Re-land: C++ readability review
[chromium-blink-merge.git] / net / disk_cache / blockfile / backend_impl.cc
blobc4058abcba39afd13f0db1b7e14e9bd6eac60517
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/disk_cache/blockfile/backend_impl.h"
7 #include "base/bind.h"
8 #include "base/bind_helpers.h"
9 #include "base/files/file.h"
10 #include "base/files/file_path.h"
11 #include "base/files/file_util.h"
12 #include "base/hash.h"
13 #include "base/message_loop/message_loop.h"
14 #include "base/metrics/field_trial.h"
15 #include "base/metrics/histogram.h"
16 #include "base/rand_util.h"
17 #include "base/single_thread_task_runner.h"
18 #include "base/strings/string_util.h"
19 #include "base/strings/stringprintf.h"
20 #include "base/sys_info.h"
21 #include "base/threading/thread_restrictions.h"
22 #include "base/time/time.h"
23 #include "base/timer/timer.h"
24 #include "net/base/net_errors.h"
25 #include "net/disk_cache/blockfile/disk_format.h"
26 #include "net/disk_cache/blockfile/entry_impl.h"
27 #include "net/disk_cache/blockfile/errors.h"
28 #include "net/disk_cache/blockfile/experiments.h"
29 #include "net/disk_cache/blockfile/file.h"
30 #include "net/disk_cache/blockfile/histogram_macros.h"
31 #include "net/disk_cache/blockfile/webfonts_histogram.h"
32 #include "net/disk_cache/cache_util.h"
34 // Provide a BackendImpl object to macros from histogram_macros.h.
35 #define CACHE_UMA_BACKEND_IMPL_OBJ this
37 using base::Time;
38 using base::TimeDelta;
39 using base::TimeTicks;
41 namespace {
43 const char kIndexName[] = "index";
45 // Seems like ~240 MB correspond to less than 50k entries for 99% of the people.
46 // Note that the actual target is to keep the index table load factor under 55%
47 // for most users.
48 const int k64kEntriesStore = 240 * 1000 * 1000;
49 const int kBaseTableLen = 64 * 1024;
51 // Avoid trimming the cache for the first 5 minutes (10 timer ticks).
52 const int kTrimDelay = 10;
54 int DesiredIndexTableLen(int32 storage_size) {
55 if (storage_size <= k64kEntriesStore)
56 return kBaseTableLen;
57 if (storage_size <= k64kEntriesStore * 2)
58 return kBaseTableLen * 2;
59 if (storage_size <= k64kEntriesStore * 4)
60 return kBaseTableLen * 4;
61 if (storage_size <= k64kEntriesStore * 8)
62 return kBaseTableLen * 8;
64 // The biggest storage_size for int32 requires a 4 MB table.
65 return kBaseTableLen * 16;
68 int MaxStorageSizeForTable(int table_len) {
69 return table_len * (k64kEntriesStore / kBaseTableLen);
72 size_t GetIndexSize(int table_len) {
73 size_t table_size = sizeof(disk_cache::CacheAddr) * table_len;
74 return sizeof(disk_cache::IndexHeader) + table_size;
77 // ------------------------------------------------------------------------
79 // Sets group for the current experiment. Returns false if the files should be
80 // discarded.
81 bool InitExperiment(disk_cache::IndexHeader* header, bool cache_created) {
82 if (header->experiment == disk_cache::EXPERIMENT_OLD_FILE1 ||
83 header->experiment == disk_cache::EXPERIMENT_OLD_FILE2) {
84 // Discard current cache.
85 return false;
88 if (base::FieldTrialList::FindFullName("SimpleCacheTrial") ==
89 "ExperimentControl") {
90 if (cache_created) {
91 header->experiment = disk_cache::EXPERIMENT_SIMPLE_CONTROL;
92 return true;
94 return header->experiment == disk_cache::EXPERIMENT_SIMPLE_CONTROL;
97 header->experiment = disk_cache::NO_EXPERIMENT;
98 return true;
101 // A callback to perform final cleanup on the background thread.
102 void FinalCleanupCallback(disk_cache::BackendImpl* backend) {
103 backend->CleanupCache();
106 } // namespace
108 // ------------------------------------------------------------------------
110 namespace disk_cache {
112 BackendImpl::BackendImpl(
113 const base::FilePath& path,
114 const scoped_refptr<base::SingleThreadTaskRunner>& cache_thread,
115 net::NetLog* net_log)
116 : background_queue_(this, cache_thread),
117 path_(path),
118 block_files_(path),
119 mask_(0),
120 max_size_(0),
121 up_ticks_(0),
122 cache_type_(net::DISK_CACHE),
123 uma_report_(0),
124 user_flags_(0),
125 init_(false),
126 restarted_(false),
127 unit_test_(false),
128 read_only_(false),
129 disabled_(false),
130 new_eviction_(false),
131 first_timer_(true),
132 user_load_(false),
133 net_log_(net_log),
134 done_(true, false),
135 ptr_factory_(this) {
138 BackendImpl::BackendImpl(
139 const base::FilePath& path,
140 uint32 mask,
141 const scoped_refptr<base::SingleThreadTaskRunner>& cache_thread,
142 net::NetLog* net_log)
143 : background_queue_(this, cache_thread),
144 path_(path),
145 block_files_(path),
146 mask_(mask),
147 max_size_(0),
148 up_ticks_(0),
149 cache_type_(net::DISK_CACHE),
150 uma_report_(0),
151 user_flags_(kMask),
152 init_(false),
153 restarted_(false),
154 unit_test_(false),
155 read_only_(false),
156 disabled_(false),
157 new_eviction_(false),
158 first_timer_(true),
159 user_load_(false),
160 net_log_(net_log),
161 done_(true, false),
162 ptr_factory_(this) {
165 BackendImpl::~BackendImpl() {
166 if (user_flags_ & kNoRandom) {
167 // This is a unit test, so we want to be strict about not leaking entries
168 // and completing all the work.
169 background_queue_.WaitForPendingIO();
170 } else {
171 // This is most likely not a test, so we want to do as little work as
172 // possible at this time, at the price of leaving dirty entries behind.
173 background_queue_.DropPendingIO();
176 if (background_queue_.BackgroundIsCurrentThread()) {
177 // Unit tests may use the same thread for everything.
178 CleanupCache();
179 } else {
180 background_queue_.background_thread()->PostTask(
181 FROM_HERE, base::Bind(&FinalCleanupCallback, base::Unretained(this)));
182 // http://crbug.com/74623
183 base::ThreadRestrictions::ScopedAllowWait allow_wait;
184 done_.Wait();
188 int BackendImpl::Init(const CompletionCallback& callback) {
189 background_queue_.Init(callback);
190 return net::ERR_IO_PENDING;
193 int BackendImpl::SyncInit() {
194 #if defined(NET_BUILD_STRESS_CACHE)
195 // Start evictions right away.
