1 // Copyright 2011 Google Inc. All Rights Reserved.
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
10 // SSE2 version of speed-critical encoding functions.
12 // Author: Christian Duvivier (cduvivier@google.com)
16 #if defined(WEBP_USE_SSE2)
17 #include <stdlib.h> // for abs()
18 #include <emmintrin.h>
20 #include "../enc/cost.h"
21 #include "../enc/vp8enci.h"
22 #include "../utils/utils.h"
24 //------------------------------------------------------------------------------
25 // Quite useful macro for debugging. Left here for convenience.
29 static void PrintReg(const __m128i r
, const char* const name
, int size
) {
39 printf("%s\t: ", name
);
41 for (n
= 0; n
< 16; ++n
) printf("%.2x ", tmp
.i8
[n
]);
42 } else if (size
== 16) {
43 for (n
= 0; n
< 8; ++n
) printf("%.4x ", tmp
.i16
[n
]);
44 } else if (size
== 32) {
45 for (n
= 0; n
< 4; ++n
) printf("%.8x ", tmp
.i32
[n
]);
47 for (n
= 0; n
< 2; ++n
) printf("%.16lx ", tmp
.i64
[n
]);
53 //------------------------------------------------------------------------------
54 // Compute susceptibility based on DCT-coeff histograms:
55 // the higher, the "easier" the macroblock is to compress.
57 static void CollectHistogram(const uint8_t* ref
, const uint8_t* pred
,
58 int start_block
, int end_block
,
59 VP8Histogram
* const histo
) {
60 const __m128i max_coeff_thresh
= _mm_set1_epi16(MAX_COEFF_THRESH
);
62 for (j
= start_block
; j
< end_block
; ++j
) {
66 VP8FTransform(ref
+ VP8DspScan
[j
], pred
+ VP8DspScan
[j
], out
);
68 // Convert coefficients to bin (within out[]).
71 const __m128i out0
= _mm_loadu_si128((__m128i
*)&out
[0]);
72 const __m128i out1
= _mm_loadu_si128((__m128i
*)&out
[8]);
73 // sign(out) = out >> 15 (0x0000 if positive, 0xffff if negative)
74 const __m128i sign0
= _mm_srai_epi16(out0
, 15);
75 const __m128i sign1
= _mm_srai_epi16(out1
, 15);
76 // abs(out) = (out ^ sign) - sign
77 const __m128i xor0
= _mm_xor_si128(out0
, sign0
);
78 const __m128i xor1
= _mm_xor_si128(out1
, sign1
);
79 const __m128i abs0
= _mm_sub_epi16(xor0
, sign0
);
80 const __m128i abs1
= _mm_sub_epi16(xor1
, sign1
);
82 const __m128i v0
= _mm_srai_epi16(abs0
, 3);
83 const __m128i v1
= _mm_srai_epi16(abs1
, 3);
84 // bin = min(v, MAX_COEFF_THRESH)
85 const __m128i bin0
= _mm_min_epi16(v0
, max_coeff_thresh
);
86 const __m128i bin1
= _mm_min_epi16(v1
, max_coeff_thresh
);
88 _mm_storeu_si128((__m128i
*)&out
[0], bin0
);
89 _mm_storeu_si128((__m128i
*)&out
[8], bin1
);
92 // Convert coefficients to bin.
93 for (k
= 0; k
< 16; ++k
) {
94 histo
->distribution
[out
[k
]]++;
99 //------------------------------------------------------------------------------
100 // Transforms (Paragraph 14.4)
102 // Does one or two inverse transforms.
103 static void ITransform(const uint8_t* ref
, const int16_t* in
, uint8_t* dst
,
105 // This implementation makes use of 16-bit fixed point versions of two
106 // multiply constants:
107 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
108 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
110 // To be able to use signed 16-bit integers, we use the following trick to
111 // have constants within range:
112 // - Associated constants are obtained by subtracting the 16-bit fixed point
114 // k = K - (1 << 16) => K = k + (1 << 16)
115 // K1 = 85267 => k1 = 20091
116 // K2 = 35468 => k2 = -30068
117 // - The multiplication of a variable by a constant become the sum of the
118 // variable and the multiplication of that variable by the associated
120 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
121 const __m128i k1
= _mm_set1_epi16(20091);
122 const __m128i k2
= _mm_set1_epi16(-30068);
123 __m128i T0
, T1
, T2
, T3
;
125 // Load and concatenate the transform coefficients (we'll do two inverse
126 // transforms in parallel). In the case of only one inverse transform, the
127 // second half of the vectors will just contain random value we'll never
129 __m128i in0
, in1
, in2
, in3
;
131 in0
= _mm_loadl_epi64((__m128i
*)&in
[0]);
132 in1
= _mm_loadl_epi64((__m128i
*)&in
[4]);
133 in2
= _mm_loadl_epi64((__m128i
*)&in
[8]);
134 in3
= _mm_loadl_epi64((__m128i
*)&in
[12]);
135 // a00 a10 a20 a30 x x x x
136 // a01 a11 a21 a31 x x x x
137 // a02 a12 a22 a32 x x x x
138 // a03 a13 a23 a33 x x x x
140 const __m128i inB0
= _mm_loadl_epi64((__m128i
*)&in
[16]);
141 const __m128i inB1
= _mm_loadl_epi64((__m128i
*)&in
[20]);
142 const __m128i inB2
= _mm_loadl_epi64((__m128i
*)&in
[24]);
143 const __m128i inB3
= _mm_loadl_epi64((__m128i
*)&in
[28]);
144 in0
= _mm_unpacklo_epi64(in0
, inB0
);
145 in1
= _mm_unpacklo_epi64(in1
, inB1
);
146 in2
= _mm_unpacklo_epi64(in2
, inB2
);
147 in3
= _mm_unpacklo_epi64(in3
, inB3
);
148 // a00 a10 a20 a30 b00 b10 b20 b30
149 // a01 a11 a21 a31 b01 b11 b21 b31
150 // a02 a12 a22 a32 b02 b12 b22 b32
151 // a03 a13 a23 a33 b03 b13 b23 b33
155 // Vertical pass and subsequent transpose.
157 // First pass, c and d calculations are longer because of the "trick"
159 const __m128i a
= _mm_add_epi16(in0
, in2
);
160 const __m128i b
= _mm_sub_epi16(in0
, in2
);
161 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
162 const __m128i c1
= _mm_mulhi_epi16(in1
, k2
);
163 const __m128i c2
= _mm_mulhi_epi16(in3
, k1
);
164 const __m128i c3
= _mm_sub_epi16(in1
, in3
);
165 const __m128i c4
= _mm_sub_epi16(c1
, c2
);
166 const __m128i c
= _mm_add_epi16(c3
, c4
);
167 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
168 const __m128i d1
= _mm_mulhi_epi16(in1
, k1
);
169 const __m128i d2
= _mm_mulhi_epi16(in3
, k2
);
170 const __m128i d3
= _mm_add_epi16(in1
, in3
);
171 const __m128i d4
= _mm_add_epi16(d1
, d2
);
172 const __m128i d
= _mm_add_epi16(d3
, d4
);
175 const __m128i tmp0
= _mm_add_epi16(a
, d
);
176 const __m128i tmp1
= _mm_add_epi16(b
, c
);
177 const __m128i tmp2
= _mm_sub_epi16(b
, c
);
178 const __m128i tmp3
= _mm_sub_epi16(a
, d
);
180 // Transpose the two 4x4.
