::TimeDelta predicted_frame_duration
;
230 if (!video_frame
->metadata()->GetTimeDelta(
231 media::VideoFrameMetadata::FRAME_DURATION
,
232 &predicted_frame_duration
) ||
233 predicted_frame_duration
<= base::TimeDelta()) {
234 // The source of the video frame did not provide the frame duration. Use
235 // the actual amount of time between the current and previous frame as a
236 // prediction for the next frame's duration.
237 predicted_frame_duration
= video_frame
->timestamp() - last_frame_timestamp_
;
239 predicted_frame_duration
=
240 std::max(minimum_frame_duration
,
241 std::min(maximum_frame_duration
, predicted_frame_duration
));
242 last_frame_timestamp_
= video_frame
->timestamp();
244 // Encode the frame. The presentation time stamp argument here is fixed to
245 // zero to force the encoder to base its single-frame bandwidth calculations
246 // entirely on |predicted_frame_duration| and the target bitrate setting being
247 // micro-managed via calls to UpdateRates().
248 CHECK_EQ(vpx_codec_encode(&encoder_
,
251 predicted_frame_duration
.InMicroseconds(),
255 << "BUG: Invalid arguments passed to vpx_codec_encode().";
257 // Pull data from the encoder, populating a new EncodedFrame.
258 encoded_frame
->frame_id
= ++last_encoded_frame_id_
;
259 const vpx_codec_cx_pkt_t
* pkt
= NULL
;
260 vpx_codec_iter_t iter
= NULL
;
261 while ((pkt
= vpx_codec_get_cx_data(&encoder_
, &iter
)) != NULL
) {
262 if (pkt
->kind
!= VPX_CODEC_CX_FRAME_PKT
)
264 if (pkt
->data
.frame
.flags
& VPX_FRAME_IS_KEY
) {
265 // TODO(hubbe): Replace "dependency" with a "bool is_key_frame".
266 encoded_frame
->dependency
= EncodedFrame::KEY
;
267 encoded_frame
->referenced_frame_id
= encoded_frame
->frame_id
;
269 encoded_frame
->dependency
= EncodedFrame::DEPENDENT
;
270 // Frame dependencies could theoretically be relaxed by looking for the
271 // VPX_FRAME_IS_DROPPABLE flag, but in recent testing (Oct 2014), this
272 // flag never seems to be set.
273 encoded_frame
->referenced_frame_id
= latest_frame_id_to_reference
;
275 encoded_frame
->rtp_timestamp
=
276 TimeDeltaToRtpDelta(video_frame
->timestamp(), kVideoFrequency
);
277 encoded_frame
->reference_time
= reference_time
;
278 encoded_frame
->data
.assign(
279 static_cast<const uint8
*>(pkt
->data
.frame
.buf
),
280 static_cast<const uint8
*>(pkt
->data
.frame
.buf
) + pkt
->data
.frame
.sz
);
281 break; // Done, since all data is provided in one CX_FRAME_PKT packet.
283 DCHECK(!encoded_frame
->data
.empty())
284 << "BUG: Encoder must provide data since lagged encoding is disabled.";
286 // Compute deadline utilization as the real-world time elapsed divided by the
288 const base::TimeDelta processing_time
= base::TimeTicks::Now() - start_time
;
289 encoded_frame
->deadline_utilization
=
290 processing_time
.InSecondsF() / predicted_frame_duration
.InSecondsF();
292 // Compute lossy utilization. The VP8 encoder took an estimated guess at what
293 // quantizer value would produce an encoded frame size as close to the target
294 // as possible. Now that the frame has been encoded and the number of bytes
295 // is known, the perfect quantizer value (i.e., the one that should have been
296 // used) can be determined. This perfect quantizer is then normalized and
297 // used as the lossy utilization.
298 const double actual_bitrate
=
299 encoded_frame
->data
.size() * 8.0 / predicted_frame_duration
.InSecondsF();
300 const double target_bitrate
= 1000.0 * config_
.rc_target_bitrate
;
301 DCHECK_GT(target_bitrate
, 0.0);
302 const double bitrate_utilization
= actual_bitrate
/ target_bitrate
;
304 CHECK_EQ(vpx_codec_control(&encoder_
, VP8E_GET_LAST_QUANTIZER_64
, &quantizer
),
306 const double perfect_quantizer
= bitrate_utilization
* std::max(0, quantizer
);
307 // Side note: If it was possible for the encoder to encode within the target
308 // number of bytes, the |perfect_quantizer| will be in the range [0.0,63.0].