196 up_ticks_ = kTrimDelay * 2;
197 #endif
198 DCHECK(!init_);
199 if (init_)
200 return net::ERR_FAILED;
202 bool create_files = false;
203 if (!InitBackingStore(&create_files)) {
204 ReportError(ERR_STORAGE_ERROR);
205 return net::ERR_FAILED;
208 num_refs_ = num_pending_io_ = max_refs_ = 0;
209 entry_count_ = byte_count_ = 0;
211 bool should_create_timer = false;
212 if (!restarted_) {
213 buffer_bytes_ = 0;
214 trace_object_ = TraceObject::GetTraceObject();
215 should_create_timer = true;
218 init_ = true;
219 Trace("Init");
221 if (data_->header.experiment != NO_EXPERIMENT &&
222 cache_type_ != net::DISK_CACHE) {
223 // No experiment for other caches.
224 return net::ERR_FAILED;
227 if (!(user_flags_ & kNoRandom)) {
228 // The unit test controls directly what to test.
229 new_eviction_ = (cache_type_ == net::DISK_CACHE);
232 if (!CheckIndex()) {
233 ReportError(ERR_INIT_FAILED);
234 return net::ERR_FAILED;
237 if (!restarted_ && (create_files || !data_->header.num_entries))
238 ReportError(ERR_CACHE_CREATED);
240 if (!(user_flags_ & kNoRandom) && cache_type_ == net::DISK_CACHE &&
241 !InitExperiment(&data_->header, create_files)) {
242 return net::ERR_FAILED;
245 // We don't care if the value overflows. The only thing we care about is that
246 // the id cannot be zero, because that value is used as "not dirty".
247 // Increasing the value once per second gives us many years before we start
248 // having collisions.
249 data_->header.this_id++;
250 if (!data_->header.this_id)
251 data_->header.this_id++;
253 bool previous_crash = (data_->header.crash != 0);
254 data_->header.crash = 1;
256 if (!block_files_.Init(create_files))
257 return net::ERR_FAILED;
259 // We want to minimize the changes to cache for an AppCache.
260 if (cache_type() == net::APP_CACHE) {
261 DCHECK(!new_eviction_);
262 read_only_ = true;
263 } else if (cache_type() == net::SHADER_CACHE) {
264 DCHECK(!new_eviction_);
267 eviction_.Init(this);
269 // stats_ and rankings_ may end up calling back to us so we better be enabled.
270 disabled_ = false;
271 if (!InitStats())
272 return net::ERR_FAILED;
274 disabled_ = !rankings_.Init(this, new_eviction_);
276 #if defined(STRESS_CACHE_EXTENDED_VALIDATION)
277 trace_object_->EnableTracing(false);
278 int sc = SelfCheck();
279 if (sc < 0 && sc != ERR_NUM_ENTRIES_MISMATCH)
280 NOTREACHED();
281 trace_object_->EnableTracing(true);
282 #endif
284 if (previous_crash) {
285 ReportError(ERR_PREVIOUS_CRASH);
286 } else if (!restarted_) {
287 ReportError(ERR_NO_ERROR);
290 FlushIndex();
292 if (!disabled_ && should_create_timer) {
293 // Create a recurrent timer of 30 secs.
294 int timer_delay = unit_test_ ? 1000 : 30000;
295 timer_.reset(new base::RepeatingTimer<BackendImpl>());
296 timer_->Start(FROM_HERE, TimeDelta::FromMilliseconds(timer_delay), this,
297 &BackendImpl::OnStatsTimer);
300 return disabled_ ? net::ERR_FAILED : net::OK;
303 void BackendImpl::CleanupCache() {
304 Trace("Backend Cleanup");
305 eviction_.Stop();
306 timer_.reset();
308 if (init_) {
309 StoreStats();
310 if (data_)
311 data_->header.crash = 0;
313 if (user_flags_ & kNoRandom) {
314 // This is a net_unittest, verify that we are not 'leaking' entries.
315 File::WaitForPendingIO(&num_pending_io_);
316 DCHECK(!num_refs_);
317 } else {
318 File::DropPendingIO();
321 block_files_.CloseFiles();
322 FlushIndex();
323 index_ = NULL;
324 ptr_factory_.InvalidateWeakPtrs();
325 done_.Signal();
328 // ------------------------------------------------------------------------
330 int BackendImpl::SyncOpenEntry(const std::string& key, Entry** entry) {
331 DCHECK(entry);
332 *entry = OpenEntryImpl(key);
333 return (*entry) ? net::OK : net::ERR_FAILED;
336 int BackendImpl::SyncCreateEntry(const std::string& key, Entry** entry) {
337 DCHECK(entry);
338 *entry = CreateEntryImpl(key);
339 return (*entry) ? net::OK : net::ERR_FAILED;
342 int BackendImpl::SyncDoomEntry(const std::string& key) {
343 if (disabled_)
344 return net::ERR_FAILED;
346 EntryImpl* entry = OpenEntryImpl(key);
347 if (!entry)
348 return net::ERR_FAILED;
350 entry->DoomImpl();
351 entry->Release();
352 return net::OK;
355 int BackendImpl::SyncDoomAllEntries() {
356 if (disabled_)
357 return net::ERR_FAILED;
359 // This is not really an error, but it is an interesting condition.
360 ReportError(ERR_CACHE_DOOMED);
361 stats_.OnEvent(Stats::DOOM_CACHE);
362 if (!num_refs_) {
363 RestartCache(false);
364 return disabled_ ? net::ERR_FAILED : net::OK;
365 } else {
366 if (disabled_)
367 return net::ERR_FAILED;
369 eviction_.TrimCache(true);
370 return net::OK;
374 int BackendImpl::SyncDoomEntriesBetween(const base::Time initial_time,
375 const base::Time end_time) {
376 DCHECK_NE(net::APP_CACHE, cache_type_);
377 if (end_time.is_null())
378 return SyncDoomEntriesSince(initial_time);
380 DCHECK(end_time >= initial_time);
382 if (disabled_)
383 return net::ERR_FAILED;
385 EntryImpl* node;
386 scoped_ptr<Rankings::Iterator> iterator(new Rankings::Iterator());
387 EntryImpl* next = OpenNextEntryImpl(iterator.get());
388 if (!next)
389 return net::OK;
391 while (next) {
392 node = next;
393 next = OpenNextEntryImpl(iterator.get());
395 if (node->GetLastUsed() >= initial_time &&
396 node->GetLastUsed() < end_time) {
397 node->DoomImpl();
398 } else if (node->GetLastUsed() < initial_time) {
399 if (next)
400 next->Release();
401 next = NULL;
402 SyncEndEnumeration(iterator.Pass());
405 node->Release();
408 return net::OK;
411 // We use OpenNextEntryImpl to retrieve elements from the cache, until we get
412 // entries that are too old.