181 // a00 a01 a02 a03 b00 b01 b02 b03
182 // a10 a11 a12 a13 b10 b11 b12 b13
183 // a20 a21 a22 a23 b20 b21 b22 b23
184 // a30 a31 a32 a33 b30 b31 b32 b33
185 const __m128i transpose0_0
= _mm_unpacklo_epi16(tmp0
, tmp1
);
186 const __m128i transpose0_1
= _mm_unpacklo_epi16(tmp2
, tmp3
);
187 const __m128i transpose0_2
= _mm_unpackhi_epi16(tmp0
, tmp1
);
188 const __m128i transpose0_3
= _mm_unpackhi_epi16(tmp2
, tmp3
);
189 // a00 a10 a01 a11 a02 a12 a03 a13
190 // a20 a30 a21 a31 a22 a32 a23 a33
191 // b00 b10 b01 b11 b02 b12 b03 b13
192 // b20 b30 b21 b31 b22 b32 b23 b33
193 const __m128i transpose1_0
= _mm_unpacklo_epi32(transpose0_0
, transpose0_1
);
194 const __m128i transpose1_1
= _mm_unpacklo_epi32(transpose0_2
, transpose0_3
);
195 const __m128i transpose1_2
= _mm_unpackhi_epi32(transpose0_0
, transpose0_1
);
196 const __m128i transpose1_3
= _mm_unpackhi_epi32(transpose0_2
, transpose0_3
);
197 // a00 a10 a20 a30 a01 a11 a21 a31
198 // b00 b10 b20 b30 b01 b11 b21 b31
199 // a02 a12 a22 a32 a03 a13 a23 a33
200 // b02 b12 a22 b32 b03 b13 b23 b33
201 T0
= _mm_unpacklo_epi64(transpose1_0
, transpose1_1
);
202 T1
= _mm_unpackhi_epi64(transpose1_0
, transpose1_1
);
203 T2
= _mm_unpacklo_epi64(transpose1_2
, transpose1_3
);
204 T3
= _mm_unpackhi_epi64(transpose1_2
, transpose1_3
);
205 // a00 a10 a20 a30 b00 b10 b20 b30
206 // a01 a11 a21 a31 b01 b11 b21 b31
207 // a02 a12 a22 a32 b02 b12 b22 b32
208 // a03 a13 a23 a33 b03 b13 b23 b33
211 // Horizontal pass and subsequent transpose.
213 // First pass, c and d calculations are longer because of the "trick"
215 const __m128i four
= _mm_set1_epi16(4);
216 const __m128i dc
= _mm_add_epi16(T0
, four
);
217 const __m128i a
= _mm_add_epi16(dc
, T2
);
218 const __m128i b
= _mm_sub_epi16(dc
, T2
);
219 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
220 const __m128i c1
= _mm_mulhi_epi16(T1
, k2
);
221 const __m128i c2
= _mm_mulhi_epi16(T3
, k1
);
222 const __m128i c3
= _mm_sub_epi16(T1
, T3
);
223 const __m128i c4
= _mm_sub_epi16(c1
, c2
);
224 const __m128i c
= _mm_add_epi16(c3
, c4
);
225 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
226 const __m128i d1
= _mm_mulhi_epi16(T1
, k1
);
227 const __m128i d2
= _mm_mulhi_epi16(T3
, k2
);
228 const __m128i d3
= _mm_add_epi16(T1
, T3
);
229 const __m128i d4
= _mm_add_epi16(d1
, d2
);
230 const __m128i d
= _mm_add_epi16(d3
, d4
);
233 const __m128i tmp0
= _mm_add_epi16(a
, d
);
234 const __m128i tmp1
= _mm_add_epi16(b
, c
);
235 const __m128i tmp2
= _mm_sub_epi16(b
, c
);
236 const __m128i tmp3
= _mm_sub_epi16(a
, d
);
237 const __m128i shifted0
= _mm_srai_epi16(tmp0
, 3);
238 const __m128i shifted1
= _mm_srai_epi16(tmp1
, 3);
239 const __m128i shifted2
= _mm_srai_epi16(tmp2
, 3);
240 const __m128i shifted3
= _mm_srai_epi16(tmp3
, 3);
242 // Transpose the two 4x4.
243 // a00 a01 a02 a03 b00 b01 b02 b03
244 // a10 a11 a12 a13 b10 b11 b12 b13
245 // a20 a21 a22 a23 b20 b21 b22 b23
246 // a30 a31 a32 a33 b30 b31 b32 b33
247 const __m128i transpose0_0
= _mm_unpacklo_epi16(shifted0
, shifted1
);
248 const __m128i transpose0_1
= _mm_unpacklo_epi16(shifted2
, shifted3
);
249 const __m128i transpose0_2
= _mm_unpackhi_epi16(shifted0
, shifted1
);
250 const __m128i transpose0_3
= _mm_unpackhi_epi16(shifted2
, shifted3
);
251 // a00 a10 a01 a11 a02 a12 a03 a13
252 // a20 a30 a21 a31 a22 a32 a23 a33
253 // b00 b10 b01 b11 b02 b12 b03 b13
254 // b20 b30 b21 b31 b22 b32 b23 b33
255 const __m128i transpose1_0
= _mm_unpacklo_epi32(transpose0_0
, transpose0_1
);
256 const __m128i transpose1_1
= _mm_unpacklo_epi32(transpose0_2
, transpose0_3
);
257 const __m128i transpose1_2
= _mm_unpackhi_epi32(transpose0_0
, transpose0_1
);
258 const __m128i transpose1_3
= _mm_unpackhi_epi32(transpose0_2
, transpose0_3
);
259 // a00 a10 a20 a30 a01 a11 a21 a31
260 // b00 b10 b20 b30 b01 b11 b21 b31
261 // a02 a12 a22 a32 a03 a13 a23 a33
262 // b02 b12 a22 b32 b03 b13 b23 b33
263 T0
= _mm_unpacklo_epi64(transpose1_0
, transpose1_1
);
264 T1
= _mm_unpackhi_epi64(transpose1_0
, transpose1_1
);
265 T2
= _mm_unpacklo_epi64(transpose1_2
, transpose1_3
);
266 T3
= _mm_unpackhi_epi64(transpose1_2
, transpose1_3
);
267 // a00 a10 a20 a30 b00 b10 b20 b30
268 // a01 a11 a21 a31 b01 b11 b21 b31
269 // a02 a12 a22 a32 b02 b12 b22 b32
270 // a03 a13 a23 a33 b03 b13 b23 b33
273 // Add inverse transform to 'ref' and store.
275 const __m128i zero
= _mm_setzero_si128();
276 // Load the reference(s).
277 __m128i ref0
, ref1
, ref2
, ref3
;
279 // Load eight bytes/pixels per line.