309 // If it was never possible, the value will be greater than 63.0.
310 encoded_frame
->lossy_utilization
= perfect_quantizer
/ 63.0;
312 DVLOG(2) << "VP8 encoded frame_id " << encoded_frame
->frame_id
313 << ", sized: " << encoded_frame
->data
.size()
314 << ", deadline_utilization: " << encoded_frame
->deadline_utilization
315 << ", lossy_utilization: " << encoded_frame
->lossy_utilization
316 << " (quantizer chosen by the encoder was " << quantizer
<< ')';
318 if (encoded_frame
->dependency
== EncodedFrame::KEY
) {
319 key_frame_requested_
= false;
321 for (int i
= 0; i
< kNumberOfVp8VideoBuffers
; ++i
) {
322 buffer_state_
[i
].state
= kBufferSent
;
323 buffer_state_
[i
].frame_id
= encoded_frame
->frame_id
;
326 if (buffer_to_update
!= kNoBuffer
) {
327 buffer_state_
[buffer_to_update
].state
= kBufferSent
;
328 buffer_state_
[buffer_to_update
].frame_id
= encoded_frame
->frame_id
;
333 uint32
Vp8Encoder::GetCodecReferenceFlags(vpx_codec_flags_t
* flags
) {
334 if (!use_multiple_video_buffers_
)
335 return last_encoded_frame_id_
;
337 const uint32 kMagicFrameOffset
= 512;
338 // We set latest_frame_to_reference to an old frame so that
339 // IsNewerFrameId will work correctly.
340 uint32 latest_frame_to_reference
=
341 last_encoded_frame_id_
- kMagicFrameOffset
;
343 // Reference all acked frames.
344 // TODO(hubbe): We may also want to allow references to the
345 // last encoded frame, if that frame was assigned to a buffer.
346 for (int i
= 0; i
< kNumberOfVp8VideoBuffers
; ++i
) {
347 if (buffer_state_
[i
].state
== kBufferAcked
) {
348 if (IsNewerFrameId(buffer_state_
[i
].frame_id
,
349 latest_frame_to_reference
)) {
350 latest_frame_to_reference
= buffer_state_
[i
].frame_id
;
355 *flags
|= VP8_EFLAG_NO_REF_ARF
;
358 *flags
|= VP8_EFLAG_NO_REF_GF
;
361 *flags
|= VP8_EFLAG_NO_REF_LAST
;
367 if (latest_frame_to_reference
==
368 last_encoded_frame_id_
- kMagicFrameOffset
) {
369 // We have nothing to reference, it's kind of like a key frame,
370 // but doesn't reset buffers.
371 latest_frame_to_reference
= last_encoded_frame_id_
+ 1;
374 return latest_frame_to_reference
;
377 Vp8Encoder::Vp8Buffers
Vp8Encoder::GetNextBufferToUpdate() {
378 if (!use_multiple_video_buffers_
)
381 // The goal here is to make sure that we always keep one ACKed
382 // buffer while trying to get an ACK for a newer buffer as we go.
383 // Here are the rules for which buffer to select for update:
384 // 1. If there is a buffer in state kStartState, use it.
385 // 2. If there is a buffer other than the oldest buffer
386 // which is Acked, use the oldest buffer.
387 // 3. If there are Sent buffers which are older than
388 // latest_acked_frame_, use the oldest one.
389 // 4. If all else fails, just overwrite the newest buffer,
390 // but no more than 3 times in a row.
391 // TODO(hubbe): Figure out if 3 is optimal.
392 // Note, rule 1-3 describe cases where there is a "free" buffer
393 // that we can use. Rule 4 describes what happens when there is
394 // no free buffer available.
396 // Buffers, sorted from oldest frame to newest.