413 int BackendImpl::SyncDoomEntriesSince(const base::Time initial_time) {
414 DCHECK_NE(net::APP_CACHE, cache_type_);
415 if (disabled_)
416 return net::ERR_FAILED;
418 stats_.OnEvent(Stats::DOOM_RECENT);
419 for (;;) {
420 scoped_ptr<Rankings::Iterator> iterator(new Rankings::Iterator());
421 EntryImpl* entry = OpenNextEntryImpl(iterator.get());
422 if (!entry)
423 return net::OK;
425 if (initial_time > entry->GetLastUsed()) {
426 entry->Release();
427 SyncEndEnumeration(iterator.Pass());
428 return net::OK;
431 entry->DoomImpl();
432 entry->Release();
433 SyncEndEnumeration(iterator.Pass()); // The doom invalidated the iterator.
437 int BackendImpl::SyncOpenNextEntry(Rankings::Iterator* iterator,
438 Entry** next_entry) {
439 *next_entry = OpenNextEntryImpl(iterator);
440 return (*next_entry) ? net::OK : net::ERR_FAILED;
443 void BackendImpl::SyncEndEnumeration(scoped_ptr<Rankings::Iterator> iterator) {
444 iterator->Reset();
447 void BackendImpl::SyncOnExternalCacheHit(const std::string& key) {
448 if (disabled_)
449 return;
451 uint32 hash = base::Hash(key);
452 bool error;
453 EntryImpl* cache_entry = MatchEntry(key, hash, false, Addr(), &error);
454 if (cache_entry) {
455 if (ENTRY_NORMAL == cache_entry->entry()->Data()->state) {
456 UpdateRank(cache_entry, cache_type() == net::SHADER_CACHE);
458 cache_entry->Release();
462 EntryImpl* BackendImpl::OpenEntryImpl(const std::string& key) {
463 if (disabled_)
464 return NULL;
466 TimeTicks start = TimeTicks::Now();
467 uint32 hash = base::Hash(key);
468 Trace("Open hash 0x%x", hash);
470 bool error;
471 EntryImpl* cache_entry = MatchEntry(key, hash, false, Addr(), &error);
472 if (cache_entry && ENTRY_NORMAL != cache_entry->entry()->Data()->state) {
473 // The entry was already evicted.
474 cache_entry->Release();
475 cache_entry = NULL;
476 web_fonts_histogram::RecordEvictedEntry(key);
477 } else if (!cache_entry) {
478 web_fonts_histogram::RecordCacheMiss(key);
481 int current_size = data_->header.num_bytes / (1024 * 1024);
482 int64 total_hours = stats_.GetCounter(Stats::TIMER) / 120;
483 int64 no_use_hours = stats_.GetCounter(Stats::LAST_REPORT_TIMER) / 120;
484 int64 use_hours = total_hours - no_use_hours;
486 if (!cache_entry) {
487 CACHE_UMA(AGE_MS, "OpenTime.Miss", 0, start);
488 CACHE_UMA(COUNTS_10000, "AllOpenBySize.Miss", 0, current_size);
489 CACHE_UMA(HOURS, "AllOpenByTotalHours.Miss", 0,
490 static_cast<base::HistogramBase::Sample>(total_hours));
491 CACHE_UMA(HOURS, "AllOpenByUseHours.Miss", 0,
492 static_cast<base::HistogramBase::Sample>(use_hours));
493 stats_.OnEvent(Stats::OPEN_MISS);
494 return NULL;
497 eviction_.OnOpenEntry(cache_entry);
498 entry_count_++;
500 Trace("Open hash 0x%x end: 0x%x", hash,
501 cache_entry->entry()->address().value());
502 CACHE_UMA(AGE_MS, "OpenTime", 0, start);
503 CACHE_UMA(COUNTS_10000, "AllOpenBySize.Hit", 0, current_size);
504 CACHE_UMA(HOURS, "AllOpenByTotalHours.Hit", 0,
505 static_cast<base::HistogramBase::Sample>(total_hours));
506 CACHE_UMA(HOURS, "AllOpenByUseHours.Hit", 0,
507 static_cast<base::HistogramBase::Sample>(use_hours));
508 stats_.OnEvent(Stats::OPEN_HIT);
509 web_fonts_histogram::RecordCacheHit(cache_entry);
510 return cache_entry;
513 EntryImpl* BackendImpl::CreateEntryImpl(const std::string& key) {
514 if (disabled_ || key.empty())
515 return NULL;
517 TimeTicks start = TimeTicks::Now();
518 uint32 hash = base::Hash(key);
519 Trace("Create hash 0x%x", hash);
521 scoped_refptr<EntryImpl> parent;
522 Addr entry_address(data_->table[hash & mask_]);
523 if (entry_address.is_initialized()) {
524 // We have an entry already. It could be the one we are looking for, or just
525 // a hash conflict.
526 bool error;
527 EntryImpl* old_entry = MatchEntry(key, hash, false, Addr(), &error);
528 if (old_entry)
529 return ResurrectEntry(old_entry);
531 EntryImpl* parent_entry = MatchEntry(key, hash, true, Addr(), &error);
532 DCHECK(!error);
533 if (parent_entry) {
534 parent.swap(&parent_entry);
535 } else if (data_->table[hash & mask_]) {
536 // We should have corrected the problem.
537 NOTREACHED();
538 return NULL;
542 // The general flow is to allocate disk space and initialize the entry data,
543 // followed by saving that to disk, then linking the entry though the index
544 // and finally through the lists. If there is a crash in this process, we may
545 // end up with:
546 // a. Used, unreferenced empty blocks on disk (basically just garbage).
547 // b. Used, unreferenced but meaningful data on disk (more garbage).
548 // c. A fully formed entry, reachable only through the index.
549 // d. A fully formed entry, also reachable through the lists, but still dirty.
551 // Anything after (b) can be automatically cleaned up. We may consider saving
552 // the current operation (as we do while manipulating the lists) so that we
553 // can detect and cleanup (a) and (b).
555 int num_blocks = EntryImpl::NumBlocksForEntry(key.size());
556 if (!block_files_.CreateBlock(BLOCK_256, num_blocks, &entry_address)) {
557 LOG(ERROR) << "Create entry failed " << key.c_str();
558 stats_.OnEvent(Stats::CREATE_ERROR);
559 return NULL;
562 Addr node_address(0);
563 if (!block_files_.CreateBlock(RANKINGS, 1, &node_address)) {
564 block_files_.DeleteBlock(entry_address, false);
565 LOG(ERROR) << "Create entry failed " << key.c_str();
566 stats_.OnEvent(Stats::CREATE_ERROR);
567 return NULL;
570 scoped_refptr<EntryImpl> cache_entry(
571 new EntryImpl(this, entry_address, false));
572 IncreaseNumRefs();
574 if (!cache_entry->CreateEntry(node_address, key, hash)) {
575 block_files_.DeleteBlock(entry_address, false);
576 block_files_.DeleteBlock(node_address, false);
577 LOG(ERROR) << "Create entry failed " << key.c_str();
578 stats_.OnEvent(Stats::CREATE_ERROR);
579 return NULL;
582 cache_entry->BeginLogging(net_log_, true);
584 // We are not failing the operation; let's add this to the map.
585 open_entries_[entry_address.value()] = cache_entry.get();
587 // Save the entry.
588 cache_entry->entry()->Store();
589 cache_entry->rankings()->Store();
590 IncreaseNumEntries();
591 entry_count_++;
593 // Link this entry through the index.
594 if (parent.get()) {
595 parent->SetNextAddress(entry_address);
596 } else {
597 data_->table[hash & mask_] = entry_address.value();
600 // Link this entry through the lists.