280 ref0
= _mm_loadl_epi64((__m128i
*)&ref
[0 * BPS
]);
281 ref1
= _mm_loadl_epi64((__m128i
*)&ref
[1 * BPS
]);
282 ref2
= _mm_loadl_epi64((__m128i
*)&ref
[2 * BPS
]);
283 ref3
= _mm_loadl_epi64((__m128i
*)&ref
[3 * BPS
]);
285 // Load four bytes/pixels per line.
286 ref0
= _mm_cvtsi32_si128(*(int*)&ref
[0 * BPS
]);
287 ref1
= _mm_cvtsi32_si128(*(int*)&ref
[1 * BPS
]);
288 ref2
= _mm_cvtsi32_si128(*(int*)&ref
[2 * BPS
]);
289 ref3
= _mm_cvtsi32_si128(*(int*)&ref
[3 * BPS
]);
292 ref0
= _mm_unpacklo_epi8(ref0
, zero
);
293 ref1
= _mm_unpacklo_epi8(ref1
, zero
);
294 ref2
= _mm_unpacklo_epi8(ref2
, zero
);
295 ref3
= _mm_unpacklo_epi8(ref3
, zero
);
296 // Add the inverse transform(s).
297 ref0
= _mm_add_epi16(ref0
, T0
);
298 ref1
= _mm_add_epi16(ref1
, T1
);
299 ref2
= _mm_add_epi16(ref2
, T2
);
300 ref3
= _mm_add_epi16(ref3
, T3
);
301 // Unsigned saturate to 8b.
302 ref0
= _mm_packus_epi16(ref0
, ref0
);
303 ref1
= _mm_packus_epi16(ref1
, ref1
);
304 ref2
= _mm_packus_epi16(ref2
, ref2
);
305 ref3
= _mm_packus_epi16(ref3
, ref3
);
306 // Store the results.
308 // Store eight bytes/pixels per line.
309 _mm_storel_epi64((__m128i
*)&dst
[0 * BPS
], ref0
);
310 _mm_storel_epi64((__m128i
*)&dst
[1 * BPS
], ref1
);
311 _mm_storel_epi64((__m128i
*)&dst
[2 * BPS
], ref2
);
312 _mm_storel_epi64((__m128i
*)&dst
[3 * BPS
], ref3
);
314 // Store four bytes/pixels per line.
315 *((int32_t *)&dst
[0 * BPS
]) = _mm_cvtsi128_si32(ref0
);
316 *((int32_t *)&dst
[1 * BPS
]) = _mm_cvtsi128_si32(ref1
);
317 *((int32_t *)&dst
[2 * BPS
]) = _mm_cvtsi128_si32(ref2
);
318 *((int32_t *)&dst
[3 * BPS
]) = _mm_cvtsi128_si32(ref3
);
323 static void FTransform(const uint8_t* src
, const uint8_t* ref
, int16_t* out
) {
324 const __m128i zero
= _mm_setzero_si128();
325 const __m128i seven
= _mm_set1_epi16(7);
326 const __m128i k937
= _mm_set1_epi32(937);
327 const __m128i k1812
= _mm_set1_epi32(1812);
328 const __m128i k51000
= _mm_set1_epi32(51000);
329 const __m128i k12000_plus_one
= _mm_set1_epi32(12000 + (1 << 16));
330 const __m128i k5352_2217
= _mm_set_epi16(5352, 2217, 5352, 2217,
331 5352, 2217, 5352, 2217);
332 const __m128i k2217_5352
= _mm_set_epi16(2217, -5352, 2217, -5352,
333 2217, -5352, 2217, -5352);
334 const __m128i k88p
= _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
335 const __m128i k88m
= _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
336 const __m128i k5352_2217p
= _mm_set_epi16(2217, 5352, 2217, 5352,
337 2217, 5352, 2217, 5352);
338 const __m128i k5352_2217m
= _mm_set_epi16(-5352, 2217, -5352, 2217,
339 -5352, 2217, -5352, 2217);
343 // Difference between src and ref and initial transpose.
345 // Load src and convert to 16b.
346 const __m128i src0
= _mm_loadl_epi64((__m128i
*)&src
[0 * BPS
]);
347 const __m128i src1
= _mm_loadl_epi64((__m128i
*)&src
[1 * BPS
]);
348 const __m128i src2
= _mm_loadl_epi64((__m128i
*)&src
[2 * BPS
]);
349 const __m128i src3
= _mm_loadl_epi64((__m128i
*)&src
[3 * BPS
]);
350 const __m128i src_0
= _mm_unpacklo_epi8(src0
, zero
);
351 const __m128i src_1
= _mm_unpacklo_epi8(src1
, zero
);
352 const __m128i src_2
= _mm_unpacklo_epi8(src2
, zero
);
353 const __m128i src_3
= _mm_unpacklo_epi8(src3
, zero
);
354 // Load ref and convert to 16b.
355 const __m128i ref0
= _mm_loadl_epi64((__m128i
*)&ref
[0 * BPS
]);
356 const __m128i ref1
= _mm_loadl_epi64((__m128i
*)&ref
[1 * BPS
]);
357 const __m128i ref2
= _mm_loadl_epi64((__m128i
*)&ref
[2 * BPS
]);
358 const __m128i ref3
= _mm_loadl_epi64((__m128i
*)&ref
[3 * BPS
]);
359 const __m128i ref_0
= _mm_unpacklo_epi8(ref0
, zero
);
360 const __m128i ref_1
= _mm_unpacklo_epi8(ref1
, zero
);
361 const __m128i ref_2
= _mm_unpacklo_epi8(ref2
, zero
);
362 const __m128i ref_3
= _mm_unpacklo_epi8(ref3
, zero
);
363 // Compute difference. -> 00 01 02 03 00 00 00 00
364 const __m128i diff0
= _mm_sub_epi16(src_0
, ref_0
);
365 const __m128i diff1
= _mm_sub_epi16(src_1
, ref_1
);
366 const __m128i diff2
= _mm_sub_epi16(src_2
, ref_2
);
367 const __m128i diff3
= _mm_sub_epi16(src_3
, ref_3
);
370 // Unpack and shuffle
371 // 00 01 02 03 0 0 0 0
372 // 10 11 12 13 0 0 0 0
373 // 20 21 22 23 0 0 0 0
374 // 30 31 32 33 0 0 0 0
375 const __m128i shuf01
= _mm_unpacklo_epi32(diff0
, diff1
);
376 const __m128i shuf23
= _mm_unpacklo_epi32(diff2
, diff3
);
377 // 00 01 10 11 02 03 12 13
378 // 20 21 30 31 22 23 32 33
379 const __m128i shuf01_p
=
380 _mm_shufflehi_epi16(shuf01
, _MM_SHUFFLE(2, 3, 0, 1));
381 const __m128i shuf23_p
=
382 _mm_shufflehi_epi16(shuf23
, _MM_SHUFFLE(2, 3, 0, 1));
383 // 00 01 10 11 03 02 13 12
384 // 20 21 30 31 23 22 33 32
385 const __m128i s01
= _mm_unpacklo_epi64(shuf01_p
, shuf23_p
);
386 const __m128i s32
= _mm_unpackhi_epi64(shuf01_p
, shuf23_p
);
387 // 00 01 10 11 20 21 30 31
388 // 03 02 13 12 23 22 33 32
389 const __m128i a01
= _mm_add_epi16(s01
, s32
);
390 const __m128i a32
= _mm_sub_epi16(s01
, s32
);
391 // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
392 // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
394 const __m128i tmp0
= _mm_madd_epi16(a01
, k88p
); // [ (a0 + a1) << 3, ... ]
395 const __m128i tmp2
= _mm_madd_epi16(a01
, k88m
); // [ (a0 - a1) << 3, ... ]
396 const __m128i tmp1_1
= _mm_madd_epi16(a32
, k5352_2217p
);
397 const __m128i tmp3_1
= _mm_madd_epi16(a32
, k5352_2217m
);
398 const __m128i tmp1_2
= _mm_add_epi32(tmp1_1
, k1812
);
399 const __m128i tmp3_2
= _mm_add_epi32(tmp3_1
, k937
);
400 const __m128i tmp1
= _mm_srai_epi32(tmp1_2
, 9);
401 const __m128i tmp3
= _mm_srai_epi32(tmp3_2
, 9);
402 const __m128i s03
= _mm_packs_epi32(tmp0
, tmp2
);
403 const __m128i s12
= _mm_packs_epi32(tmp1
, tmp3
);
404 const __m128i s_lo
= _mm_unpacklo_epi16(s03
, s12
); // 0 1 0 1 0 1...