397 Vp8Encoder::Vp8Buffers buffers
[kNumberOfVp8VideoBuffers
];
399 for (int i
= 0; i
< kNumberOfVp8VideoBuffers
; ++i
) {
400 Vp8Encoder::Vp8Buffers buffer
= static_cast<Vp8Encoder::Vp8Buffers
>(i
);
403 if (buffer_state_
[buffer
].state
== kBufferStartState
) {
404 undroppable_frames_
= 0;
407 buffers
[buffer
] = buffer
;
410 // Sorting three elements with selection sort.
411 for (int i
= 0; i
< kNumberOfVp8VideoBuffers
- 1; i
++) {
412 for (int j
= i
+ 1; j
< kNumberOfVp8VideoBuffers
; j
++) {
413 if (IsOlderFrameId(buffer_state_
[buffers
[j
]].frame_id
,
414 buffer_state_
[buffers
[i
]].frame_id
)) {
415 std::swap(buffers
[i
], buffers
[j
]);
421 if (buffer_state_
[buffers
[1]].state
== kBufferAcked
||
422 buffer_state_
[buffers
[2]].state
== kBufferAcked
) {
423 undroppable_frames_
= 0;
428 for (int i
= 0; i
< kNumberOfVp8VideoBuffers
; i
++) {
429 if (buffer_state_
[buffers
[i
]].state
== kBufferSent
&&
430 IsOlderFrameId(buffer_state_
[buffers
[i
]].frame_id
,
431 last_acked_frame_id_
)) {
432 undroppable_frames_
= 0;
438 if (undroppable_frames_
>= 3) {
439 undroppable_frames_
= 0;
442 undroppable_frames_
++;
443 return buffers
[kNumberOfVp8VideoBuffers
- 1];
447 void Vp8Encoder::GetCodecUpdateFlags(Vp8Buffers buffer_to_update
,
448 vpx_codec_flags_t
* flags
) {
449 if (!use_multiple_video_buffers_
)
452 // Update at most one buffer, except for key-frames.
453 switch (buffer_to_update
) {
455 *flags
|= VP8_EFLAG_NO_UPD_GF
;
456 *flags
|= VP8_EFLAG_NO_UPD_LAST
;
459 *flags
|= VP8_EFLAG_NO_UPD_GF
;
460 *flags
|= VP8_EFLAG_NO_UPD_ARF
;
463 *flags
|= VP8_EFLAG_NO_UPD_ARF
;
464 *flags
|= VP8_EFLAG_NO_UPD_LAST
;
467 *flags
|= VP8_EFLAG_NO_UPD_ARF
;
468 *flags
|= VP8_EFLAG_NO_UPD_GF
;
469 *flags
|= VP8_EFLAG_NO_UPD_LAST
;
470 *flags
|= VP8_EFLAG_NO_UPD_ENTROPY
;
475 void Vp8Encoder::UpdateRates(uint32 new_bitrate
) {
476 DCHECK(thread_checker_
.CalledOnValidThread());
478 if (!is_initialized())
481 uint32 new_bitrate_kbit
= new_bitrate
/ 1000;
482 if (config_
.rc_target_bitrate
== new_bitrate_kbit
)
485 config_
.rc_target_bitrate
= bitrate_kbit_
= new_bitrate_kbit
;
487 // Update encoder context.
488 if (vpx_codec_enc_config_set(&encoder_
, &config_
)) {
489 NOTREACHED() << "Invalid return value";
492 VLOG(1) << "VP8 new rc_target_bitrate: " << new_bitrate_kbit
<< " kbps";
495 void Vp8Encoder::LatestFrameIdToReference(uint32 frame_id
) {
496 DCHECK(thread_checker_
.CalledOnValidThread());
497 if (!use_multiple_video_buffers_
)
500 VLOG(2) << "VP8 ok to reference frame:" << static_cast<int>(frame_id
);
501 for (int i
= 0; i
< kNumberOfVp8VideoBuffers
; ++i
) {
502 if (frame_id
== buffer_state_
[i
].frame_id
) {
503 buffer_state_
[i
].state
= kBufferAcked
;
507 if (IsOlderFrameId(last_acked_frame_id_
, frame_id
)) {
508 last_acked_frame_id_
= frame_id
;
512 void Vp8Encoder::GenerateKeyFrame() {
513 DCHECK(thread_checker_
.CalledOnValidThread());
514 key_frame_requested_
= true;