601 eviction_.OnCreateEntry(cache_entry.get());
603 CACHE_UMA(AGE_MS, "CreateTime", 0, start);
604 stats_.OnEvent(Stats::CREATE_HIT);
605 Trace("create entry hit ");
606 FlushIndex();
607 cache_entry->AddRef();
608 return cache_entry.get();
611 EntryImpl* BackendImpl::OpenNextEntryImpl(Rankings::Iterator* iterator) {
612 if (disabled_)
613 return NULL;
615 const int kListsToSearch = 3;
616 scoped_refptr<EntryImpl> entries[kListsToSearch];
617 if (!iterator->my_rankings) {
618 iterator->my_rankings = &rankings_;
619 bool ret = false;
621 // Get an entry from each list.
622 for (int i = 0; i < kListsToSearch; i++) {
623 EntryImpl* temp = NULL;
624 ret |= OpenFollowingEntryFromList(static_cast<Rankings::List>(i),
625 &iterator->nodes[i], &temp);
626 entries[i].swap(&temp); // The entry was already addref'd.
628 if (!ret) {
629 iterator->Reset();
630 return NULL;
632 } else {
633 // Get the next entry from the last list, and the actual entries for the
634 // elements on the other lists.
635 for (int i = 0; i < kListsToSearch; i++) {
636 EntryImpl* temp = NULL;
637 if (iterator->list == i) {
638 OpenFollowingEntryFromList(
639 iterator->list, &iterator->nodes[i], &temp);
640 } else {
641 temp = GetEnumeratedEntry(iterator->nodes[i],
642 static_cast<Rankings::List>(i));
645 entries[i].swap(&temp); // The entry was already addref'd.
649 int newest = -1;
650 int oldest = -1;
651 Time access_times[kListsToSearch];
652 for (int i = 0; i < kListsToSearch; i++) {
653 if (entries[i].get()) {
654 access_times[i] = entries[i]->GetLastUsed();
655 if (newest < 0) {
656 DCHECK_LT(oldest, 0);
657 newest = oldest = i;
658 continue;
660 if (access_times[i] > access_times[newest])
661 newest = i;
662 if (access_times[i] < access_times[oldest])
663 oldest = i;
667 if (newest < 0 || oldest < 0) {
668 iterator->Reset();
669 return NULL;
672 EntryImpl* next_entry;
673 next_entry = entries[newest].get();
674 iterator->list = static_cast<Rankings::List>(newest);
675 next_entry->AddRef();
676 return next_entry;
679 bool BackendImpl::SetMaxSize(int max_bytes) {
680 static_assert(sizeof(max_bytes) == sizeof(max_size_),
681 "unsupported int model");
682 if (max_bytes < 0)
683 return false;
685 // Zero size means use the default.
686 if (!max_bytes)
687 return true;
689 // Avoid a DCHECK later on.
690 if (max_bytes >= kint32max - kint32max / 10)
691 max_bytes = kint32max - kint32max / 10 - 1;
693 user_flags_ |= kMaxSize;
694 max_size_ = max_bytes;
695 return true;
698 void BackendImpl::SetType(net::CacheType type) {
699 DCHECK_NE(net::MEMORY_CACHE, type);
700 cache_type_ = type;
703 base::FilePath BackendImpl::GetFileName(Addr address) const {
704 if (!address.is_separate_file() || !address.is_initialized()) {
705 NOTREACHED();
706 return base::FilePath();
709 std::string tmp = base::StringPrintf("f_%06x", address.FileNumber());
710 return path_.AppendASCII(tmp);
713 MappedFile* BackendImpl::File(Addr address) {
714 if (disabled_)
715 return NULL;
716 return block_files_.GetFile(address);
719 base::WeakPtr<InFlightBackendIO> BackendImpl::GetBackgroundQueue() {
720 return background_queue_.GetWeakPtr();
723 bool BackendImpl::CreateExternalFile(Addr* address) {
724 int file_number = data_->header.last_file + 1;
725 Addr file_address(0);
726 bool success = false;
727 for (int i = 0; i < 0x0fffffff; i++, file_number++) {
728 if (!file_address.SetFileNumber(file_number)) {
729 file_number = 1;
730 continue;
732 base::FilePath name = GetFileName(file_address);
733 int flags = base::File::FLAG_READ | base::File::FLAG_WRITE |
734 base::File::FLAG_CREATE | base::File::FLAG_EXCLUSIVE_WRITE;
735 base::File file(name, flags);
736 if (!file.IsValid()) {
737 base::File::Error error = file.error_details();
738 if (error != base::File::FILE_ERROR_EXISTS) {
739 LOG(ERROR) << "Unable to create file: " << error;
740 return false;
742 continue;
745 success = true;
746 break;
749 DCHECK(success);
750 if (!success)
751 return false;
753 data_->header.last_file = file_number;
754 address->set_value(file_address.value());
755 return true;
758 bool BackendImpl::CreateBlock(FileType block_type, int block_count,
759 Addr* block_address) {
760 return block_files_.CreateBlock(block_type, block_count, block_address);
763 void BackendImpl::DeleteBlock(Addr block_address, bool deep) {
764 block_files_.DeleteBlock(block_address, deep);
767 LruData* BackendImpl::GetLruData() {
768 return &data_->header.lru;
771 void BackendImpl::UpdateRank(EntryImpl* entry, bool modified) {
772 if (read_only_ || (!modified && cache_type() == net::SHADER_CACHE))
773 return;
774 eviction_.UpdateRank(entry, modified);
777 void BackendImpl::RecoveredEntry(CacheRankingsBlock* rankings) {
778 Addr address(rankings->Data()->contents);
779 EntryImpl* cache_entry = NULL;
780 if (NewEntry(address, &cache_entry)) {
781 STRESS_NOTREACHED();
782 return;
785 uint32 hash = cache_entry->GetHash();
786 cache_entry->Release();
788 // Anything on the table means that this entry is there.
789 if (data_->table[hash & mask_])
790 return;
792 data_->table[hash & mask_] = address.value();
793 FlushIndex();
796 void BackendImpl::InternalDoomEntry(EntryImpl* entry) {
797 uint32 hash = entry->GetHash();
798 std::string key = entry->GetKey();
799 Addr entry_addr = entry->entry()->address();
800 bool error;
801 EntryImpl* parent_entry = MatchEntry(key, hash, true, entry_addr, &error);
802 CacheAddr child(entry->GetNextAddress());
804 Trace("Doom entry 0x%p", entry);
806 if (!entry->doomed()) {
807 // We may have doomed this entry from within MatchEntry.