405 const __m128i s_hi
= _mm_unpackhi_epi16(s03
, s12
); // 2 3 2 3 2 3
406 const __m128i v23
= _mm_unpackhi_epi32(s_lo
, s_hi
);
407 v01
= _mm_unpacklo_epi32(s_lo
, s_hi
);
408 v32
= _mm_shuffle_epi32(v23
, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2..
413 // Same operations are done on the (0,3) and (1,2) pairs.
418 const __m128i a01
= _mm_add_epi16(v01
, v32
);
419 const __m128i a32
= _mm_sub_epi16(v01
, v32
);
420 const __m128i a11
= _mm_unpackhi_epi64(a01
, a01
);
421 const __m128i a22
= _mm_unpackhi_epi64(a32
, a32
);
422 const __m128i a01_plus_7
= _mm_add_epi16(a01
, seven
);
424 // d0 = (a0 + a1 + 7) >> 4;
425 // d2 = (a0 - a1 + 7) >> 4;
426 const __m128i c0
= _mm_add_epi16(a01_plus_7
, a11
);
427 const __m128i c2
= _mm_sub_epi16(a01_plus_7
, a11
);
428 const __m128i d0
= _mm_srai_epi16(c0
, 4);
429 const __m128i d2
= _mm_srai_epi16(c2
, 4);
431 // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
432 // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
433 const __m128i b23
= _mm_unpacklo_epi16(a22
, a32
);
434 const __m128i c1
= _mm_madd_epi16(b23
, k5352_2217
);
435 const __m128i c3
= _mm_madd_epi16(b23
, k2217_5352
);
436 const __m128i d1
= _mm_add_epi32(c1
, k12000_plus_one
);
437 const __m128i d3
= _mm_add_epi32(c3
, k51000
);
438 const __m128i e1
= _mm_srai_epi32(d1
, 16);
439 const __m128i e3
= _mm_srai_epi32(d3
, 16);
440 const __m128i f1
= _mm_packs_epi32(e1
, e1
);
441 const __m128i f3
= _mm_packs_epi32(e3
, e3
);
442 // f1 = f1 + (a3 != 0);
443 // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
444 // desired (0, 1), we add one earlier through k12000_plus_one.
445 // -> f1 = f1 + 1 - (a3 == 0)
446 const __m128i g1
= _mm_add_epi16(f1
, _mm_cmpeq_epi16(a32
, zero
));
448 const __m128i d0_g1
= _mm_unpacklo_epi64(d0
, g1
);
449 const __m128i d2_f3
= _mm_unpacklo_epi64(d2
, f3
);
450 _mm_storeu_si128((__m128i
*)&out
[0], d0_g1
);
451 _mm_storeu_si128((__m128i
*)&out
[8], d2_f3
);
455 static void FTransformWHT(const int16_t* in
, int16_t* out
) {
458 for (i
= 0; i
< 4; ++i
, in
+= 64) {
459 const int a0
= (in
[0 * 16] + in
[2 * 16]);
460 const int a1
= (in
[1 * 16] + in
[3 * 16]);
461 const int a2
= (in
[1 * 16] - in
[3 * 16]);
462 const int a3
= (in
[0 * 16] - in
[2 * 16]);
463 tmp
[0 + i
* 4] = a0
+ a1
;
464 tmp
[1 + i
* 4] = a3
+ a2
;
465 tmp
[2 + i
* 4] = a3
- a2
;
466 tmp
[3 + i
* 4] = a0
- a1
;
469 const __m128i src0
= _mm_loadu_si128((__m128i
*)&tmp
[0]);
470 const __m128i src1
= _mm_loadu_si128((__m128i
*)&tmp
[4]);
471 const __m128i src2
= _mm_loadu_si128((__m128i
*)&tmp
[8]);
472 const __m128i src3
= _mm_loadu_si128((__m128i
*)&tmp
[12]);
473 const __m128i a0
= _mm_add_epi32(src0
, src2
);
474 const __m128i a1
= _mm_add_epi32(src1
, src3
);
475 const __m128i a2
= _mm_sub_epi32(src1
, src3
);
476 const __m128i a3
= _mm_sub_epi32(src0
, src2
);
477 const __m128i b0
= _mm_srai_epi32(_mm_add_epi32(a0
, a1
), 1);
478 const __m128i b1
= _mm_srai_epi32(_mm_add_epi32(a3
, a2
), 1);
479 const __m128i b2
= _mm_srai_epi32(_mm_sub_epi32(a3
, a2
), 1);
480 const __m128i b3
= _mm_srai_epi32(_mm_sub_epi32(a0
, a1
), 1);
481 const __m128i out0
= _mm_packs_epi32(b0
, b1
);
482 const __m128i out1
= _mm_packs_epi32(b2
, b3
);
483 _mm_storeu_si128((__m128i
*)&out
[0], out0
);
484 _mm_storeu_si128((__m128i
*)&out
[8], out1
);
488 //------------------------------------------------------------------------------
491 static int SSE_Nx4(const uint8_t* a
, const uint8_t* b
,
492 int num_quads
, int do_16
) {
493 const __m128i zero
= _mm_setzero_si128();
497 while (num_quads
-- > 0) {
498 // Note: for the !do_16 case, we read 16 pixels instead of 8 but that's ok,
499 // thanks to buffer over-allocation to that effect.