808 eviction_.OnDoomEntry(entry);
809 entry->InternalDoom();
810 if (!new_eviction_) {
811 DecreaseNumEntries();
813 stats_.OnEvent(Stats::DOOM_ENTRY);
816 if (parent_entry) {
817 parent_entry->SetNextAddress(Addr(child));
818 parent_entry->Release();
819 } else if (!error) {
820 data_->table[hash & mask_] = child;
823 FlushIndex();
826 #if defined(NET_BUILD_STRESS_CACHE)
828 CacheAddr BackendImpl::GetNextAddr(Addr address) {
829 EntriesMap::iterator it = open_entries_.find(address.value());
830 if (it != open_entries_.end()) {
831 EntryImpl* this_entry = it->second;
832 return this_entry->GetNextAddress();
834 DCHECK(block_files_.IsValid(address));
835 DCHECK(!address.is_separate_file() && address.file_type() == BLOCK_256);
837 CacheEntryBlock entry(File(address), address);
838 CHECK(entry.Load());
839 return entry.Data()->next;
842 void BackendImpl::NotLinked(EntryImpl* entry) {
843 Addr entry_addr = entry->entry()->address();
844 uint32 i = entry->GetHash() & mask_;
845 Addr address(data_->table[i]);
846 if (!address.is_initialized())
847 return;
849 for (;;) {
850 DCHECK(entry_addr.value() != address.value());
851 address.set_value(GetNextAddr(address));
852 if (!address.is_initialized())
853 break;
856 #endif // NET_BUILD_STRESS_CACHE
858 // An entry may be linked on the DELETED list for a while after being doomed.
859 // This function is called when we want to remove it.
860 void BackendImpl::RemoveEntry(EntryImpl* entry) {
861 #if defined(NET_BUILD_STRESS_CACHE)
862 NotLinked(entry);
863 #endif
864 if (!new_eviction_)
865 return;
867 DCHECK_NE(ENTRY_NORMAL, entry->entry()->Data()->state);
869 Trace("Remove entry 0x%p", entry);
870 eviction_.OnDestroyEntry(entry);
871 DecreaseNumEntries();
874 void BackendImpl::OnEntryDestroyBegin(Addr address) {
875 EntriesMap::iterator it = open_entries_.find(address.value());
876 if (it != open_entries_.end())
877 open_entries_.erase(it);
880 void BackendImpl::OnEntryDestroyEnd() {
881 DecreaseNumRefs();
882 if (data_->header.num_bytes > max_size_ && !read_only_ &&
883 (up_ticks_ > kTrimDelay || user_flags_ & kNoRandom))
884 eviction_.TrimCache(false);
887 EntryImpl* BackendImpl::GetOpenEntry(CacheRankingsBlock* rankings) const {
888 DCHECK(rankings->HasData());
889 EntriesMap::const_iterator it =
890 open_entries_.find(rankings->Data()->contents);
891 if (it != open_entries_.end()) {
892 // We have this entry in memory.
893 return it->second;
896 return NULL;
899 int32 BackendImpl::GetCurrentEntryId() const {
900 return data_->header.this_id;
903 int BackendImpl::MaxFileSize() const {
904 return cache_type() == net::PNACL_CACHE ? max_size_ : max_size_ / 8;
907 void BackendImpl::ModifyStorageSize(int32 old_size, int32 new_size) {
908 if (disabled_ || old_size == new_size)
909 return;
910 if (old_size > new_size)
911 SubstractStorageSize(old_size - new_size);
912 else
913 AddStorageSize(new_size - old_size);
915 FlushIndex();
917 // Update the usage statistics.
918 stats_.ModifyStorageStats(old_size, new_size);
921 void BackendImpl::TooMuchStorageRequested(int32 size) {
922 stats_.ModifyStorageStats(0, size);
925 bool BackendImpl::IsAllocAllowed(int current_size, int new_size) {
926 DCHECK_GT(new_size, current_size);
927 if (user_flags_ & kNoBuffering)
928 return false;
930 int to_add = new_size - current_size;
931 if (buffer_bytes_ + to_add > MaxBuffersSize())
932 return false;
934 buffer_bytes_ += to_add;
935 CACHE_UMA(COUNTS_50000, "BufferBytes", 0, buffer_bytes_ / 1024);
936 return true;
939 void BackendImpl::BufferDeleted(int size) {
940 buffer_bytes_ -= size;
941 DCHECK_GE(size, 0);
944 bool BackendImpl::IsLoaded() const {
945 CACHE_UMA(COUNTS, "PendingIO", 0, num_pending_io_);
946 if (user_flags_ & kNoLoadProtection)
947 return false;
949 return (num_pending_io_ > 5 || user_load_);
952 std::string BackendImpl::HistogramName(const char* name, int experiment) const {
953 if (!experiment)
954 return base::StringPrintf("DiskCache.%d.%s", cache_type_, name);
955 return base::StringPrintf("DiskCache.%d.%s_%d", cache_type_,
956 name, experiment);
959 base::WeakPtr<BackendImpl> BackendImpl::GetWeakPtr() {
960 return ptr_factory_.GetWeakPtr();
963 // We want to remove biases from some histograms so we only send data once per
964 // week.
965 bool BackendImpl::ShouldReportAgain() {
966 if (uma_report_)
967 return uma_report_ == 2;
969 uma_report_++;
970 int64 last_report = stats_.GetCounter(Stats::LAST_REPORT);
971 Time last_time = Time::FromInternalValue(last_report);
972 if (!last_report || (Time::Now() - last_time).InDays() >= 7) {
973 stats_.SetCounter(Stats::LAST_REPORT, Time::Now().ToInternalValue());
974 uma_report_++;
975 return true;
977 return false;
980 void BackendImpl::FirstEviction() {
981 DCHECK(data_->header.create_time);
982 if (!GetEntryCount())
983 return; // This is just for unit tests.
985 Time create_time = Time::FromInternalValue(data_->header.create_time);
986 CACHE_UMA(AGE, "FillupAge", 0, create_time);
988 int64 use_time = stats_.GetCounter(Stats::TIMER);
989 CACHE_UMA(HOURS, "FillupTime", 0, static_cast<int>(use_time / 120));
990 CACHE_UMA(PERCENTAGE, "FirstHitRatio", 0, stats_.GetHitRatio());
992 if (!use_time)
993 use_time = 1;
994 CACHE_UMA(COUNTS_10000, "FirstEntryAccessRate", 0,
995 static_cast<int>(data_->header.num_entries / use_time));
996 CACHE_UMA(COUNTS, "FirstByteIORate", 0,
997 static_cast<int>((data_->header.num_bytes / 1024) / use_time));
999 int avg_size = data_->header.num_bytes / GetEntryCount();
1000 CACHE_UMA(COUNTS, "FirstEntrySize", 0, avg_size);
1002 int large_entries_bytes = stats_.GetLargeEntriesSize();
1003 int large_ratio = large_entries_bytes * 100 / data_->header.num_bytes;
1004 CACHE_UMA(PERCENTAGE, "FirstLargeEntriesRatio", 0, large_ratio);
1006 if (new_eviction_) {
1007 CACHE_UMA(PERCENTAGE, "FirstResurrectRatio", 0, stats_.GetResurrectRatio());
1008 CACHE_UMA(PERCENTAGE, "FirstNoUseRatio", 0,
1009 data_->header.lru.sizes[0] * 100 / data_->header.num_entries);
1010 CACHE_UMA(PERCENTAGE, "FirstLowUseRatio", 0,
1011 data_->header.lru.sizes[1] * 100 / data_->header.num_entries);
1012 CACHE_UMA(PERCENTAGE, "FirstHighUseRatio", 0,
1013 data_->header.lru.sizes[2] * 100 / data_->header.num_entries);
1016 stats_.ResetRatios();
1019 void BackendImpl::CriticalError(int error) {
1020 STRESS_NOTREACHED();
1021 LOG(ERROR) << "Critical error found " << error;
1022 if (disabled_)
1023 return;
1025 stats_.OnEvent(Stats::FATAL_ERROR);
1026 LogStats();
1027 ReportError(error);
1029 // Setting the index table length to an invalid value will force re-creation
1030 // of the cache files.