500 const __m128i a0
= _mm_loadu_si128((__m128i
*)&a
[BPS
* 0]);
501 const __m128i a1
= _mm_loadu_si128((__m128i
*)&a
[BPS
* 1]);
502 const __m128i a2
= _mm_loadu_si128((__m128i
*)&a
[BPS
* 2]);
503 const __m128i a3
= _mm_loadu_si128((__m128i
*)&a
[BPS
* 3]);
504 const __m128i b0
= _mm_loadu_si128((__m128i
*)&b
[BPS
* 0]);
505 const __m128i b1
= _mm_loadu_si128((__m128i
*)&b
[BPS
* 1]);
506 const __m128i b2
= _mm_loadu_si128((__m128i
*)&b
[BPS
* 2]);
507 const __m128i b3
= _mm_loadu_si128((__m128i
*)&b
[BPS
* 3]);
509 // compute clip0(a-b) and clip0(b-a)
510 const __m128i a0p
= _mm_subs_epu8(a0
, b0
);
511 const __m128i a0m
= _mm_subs_epu8(b0
, a0
);
512 const __m128i a1p
= _mm_subs_epu8(a1
, b1
);
513 const __m128i a1m
= _mm_subs_epu8(b1
, a1
);
514 const __m128i a2p
= _mm_subs_epu8(a2
, b2
);
515 const __m128i a2m
= _mm_subs_epu8(b2
, a2
);
516 const __m128i a3p
= _mm_subs_epu8(a3
, b3
);
517 const __m128i a3m
= _mm_subs_epu8(b3
, a3
);
519 // compute |a-b| with 8b arithmetic as clip0(a-b) | clip0(b-a)
520 const __m128i diff0
= _mm_or_si128(a0p
, a0m
);
521 const __m128i diff1
= _mm_or_si128(a1p
, a1m
);
522 const __m128i diff2
= _mm_or_si128(a2p
, a2m
);
523 const __m128i diff3
= _mm_or_si128(a3p
, a3m
);
525 // unpack (only four operations, instead of eight)
526 const __m128i low0
= _mm_unpacklo_epi8(diff0
, zero
);
527 const __m128i low1
= _mm_unpacklo_epi8(diff1
, zero
);
528 const __m128i low2
= _mm_unpacklo_epi8(diff2
, zero
);
529 const __m128i low3
= _mm_unpacklo_epi8(diff3
, zero
);
531 // multiply with self
532 const __m128i low_madd0
= _mm_madd_epi16(low0
, low0
);
533 const __m128i low_madd1
= _mm_madd_epi16(low1
, low1
);
534 const __m128i low_madd2
= _mm_madd_epi16(low2
, low2
);
535 const __m128i low_madd3
= _mm_madd_epi16(low3
, low3
);
537 // collect in a cascading way
538 const __m128i low_sum0
= _mm_add_epi32(low_madd0
, low_madd1
);
539 const __m128i low_sum1
= _mm_add_epi32(low_madd2
, low_madd3
);
540 sum1
= _mm_add_epi32(sum1
, low_sum0
);
541 sum2
= _mm_add_epi32(sum2
, low_sum1
);
543 if (do_16
) { // if necessary, process the higher 8 bytes similarly
544 const __m128i hi0
= _mm_unpackhi_epi8(diff0
, zero
);
545 const __m128i hi1
= _mm_unpackhi_epi8(diff1
, zero
);
546 const __m128i hi2
= _mm_unpackhi_epi8(diff2
, zero
);
547 const __m128i hi3
= _mm_unpackhi_epi8(diff3
, zero
);
549 const __m128i hi_madd0
= _mm_madd_epi16(hi0
, hi0
);
550 const __m128i hi_madd1
= _mm_madd_epi16(hi1
, hi1
);
551 const __m128i hi_madd2
= _mm_madd_epi16(hi2
, hi2
);
552 const __m128i hi_madd3
= _mm_madd_epi16(hi3
, hi3
);
553 const __m128i hi_sum0
= _mm_add_epi32(hi_madd0
, hi_madd1
);
554 const __m128i hi_sum1
= _mm_add_epi32(hi_madd2
, hi_madd3
);
555 sum1
= _mm_add_epi32(sum1
, hi_sum0
);
556 sum2
= _mm_add_epi32(sum2
, hi_sum1
);
563 const __m128i sum
= _mm_add_epi32(sum1
, sum2
);
564 _mm_storeu_si128((__m128i
*)tmp
, sum
);
565 return (tmp
[3] + tmp
[2] + tmp
[1] + tmp
[0]);
569 static int SSE16x16(const uint8_t* a
, const uint8_t* b
) {
570 return SSE_Nx4(a
, b
, 4, 1);
573 static int SSE16x8(const uint8_t* a
, const uint8_t* b
) {
574 return SSE_Nx4(a
, b
, 2, 1);
577 static int SSE8x8(const uint8_t* a
, const uint8_t* b
) {
578 return SSE_Nx4(a
, b
, 2, 0);
581 static int SSE4x4(const uint8_t* a
, const uint8_t* b
) {
582 const __m128i zero
= _mm_setzero_si128();
584 // Load values. Note that we read 8 pixels instead of 4,
585 // but the a/b buffers are over-allocated to that effect.
586 const __m128i a0
= _mm_loadl_epi64((__m128i
*)&a
[BPS
* 0]);
587 const __m128i a1
= _mm_loadl_epi64((__m128i
*)&a
[BPS
* 1]);
588 const __m128i a2
= _mm_loadl_epi64((__m128i
*)&a
[BPS
* 2]);
589 const __m128i a3
= _mm_loadl_epi64((__m128i
*)&a
[BPS
* 3]);
590 const __m128i b0
= _mm_loadl_epi64((__m128i
*)&b
[BPS
* 0]);
591 const __m128i b1
= _mm_loadl_epi64((__m128i
*)&b
[BPS
* 1]);
592 const __m128i b2
= _mm_loadl_epi64((__m128i
*)&b
[BPS
* 2]);
593 const __m128i b3
= _mm_loadl_epi64((__m128i
*)&b
[BPS
* 3]);
595 // Combine pair of lines and convert to 16b.
596 const __m128i a01
= _mm_unpacklo_epi32(a0
, a1
);
597 const __m128i a23
= _mm_unpacklo_epi32(a2
, a3
);
598 const __m128i b01
= _mm_unpacklo_epi32(b0
, b1
);
599 const __m128i b23
= _mm_unpacklo_epi32(b2
, b3
);
600 const __m128i a01s
= _mm_unpacklo_epi8(a01
, zero
);
601 const __m128i a23s
= _mm_unpacklo_epi8(a23
, zero
);
602 const __m128i b01s
= _mm_unpacklo_epi8(b01
, zero
);
603 const __m128i b23s
= _mm_unpacklo_epi8(b23
, zero
);
605 // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
606 // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
607 // need absolute values, there is no need to do calculation
608 // in 8bit as we are already in 16bit, ... Yet this is what
609 // benchmarks the fastest!
610 const __m128i d0
= _mm_subs_epu8(a01s
, b01s
);
611 const __m128i d1
= _mm_subs_epu8(b01s
, a01s
);
612 const __m128i d2
= _mm_subs_epu8(a23s
, b23s
);
613 const __m128i d3
= _mm_subs_epu8(b23s
, a23s
);
615 // Square and add them all together.
616 const __m128i madd0
= _mm_madd_epi16(d0
, d0
);
617 const __m128i madd1
= _mm_madd_epi16(d1
, d1
);
618 const __m128i madd2
= _mm_madd_epi16(d2
, d2
);
619 const __m128i madd3
= _mm_madd_epi16(d3
, d3
);
620 const __m128i sum0
= _mm_add_epi32(madd0
, madd1
);
621 const __m128i sum1
= _mm_add_epi32(madd2
, madd3
);
622 const __m128i sum2
= _mm_add_epi32(sum0
, sum1
);
625 _mm_storeu_si128((__m128i
*)tmp
, sum2
);
626 return (tmp
[3] + tmp
[2] + tmp
[1] + tmp
[0]);
629 //------------------------------------------------------------------------------
630 // Texture distortion
632 // We try to match the spectral content (weighted) between source and
633 // reconstructed samples.
635 // Hadamard transform
636 // Returns the difference between the weighted sum of the absolute value of
637 // transformed coefficients.
638 static int TTransform(const uint8_t* inA
, const uint8_t* inB
,
639 const uint16_t* const w
) {
641 __m128i tmp_0
, tmp_1
, tmp_2
, tmp_3
;
642 const __m128i zero
= _mm_setzero_si128();
644 // Load, combine and transpose inputs.
646 const __m128i inA_0
= _mm_loadl_epi64((__m128i
*)&inA
[BPS
* 0]);
647 const __m128i inA_1
= _mm_loadl_epi64((__m128i
*)&inA
[BPS
* 1]);
648 const __m128i inA_2
= _mm_loadl_epi64((__m128i
*)&inA
[BPS
* 2]);
649 const __m128i inA_3
= _mm_loadl_epi64((__m128i
*)&inA
[BPS
* 3]);
650 const __m128i inB_0
= _mm_loadl_epi64((__m128i
*)&inB
[BPS
* 0]);
651 const __m128i inB_1
= _mm_loadl_epi64((__m128i
*)&inB
[BPS
* 1]);
652 const __m128i inB_2
= _mm_loadl_epi64((__m128i
*)&inB
[BPS
* 2]);
653 const __m128i inB_3
= _mm_loadl_epi64((__m128i
*)&inB
[BPS
* 3]);
655 // Combine inA and inB (we'll do two transforms in parallel).
656 const __m128i inAB_0
= _mm_unpacklo_epi8(inA_0
, inB_0
);
657 const __m128i inAB_1
= _mm_unpacklo_epi8(inA_1
, inB_1
);
658 const __m128i inAB_2
= _mm_unpacklo_epi8(inA_2
, inB_2
);
659 const __m128i inAB_3
= _mm_unpacklo_epi8(inA_3
, inB_3
);
660 // a00 b00 a01 b01 a02 b03 a03 b03 0 0 0 0 0 0 0 0
661 // a10 b10 a11 b11 a12 b12 a13 b13 0 0 0 0 0 0 0 0
662 // a20 b20 a21 b21 a22 b22 a23 b23 0 0 0 0 0 0 0 0
663 // a30 b30 a31 b31 a32 b32 a33 b33 0 0 0 0 0 0 0 0
665 // Transpose the two 4x4, discarding the filling zeroes.
666 const __m128i transpose0_0
= _mm_unpacklo_epi8(inAB_0
, inAB_2
);
667 const __m128i transpose0_1
= _mm_unpacklo_epi8(inAB_1
, inAB_3
);
668 // a00 a20 b00 b20 a01 a21 b01 b21 a02 a22 b02 b22 a03 a23 b03 b23
669 // a10 a30 b10 b30 a11 a31 b11 b31 a12 a32 b12 b32 a13 a33 b13 b33
670 const __m128i transpose1_0
= _mm_unpacklo_epi8(transpose0_0
, transpose0_1
);
671 const __m128i transpose1_1
= _mm_unpackhi_epi8(transpose0_0
, transpose0_1
);
672 // a00 a10 a20 a30 b00 b10 b20 b30 a01 a11 a21 a31 b01 b11 b21 b31
673 // a02 a12 a22 a32 b02 b12 b22 b32 a03 a13 a23 a33 b03 b13 b23 b33
676 tmp_0
= _mm_unpacklo_epi8(transpose1_0
, zero
);
677 tmp_1
= _mm_unpackhi_epi8(transpose1_0
, zero
);
678 tmp_2
= _mm_unpacklo_epi8(transpose1_1
, zero
);
679 tmp_3
= _mm_unpackhi_epi8(transpose1_1
, zero
);
680 // a00 a10 a20 a30 b00 b10 b20 b30
681 // a01 a11 a21 a31 b01 b11 b21 b31
682 // a02 a12 a22 a32 b02 b12 b22 b32
683 // a03 a13 a23 a33 b03 b13 b23 b33
686 // Horizontal pass and subsequent transpose.
688 // Calculate a and b (two 4x4 at once).
689 const __m128i a0
= _mm_add_epi16(tmp_0
, tmp_2
);
690 const __m128i a1
= _mm_add_epi16(tmp_1
, tmp_3
);
691 const __m128i a2
= _mm_sub_epi16(tmp_1
, tmp_3
);
692 const __m128i a3
= _mm_sub_epi16(tmp_0
, tmp_2
);
693 const __m128i b0
= _mm_add_epi16(a0
, a1
);
694 const __m128i b1
= _mm_add_epi16(a3
, a2
);
695 const __m128i b2
= _mm_sub_epi16(a3
, a2
);
696 const __m128i b3
= _mm_sub_epi16(a0
, a1
);
697 // a00 a01 a02 a03 b00 b01 b02 b03
698 // a10 a11 a12 a13 b10 b11 b12 b13
699 // a20 a21 a22 a23 b20 b21 b22 b23
700 // a30 a31 a32 a33 b30 b31 b32 b33
702 // Transpose the two 4x4.
703 const __m128i transpose0_0
= _mm_unpacklo_epi16(b0
, b1
);
704 const __m128i transpose0_1
= _mm_unpacklo_epi16(b2
, b3
);
705 const __m128i transpose0_2
= _mm_unpackhi_epi16(b0
, b1
);
706 const __m128i transpose0_3
= _mm_unpackhi_epi16(b2
, b3
);
707 // a00 a10 a01 a11 a02 a12 a03 a13
708 // a20 a30 a21 a31 a22 a32 a23 a33
709 // b00 b10 b01 b11 b02 b12 b03 b13
710 // b20 b30 b21 b31 b22 b32 b23 b33
711 const __m128i transpose1_0
= _mm_unpacklo_epi32(transpose0_0
, transpose0_1
);
712 const __m128i transpose1_1
= _mm_unpacklo_epi32(transpose0_2
, transpose0_3
);
713 const __m128i transpose1_2
= _mm_unpackhi_epi32(transpose0_0
, transpose0_1
);
714 const __m128i transpose1_3
= _mm_unpackhi_epi32(transpose0_2
, transpose0_3
);
715 // a00 a10 a20 a30 a01 a11 a21 a31
716 // b00 b10 b20 b30 b01 b11 b21 b31
717 // a02 a12 a22 a32 a03 a13 a23 a33
718 // b02 b12 a22 b32 b03 b13 b23 b33
719 tmp_0
= _mm_unpacklo_epi64(transpose1_0
, transpose1_1
);
720 tmp_1
= _mm_unpackhi_epi64(transpose1_0
, transpose1_1
);
721 tmp_2
= _mm_unpacklo_epi64(transpose1_2
, transpose1_3
);
722 tmp_3
= _mm_unpackhi_epi64(transpose1_2
, transpose1_3
);
723 // a00 a10 a20 a30 b00 b10 b20 b30
724 // a01 a11 a21 a31 b01 b11 b21 b31
725 // a02 a12 a22 a32 b02 b12 b22 b32
726 // a03 a13 a23 a33 b03 b13 b23 b33
729 // Vertical pass and difference of weighted sums.