1031 data_->header.table_len = 1;
1032 disabled_ = true;
1034 if (!num_refs_)
1035 base::MessageLoop::current()->PostTask(
1036 FROM_HERE, base::Bind(&BackendImpl::RestartCache, GetWeakPtr(), true));
1039 void BackendImpl::ReportError(int error) {
1040 STRESS_DCHECK(!error || error == ERR_PREVIOUS_CRASH ||
1041 error == ERR_CACHE_CREATED);
1043 // We transmit positive numbers, instead of direct error codes.
1044 DCHECK_LE(error, 0);
1045 CACHE_UMA(CACHE_ERROR, "Error", 0, error * -1);
1048 void BackendImpl::OnEvent(Stats::Counters an_event) {
1049 stats_.OnEvent(an_event);
1052 void BackendImpl::OnRead(int32 bytes) {
1053 DCHECK_GE(bytes, 0);
1054 byte_count_ += bytes;
1055 if (byte_count_ < 0)
1056 byte_count_ = kint32max;
1059 void BackendImpl::OnWrite(int32 bytes) {
1060 // We use the same implementation as OnRead... just log the number of bytes.
1061 OnRead(bytes);
1064 void BackendImpl::OnStatsTimer() {
1065 if (disabled_)
1066 return;
1068 stats_.OnEvent(Stats::TIMER);
1069 int64 time = stats_.GetCounter(Stats::TIMER);
1070 int64 current = stats_.GetCounter(Stats::OPEN_ENTRIES);
1072 // OPEN_ENTRIES is a sampled average of the number of open entries, avoiding
1073 // the bias towards 0.
1074 if (num_refs_ && (current != num_refs_)) {
1075 int64 diff = (num_refs_ - current) / 50;
1076 if (!diff)
1077 diff = num_refs_ > current ? 1 : -1;
1078 current = current + diff;
1079 stats_.SetCounter(Stats::OPEN_ENTRIES, current);
1080 stats_.SetCounter(Stats::MAX_ENTRIES, max_refs_);
1083 CACHE_UMA(COUNTS, "NumberOfReferences", 0, num_refs_);
1085 CACHE_UMA(COUNTS_10000, "EntryAccessRate", 0, entry_count_);
1086 CACHE_UMA(COUNTS, "ByteIORate", 0, byte_count_ / 1024);
1088 // These values cover about 99.5% of the population (Oct 2011).
1089 user_load_ = (entry_count_ > 300 || byte_count_ > 7 * 1024 * 1024);
1090 entry_count_ = 0;
1091 byte_count_ = 0;
1092 up_ticks_++;
1094 if (!data_)
1095 first_timer_ = false;
1096 if (first_timer_) {
1097 first_timer_ = false;
1098 if (ShouldReportAgain())
1099 ReportStats();
1102 // Save stats to disk at 5 min intervals.
1103 if (time % 10 == 0)
1104 StoreStats();
1107 void BackendImpl::IncrementIoCount() {
1108 num_pending_io_++;
1111 void BackendImpl::DecrementIoCount() {
1112 num_pending_io_--;
1115 void BackendImpl::SetUnitTestMode() {
1116 user_flags_ |= kUnitTestMode;
1117 unit_test_ = true;
1120 void BackendImpl::SetUpgradeMode() {
1121 user_flags_ |= kUpgradeMode;
1122 read_only_ = true;
1125 void BackendImpl::SetNewEviction() {
1126 user_flags_ |= kNewEviction;
1127 new_eviction_ = true;
1130 void BackendImpl::SetFlags(uint32 flags) {
1131 user_flags_ |= flags;
1134 void BackendImpl::ClearRefCountForTest() {
1135 num_refs_ = 0;
1138 int BackendImpl::FlushQueueForTest(const CompletionCallback& callback) {
1139 background_queue_.FlushQueue(callback);
1140 return net::ERR_IO_PENDING;
1143 int BackendImpl::RunTaskForTest(const base::Closure& task,
1144 const CompletionCallback& callback) {
1145 background_queue_.RunTask(task, callback);
1146 return net::ERR_IO_PENDING;
1149 void BackendImpl::TrimForTest(bool empty) {
1150 eviction_.SetTestMode();
1151 eviction_.TrimCache(empty);
1154 void BackendImpl::TrimDeletedListForTest(bool empty) {
1155 eviction_.SetTestMode();
1156 eviction_.TrimDeletedList(empty);
1159 base::RepeatingTimer<BackendImpl>* BackendImpl::GetTimerForTest() {
1160 return timer_.get();
1163 int BackendImpl::SelfCheck() {
1164 if (!init_) {
1165 LOG(ERROR) << "Init failed";
1166 return ERR_INIT_FAILED;
1169 int num_entries = rankings_.SelfCheck();
1170 if (num_entries < 0) {
1171 LOG(ERROR) << "Invalid rankings list, error " << num_entries;
1172 #if !defined(NET_BUILD_STRESS_CACHE)
1173 return num_entries;
1174 #endif
1177 if (num_entries != data_->header.num_entries) {
1178 LOG(ERROR) << "Number of entries mismatch";
1179 #if !defined(NET_BUILD_STRESS_CACHE)
1180 return ERR_NUM_ENTRIES_MISMATCH;
1181 #endif
1184 return CheckAllEntries();
1187 void BackendImpl::FlushIndex() {
1188 if (index_.get() && !disabled_)
1189 index_->Flush();
1192 // ------------------------------------------------------------------------
1194 net::CacheType BackendImpl::GetCacheType() const {
1195 return cache_type_;
1198 int32 BackendImpl::GetEntryCount() const {
1199 if (!index_.get() || disabled_)
1200 return 0;
1201 // num_entries includes entries already evicted.
1202 int32 not_deleted = data_->header.num_entries -
1203 data_->header.lru.sizes[Rankings::DELETED];
1205 if (not_deleted < 0) {
1206 NOTREACHED();
1207 not_deleted = 0;
1210 return not_deleted;
1213 int BackendImpl::OpenEntry(const std::string& key, Entry** entry,
1214 const CompletionCallback& callback) {
1215 DCHECK(!callback.is_null());
1216 background_queue_.OpenEntry(key, entry, callback);
1217 return net::ERR_IO_PENDING;
1220 int BackendImpl::CreateEntry(const std::string& key, Entry** entry,
1221 const CompletionCallback& callback) {
1222 DCHECK(!callback.is_null());
1223 background_queue_.CreateEntry(key, entry, callback);
1224 return net::ERR_IO_PENDING;
1227 int BackendImpl::DoomEntry(const std::string& key,
1228 const CompletionCallback& callback) {
1229 DCHECK(!callback.is_null());
1230 background_queue_.DoomEntry(key, callback);
1231 return net::ERR_IO_PENDING;
1234 int BackendImpl::DoomAllEntries(const CompletionCallback& callback) {
1235 DCHECK(!callback.is_null());
1236 background_queue_.DoomAllEntries(callback);
1237 return net::ERR_IO_PENDING;
1240 int BackendImpl::DoomEntriesBetween(const base::Time initial_time,
1241 const base::Time end_time,
1242 const CompletionCallback& callback) {
1243 DCHECK(!callback.is_null());
1244 background_queue_.DoomEntriesBetween(initial_time, end_time, callback);
1245 return net::ERR_IO_PENDING;
1248 int BackendImpl::DoomEntriesSince(const base::Time initial_time,
1249 const CompletionCallback& callback) {
1250 DCHECK(!callback.is_null());
1251 background_queue_.DoomEntriesSince(initial_time, callback);
1252 return net::ERR_IO_PENDING;
1255 class BackendImpl::IteratorImpl : public Backend::Iterator {
1256 public:
1257 explicit IteratorImpl(base::WeakPtr<InFlightBackendIO> background_queue)
1258 : background_queue_(background_queue),
1259 iterator_(new Rankings::Iterator()) {
1262 ~IteratorImpl() override {
1263 if (background_queue_)
1264 background_queue_->EndEnumeration(iterator_.Pass());
1267 int OpenNextEntry(Entry** next_entry,
1268 const net::CompletionCallback& callback) override {
1269 if (!background_queue_)
1270 return net::ERR_FAILED;
1271 background_queue_->OpenNextEntry(iterator_.get(), next_entry, callback);
1272 return net::ERR_IO_PENDING;
1275 private:
1276 const base::WeakPtr<InFlightBackendIO> background_queue_;
1277 scoped_ptr<Rankings::Iterator> iterator_;
1280 scoped_ptr<Backend::Iterator> BackendImpl::CreateIterator() {
1281 return scoped_ptr<Backend::Iterator>(new IteratorImpl(GetBackgroundQueue()));
1284 void BackendImpl::GetStats(StatsItems* stats) {
1285 if (disabled_)
1286 return;
1288 std::pair<std::string, std::string> item;
1290 item.first = "Entries";
1291 item.second = base::StringPrintf("%d", data_->header.num_entries);
1292 stats->push_back(item);
1294 item.first = "Pending IO";
1295 item.second = base::StringPrintf("%d", num_pending_io_);
1296 stats->push_back(item);
1298 item.first = "Max size";
1299 item.second = base::StringPrintf("%d", max_size_);
1300 stats->push_back(item);
1302 item.first = "Current size";
1303 item.second = base::StringPrintf("%d", data_->header.num_bytes);
1304 stats->push_back(item);
1306 item.first = "Cache type";
1307 item.second = "Blockfile Cache";
1308 stats->push_back(item);
1310 stats_.GetItems(stats);
1313 void BackendImpl::OnExternalCacheHit(const std::string& key) {
1314 background_queue_.OnExternalCacheHit(key);
1317 // ------------------------------------------------------------------------
1319 // We just created a new file so we're going to write the header and set the
1320 // file length to include the hash table (zero filled).
1321 bool BackendImpl::CreateBackingStore(disk_cache::File* file) {
1322 AdjustMaxCacheSize(0);
1324 IndexHeader header;
1325 header.table_len = DesiredIndexTableLen(max_size_);
1327 // We need file version 2.1 for the new eviction algorithm.
1328 if (new_eviction_)
1329 header.version = 0x20001;
1331 header.create_time = Time::Now().ToInternalValue();
1333 if (!file->Write(&header, sizeof(header), 0))
1334 return false;
1336 return file->SetLength(GetIndexSize(header.table_len));
1339 bool BackendImpl::InitBackingStore(bool* file_created) {
1340 if (!base::CreateDirectory(path_))
1341 return false;
1343 base::FilePath index_name = path_.AppendASCII(kIndexName);
1345 int flags = base::File::FLAG_READ | base::File::FLAG_WRITE |
1346 base::File::FLAG_OPEN_ALWAYS | base::File::FLAG_EXCLUSIVE_WRITE;
1347 base::File base_file(index_name, flags);
1348 if (!base_file.IsValid())
1349 return false;
1351 bool ret = true;
1352 *file_created = base_file.created();
1354 scoped_refptr<disk_cache::File> file(new disk_cache::File(base_file.Pass()));
1355 if (*file_created)
1356 ret = CreateBackingStore(file.get());
1358 file = NULL;
1359 if (!ret)
1360 return false;
1362 index_ = new MappedFile();
1363 data_ = static_cast<Index*>(index_->Init(index_name, 0));
1364 if (!data_) {
1365 LOG(ERROR) << "Unable to map Index file";
1366 return false;
1369 if (index_->GetLength() < sizeof(Index)) {
1370 // We verify this again on CheckIndex() but it's easier to make sure now
1371 // that the header is there.
1372 LOG(ERROR) << "Corrupt Index file";
1373 return false;
1376 return true;
1379 // The maximum cache size will be either set explicitly by the caller, or
1380 // calculated by this code.
1381 void BackendImpl::AdjustMaxCacheSize(int table_len) {
1382 if (max_size_)
1383 return;
1385 // If table_len is provided, the index file exists.
1386 DCHECK(!table_len || data_->header.magic);
1388 // The user is not setting the size, let's figure it out.
1389 int64 available = base::SysInfo::AmountOfFreeDiskSpace(path_);
1390 if (available < 0) {
1391 max_size_ = kDefaultCacheSize;
1392 return;
1395 if (table_len)
1396 available += data_->header.num_bytes;
1398 max_size_ = PreferredCacheSize(available);
1400 if (!table_len)
1401 return;
1403 // If we already have a table, adjust the size to it.
1404 int current_max_size = MaxStorageSizeForTable(table_len);
1405 if (max_size_ > current_max_size)
1406 max_size_= current_max_size;
1409 bool BackendImpl::InitStats() {
1410 Addr address(data_->header.stats);
1411 int size = stats_.StorageSize();
1413 if (!address.is_initialized()) {
1414 FileType file_type = Addr::RequiredFileType(size);
1415 DCHECK_NE(file_type, EXTERNAL);
1416 int num_blocks = Addr::RequiredBlocks(size, file_type);
1418 if (!CreateBlock(file_type, num_blocks, &address))
1419 return false;
1421 data_->header.stats = address.value();
1422 return stats_.Init(NULL, 0, address);
1425 if (!address.is_block_file()) {
1426 NOTREACHED();
1427 return false;
1430 // Load the required data.
1431 size = address.num_blocks() * address.BlockSize();
1432 MappedFile* file = File(address);
1433 if (!file)
1434 return false;
1436 scoped_ptr<char[]> data(new char[size]);
1437 size_t offset = address.start_block() * address.BlockSize() +
1438 kBlockHeaderSize;
1439 if (!file->Read(data.get(), size, offset))
1440 return false;
1442 if (!stats_.Init(data.get(), size, address))
1443 return false;
1444 if (cache_type_ == net::DISK_CACHE && ShouldReportAgain())
1445 stats_.InitSizeHistogram();
1446 return true;
1449 void BackendImpl::StoreStats() {
1450 int size = stats_.StorageSize();
1451 scoped_ptr<char[]> data(new char[size]);
1452 Addr address;
1453 size = stats_.SerializeStats(data.get(), size, &address);
1454 DCHECK(size);
1455 if (!address.is_initialized())
1456 return;
1458 MappedFile* file = File(address);
1459 if (!file)
1460 return;
1462 size_t offset = address.start_block() * address.BlockSize() +
1463 kBlockHeaderSize;
1464 file->Write(data.get(), size, offset); // ignore result.