732 // TODO(cduvivier): Make variable declarations and allocations aligned so
733 // we can use _mm_load_si128 instead of _mm_loadu_si128.
734 const __m128i w_0
= _mm_loadu_si128((__m128i
*)&w
[0]);
735 const __m128i w_8
= _mm_loadu_si128((__m128i
*)&w
[8]);
737 // Calculate a and b (two 4x4 at once).
738 const __m128i a0
= _mm_add_epi16(tmp_0
, tmp_2
);
739 const __m128i a1
= _mm_add_epi16(tmp_1
, tmp_3
);
740 const __m128i a2
= _mm_sub_epi16(tmp_1
, tmp_3
);
741 const __m128i a3
= _mm_sub_epi16(tmp_0
, tmp_2
);
742 const __m128i b0
= _mm_add_epi16(a0
, a1
);
743 const __m128i b1
= _mm_add_epi16(a3
, a2
);
744 const __m128i b2
= _mm_sub_epi16(a3
, a2
);
745 const __m128i b3
= _mm_sub_epi16(a0
, a1
);
747 // Separate the transforms of inA and inB.
748 __m128i A_b0
= _mm_unpacklo_epi64(b0
, b1
);
749 __m128i A_b2
= _mm_unpacklo_epi64(b2
, b3
);
750 __m128i B_b0
= _mm_unpackhi_epi64(b0
, b1
);
751 __m128i B_b2
= _mm_unpackhi_epi64(b2
, b3
);
754 // sign(b) = b >> 15 (0x0000 if positive, 0xffff if negative)
755 const __m128i sign_A_b0
= _mm_srai_epi16(A_b0
, 15);
756 const __m128i sign_A_b2
= _mm_srai_epi16(A_b2
, 15);
757 const __m128i sign_B_b0
= _mm_srai_epi16(B_b0
, 15);
758 const __m128i sign_B_b2
= _mm_srai_epi16(B_b2
, 15);
760 // b = abs(b) = (b ^ sign) - sign
761 A_b0
= _mm_xor_si128(A_b0
, sign_A_b0
);
762 A_b2
= _mm_xor_si128(A_b2
, sign_A_b2
);
763 B_b0
= _mm_xor_si128(B_b0
, sign_B_b0
);
764 B_b2
= _mm_xor_si128(B_b2
, sign_B_b2
);
765 A_b0
= _mm_sub_epi16(A_b0
, sign_A_b0
);
766 A_b2
= _mm_sub_epi16(A_b2
, sign_A_b2
);
767 B_b0
= _mm_sub_epi16(B_b0
, sign_B_b0
);
768 B_b2
= _mm_sub_epi16(B_b2
, sign_B_b2
);
772 A_b0
= _mm_madd_epi16(A_b0
, w_0
);
773 A_b2
= _mm_madd_epi16(A_b2
, w_8
);
774 B_b0
= _mm_madd_epi16(B_b0
, w_0
);
775 B_b2
= _mm_madd_epi16(B_b2
, w_8
);
776 A_b0
= _mm_add_epi32(A_b0
, A_b2
);
777 B_b0
= _mm_add_epi32(B_b0
, B_b2
);
779 // difference of weighted sums
780 A_b0
= _mm_sub_epi32(A_b0
, B_b0
);
781 _mm_storeu_si128((__m128i
*)&sum
[0], A_b0
);
783 return sum
[0] + sum
[1] + sum
[2] + sum
[3];
786 static int Disto4x4(const uint8_t* const a
, const uint8_t* const b
,
787 const uint16_t* const w
) {
788 const int diff_sum
= TTransform(a
, b
, w
);
789 return abs(diff_sum
) >> 5;
792 static int Disto16x16(const uint8_t* const a
, const uint8_t* const b
,
793 const uint16_t* const w
) {
796 for (y
= 0; y
< 16 * BPS
; y
+= 4 * BPS
) {
797 for (x
= 0; x
< 16; x
+= 4) {
798 D
+= Disto4x4(a
+ x
+ y
, b
+ x
+ y
, w
);
804 //------------------------------------------------------------------------------
808 static WEBP_INLINE
int DoQuantizeBlock(int16_t in
[16], int16_t out
[16],
809 const uint16_t* const sharpen
,
810 const VP8Matrix
* const mtx
) {
811 const __m128i max_coeff_2047
= _mm_set1_epi16(MAX_LEVEL
);
812 const __m128i zero
= _mm_setzero_si128();
813 __m128i coeff0
, coeff8
;
818 // TODO(cduvivier): Make variable declarations and allocations aligned so that
819 // we can use _mm_load_si128 instead of _mm_loadu_si128.
820 __m128i in0
= _mm_loadu_si128((__m128i
*)&in
[0]);
821 __m128i in8
= _mm_loadu_si128((__m128i
*)&in
[8]);
822 const __m128i iq0
= _mm_loadu_si128((__m128i
*)&mtx
->iq_
[0]);
823 const __m128i iq8
= _mm_loadu_si128((__m128i
*)&mtx
->iq_
[8]);
824 const __m128i q0
= _mm_loadu_si128((__m128i
*)&mtx
->q_
[0]);
825 const __m128i q8
= _mm_loadu_si128((__m128i
*)&mtx
->q_
[8]);
827 // extract sign(in) (0x0000 if positive, 0xffff if negative)
828 const __m128i sign0
= _mm_cmpgt_epi16(zero
, in0
);
829 const __m128i sign8
= _mm_cmpgt_epi16(zero
, in8
);
831 // coeff = abs(in) = (in ^ sign) - sign
832 coeff0
= _mm_xor_si128(in0
, sign0
);
833 coeff8
= _mm_xor_si128(in8
, sign8
);
834 coeff0
= _mm_sub_epi16(coeff0
, sign0
);
835 coeff8
= _mm_sub_epi16(coeff8
, sign8
);
837 // coeff = abs(in) + sharpen
838 if (sharpen
!= NULL
) {
839 const __m128i sharpen0
= _mm_loadu_si128((__m128i
*)&sharpen
[0]);
840 const __m128i sharpen8
= _mm_loadu_si128((__m128i
*)&sharpen
[8]);
841 coeff0
= _mm_add_epi16(coeff0
, sharpen0
);
842 coeff8
= _mm_add_epi16(coeff8
, sharpen8
);
845 // out = (coeff * iQ + B) >> QFIX
847 // doing calculations with 32b precision (QFIX=17)
848 // out = (coeff * iQ)
849 const __m128i coeff_iQ0H
= _mm_mulhi_epu16(coeff0
, iq0
);
850 const __m128i coeff_iQ0L
= _mm_mullo_epi16(coeff0
, iq0
);
851 const __m128i coeff_iQ8H
= _mm_mulhi_epu16(coeff8
, iq8
);
852 const __m128i coeff_iQ8L
= _mm_mullo_epi16(coeff8
, iq8
);
853 __m128i out_00
= _mm_unpacklo_epi16(coeff_iQ0L
, coeff_iQ0H
);
854 __m128i out_04
= _mm_unpackhi_epi16(coeff_iQ0L
, coeff_iQ0H
);
855 __m128i out_08
= _mm_unpacklo_epi16(coeff_iQ8L
, coeff_iQ8H
);
856 __m128i out_12
= _mm_unpackhi_epi16(coeff_iQ8L
, coeff_iQ8H
);
857 // out = (coeff * iQ + B)
858 const __m128i bias_00
= _mm_loadu_si128((__m128i
*)&mtx
->bias_
[0]);
859 const __m128i bias_04
= _mm_loadu_si128((__m128i
*)&mtx
->bias_
[4]);
860 const __m128i bias_08
= _mm_loadu_si128((__m128i
*)&mtx
->bias_
[8]);
861 const __m128i bias_12
= _mm_loadu_si128((__m128i
*)&mtx
->bias_
[12]);
862 out_00
= _mm_add_epi32(out_00
, bias_00
);
863 out_04
= _mm_add_epi32(out_04
, bias_04
);
864 out_08
= _mm_add_epi32(out_08
, bias_08
);
865 out_12
= _mm_add_epi32(out_12
, bias_12
);
866 // out = QUANTDIV(coeff, iQ, B, QFIX)
867 out_00
= _mm_srai_epi32(out_00
, QFIX
);
868 out_04
= _mm_srai_epi32(out_04
, QFIX
);
869 out_08
= _mm_srai_epi32(out_08
, QFIX
);
870 out_12
= _mm_srai_epi32(out_12
, QFIX
);
872 // pack result as 16b
873 out0
= _mm_packs_epi32(out_00
, out_04
);
874 out8
= _mm_packs_epi32(out_08
, out_12
);
876 // if (coeff > 2047) coeff = 2047
877 out0
= _mm_min_epi16(out0
, max_coeff_2047
);
878 out8
= _mm_min_epi16(out8
, max_coeff_2047
);
881 // get sign back (if (sign[j]) out_n = -out_n)
882 out0
= _mm_xor_si128(out0
, sign0
);
883 out8
= _mm_xor_si128(out8
, sign8
);
884 out0
= _mm_sub_epi16(out0
, sign0
);
885 out8
= _mm_sub_epi16(out8
, sign8
);
888 in0
= _mm_mullo_epi16(out0
, q0
);
889 in8
= _mm_mullo_epi16(out8
, q8
);
891 _mm_storeu_si128((__m128i
*)&in
[0], in0
);
892 _mm_storeu_si128((__m128i
*)&in
[8], in8
);
894 // zigzag the output before storing it.
896 // The zigzag pattern can almost be reproduced with a small sequence of
897 // shuffles. After it, we only need to swap the 7th (ending up in third
898 // position instead of twelfth) and 8th values.
900 __m128i outZ0
, outZ8
;
901 outZ0
= _mm_shufflehi_epi16(out0
, _MM_SHUFFLE(2, 1, 3, 0));
902 outZ0
= _mm_shuffle_epi32 (outZ0
, _MM_SHUFFLE(3, 1, 2, 0));
903 outZ0
= _mm_shufflehi_epi16(outZ0
, _MM_SHUFFLE(3, 1, 0, 2));
904 outZ8
= _mm_shufflelo_epi16(out8
, _MM_SHUFFLE(3, 0, 2, 1));
905 outZ8
= _mm_shuffle_epi32 (outZ8
, _MM_SHUFFLE(3, 1, 2, 0));
906 outZ8
= _mm_shufflelo_epi16(outZ8
, _MM_SHUFFLE(1, 3, 2, 0));
907 _mm_storeu_si128((__m128i
*)&out
[0], outZ0
);
908 _mm_storeu_si128((__m128i
*)&out
[8], outZ8
);
909 packed_out
= _mm_packs_epi16(outZ0
, outZ8
);
912 const int16_t outZ_12
= out
[12];
913 const int16_t outZ_3
= out
[3];
918 // detect if all 'out' values are zeroes or not
919 return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out
, zero
)) != 0xffff);
922 static int QuantizeBlock(int16_t in
[16], int16_t out
[16],
923 const VP8Matrix
* const mtx
) {
924 return DoQuantizeBlock(in
, out
, &mtx
->sharpen_
[0], mtx
);
927 static int QuantizeBlockWHT(int16_t in
[16], int16_t out
[16],
928 const VP8Matrix
* const mtx
) {
929 return DoQuantizeBlock(in
, out
, NULL
, mtx
);
932 // Forward declaration.
933 void VP8SetResidualCoeffsSSE2(const int16_t* const coeffs
,
934 VP8Residual
* const res
);
936 void VP8SetResidualCoeffsSSE2(const int16_t* const coeffs
,
937 VP8Residual
* const res
) {
938 const __m128i c0
= _mm_loadu_si128((const __m128i
*)coeffs
);
939 const __m128i c1
= _mm_loadu_si128((const __m128i
*)(coeffs
+ 8));
940 // Use SSE to compare 8 values with a single instruction.
941 const __m128i zero
= _mm_setzero_si128();
942 const __m128i m0
= _mm_cmpeq_epi16(c0
, zero
);
943 const __m128i m1
= _mm_cmpeq_epi16(c1
, zero
);
944 // Get the comparison results as a bitmask, consisting of two times 16 bits:
945 // two identical bits for each result. Concatenate both bitmasks to get a
946 // single 32 bit value. Negate the mask to get the position of entries that
947 // are not equal to zero. We don't need to mask out least significant bits
948 // according to res->first, since coeffs[0] is 0 if res->first > 0
949 const uint32_t mask
=
950 ~(((uint32_t)_mm_movemask_epi8(m1
) << 16) | _mm_movemask_epi8(m0
));
951 // The position of the most significant non-zero bit indicates the position of
952 // the last non-zero value. Divide the result by two because __movemask_epi8
953 // operates on 8 bit values instead of 16 bit values.
954 assert(res
->first
== 0 || coeffs
[0] == 0);
955 res
->last
= mask
? (BitsLog2Floor(mask
) >> 1) : -1;
956 res
->coeffs
= coeffs
;
959 #endif // WEBP_USE_SSE2
961 //------------------------------------------------------------------------------
964 extern void VP8EncDspInitSSE2(void);
966 void VP8EncDspInitSSE2(void) {
967 #if defined(WEBP_USE_SSE2)
968 VP8CollectHistogram
= CollectHistogram
;
969 VP8EncQuantizeBlock
= QuantizeBlock
;
970 VP8EncQuantizeBlockWHT
= QuantizeBlockWHT
;
971 VP8ITransform
= ITransform
;
972 VP8FTransform
= FTransform
;
973 VP8FTransformWHT
= FTransformWHT
;
974 VP8SSE16x16
= SSE16x16
;
975 VP8SSE16x8
= SSE16x8
;
978 VP8TDisto4x4
= Disto4x4
;
979 VP8TDisto16x16
= Disto16x16
;
980 #endif // WEBP_USE_SSE2