1467 void BackendImpl::RestartCache(bool failure) {
1468 int64 errors = stats_.GetCounter(Stats::FATAL_ERROR);
1469 int64 full_dooms = stats_.GetCounter(Stats::DOOM_CACHE);
1470 int64 partial_dooms = stats_.GetCounter(Stats::DOOM_RECENT);
1471 int64 last_report = stats_.GetCounter(Stats::LAST_REPORT);
1473 PrepareForRestart();
1474 if (failure) {
1475 DCHECK(!num_refs_);
1476 DCHECK(!open_entries_.size());
1477 DelayedCacheCleanup(path_);
1478 } else {
1479 DeleteCache(path_, false);
1482 // Don't call Init() if directed by the unit test: we are simulating a failure
1483 // trying to re-enable the cache.
1484 if (unit_test_)
1485 init_ = true; // Let the destructor do proper cleanup.
1486 else if (SyncInit() == net::OK) {
1487 stats_.SetCounter(Stats::FATAL_ERROR, errors);
1488 stats_.SetCounter(Stats::DOOM_CACHE, full_dooms);
1489 stats_.SetCounter(Stats::DOOM_RECENT, partial_dooms);
1490 stats_.SetCounter(Stats::LAST_REPORT, last_report);
1494 void BackendImpl::PrepareForRestart() {
1495 // Reset the mask_ if it was not given by the user.
1496 if (!(user_flags_ & kMask))
1497 mask_ = 0;
1499 if (!(user_flags_ & kNewEviction))
1500 new_eviction_ = false;
1502 disabled_ = true;
1503 data_->header.crash = 0;
1504 index_->Flush();
1505 index_ = NULL;
1506 data_ = NULL;
1507 block_files_.CloseFiles();
1508 rankings_.Reset();
1509 init_ = false;
1510 restarted_ = true;
1513 int BackendImpl::NewEntry(Addr address, EntryImpl** entry) {
1514 EntriesMap::iterator it = open_entries_.find(address.value());
1515 if (it != open_entries_.end()) {
1516 // Easy job. This entry is already in memory.
1517 EntryImpl* this_entry = it->second;
1518 this_entry->AddRef();
1519 *entry = this_entry;
1520 return 0;
1523 STRESS_DCHECK(block_files_.IsValid(address));
1525 if (!address.SanityCheckForEntryV2()) {
1526 LOG(WARNING) << "Wrong entry address.";
1527 STRESS_NOTREACHED();
1528 return ERR_INVALID_ADDRESS;
1531 scoped_refptr<EntryImpl> cache_entry(
1532 new EntryImpl(this, address, read_only_));
1533 IncreaseNumRefs();
1534 *entry = NULL;
1536 TimeTicks start = TimeTicks::Now();
1537 if (!cache_entry->entry()->Load())
1538 return ERR_READ_FAILURE;
1540 if (IsLoaded()) {
1541 CACHE_UMA(AGE_MS, "LoadTime", 0, start);
1544 if (!cache_entry->SanityCheck()) {
1545 LOG(WARNING) << "Messed up entry found.";
1546 STRESS_NOTREACHED();
1547 return ERR_INVALID_ENTRY;
1550 STRESS_DCHECK(block_files_.IsValid(
1551 Addr(cache_entry->entry()->Data()->rankings_node)));
1553 if (!cache_entry->LoadNodeAddress())
1554 return ERR_READ_FAILURE;
1556 if (!rankings_.SanityCheck(cache_entry->rankings(), false)) {
1557 STRESS_NOTREACHED();
1558 cache_entry->SetDirtyFlag(0);
1559 // Don't remove this from the list (it is not linked properly). Instead,
1560 // break the link back to the entry because it is going away, and leave the
1561 // rankings node to be deleted if we find it through a list.
1562 rankings_.SetContents(cache_entry->rankings(), 0);
1563 } else if (!rankings_.DataSanityCheck(cache_entry->rankings(), false)) {
1564 STRESS_NOTREACHED();
1565 cache_entry->SetDirtyFlag(0);
1566 rankings_.SetContents(cache_entry->rankings(), address.value());
1569 if (!cache_entry->DataSanityCheck()) {
1570 LOG(WARNING) << "Messed up entry found.";
1571 cache_entry->SetDirtyFlag(0);
1572 cache_entry->FixForDelete();
1575 // Prevent overwriting the dirty flag on the destructor.
1576 cache_entry->SetDirtyFlag(GetCurrentEntryId());
1578 if (cache_entry->dirty()) {
1579 Trace("Dirty entry 0x%p 0x%x", reinterpret_cast<void*>(cache_entry.get()),
1580 address.value());
1583 open_entries_[address.value()] = cache_entry.get();
1585 cache_entry->BeginLogging(net_log_, false);
1586 cache_entry.swap(entry);
1587 return 0;
1590 EntryImpl* BackendImpl::MatchEntry(const std::string& key, uint32 hash,
1591 bool find_parent, Addr entry_addr,
1592 bool* match_error) {
1593 Addr address(data_->table[hash & mask_]);
1594 scoped_refptr<EntryImpl> cache_entry, parent_entry;
1595 EntryImpl* tmp = NULL;
1596 bool found = false;
1597 std::set<CacheAddr> visited;
1598 *match_error = false;
1600 for (;;) {
1601 if (disabled_)
1602 break;
1604 if (visited.find(address.value()) != visited.end()) {
1605 // It's possible for a buggy version of the code to write a loop. Just
1606 // break it.
1607 Trace("Hash collision loop 0x%x", address.value());
1608 address.set_value(0);
1609 parent_entry->SetNextAddress(address);
1611 visited.insert(address.value());
1613 if (!address.is_initialized()) {
1614 if (find_parent)
1615 found = true;
1616 break;
1619 int error = NewEntry(address, &tmp);
1620 cache_entry.swap(&tmp);
1622 if (error || cache_entry->dirty()) {
1623 // This entry is dirty on disk (it was not properly closed): we cannot
1624 // trust it.
1625 Addr child(0);
1626 if (!error)
1627 child.set_value(cache_entry->GetNextAddress());
1629 if (parent_entry.get()) {
1630 parent_entry->SetNextAddress(child);
1631 parent_entry = NULL;
1632 } else {
1633 data_->table[hash & mask_] = child.value();
1636 Trace("MatchEntry dirty %d 0x%x 0x%x", find_parent, entry_addr.value(),
1637 address.value());
1639 if (!error) {
1640 // It is important to call DestroyInvalidEntry after removing this
1641 // entry from the table.
1642 DestroyInvalidEntry(cache_entry.get());
1643 cache_entry = NULL;
1644 } else {
1645 Trace("NewEntry failed on MatchEntry 0x%x", address.value());
1648 // Restart the search.
1649 address.set_value(data_->table[hash & mask_]);
1650 visited.clear();
1651 continue;
1654 DCHECK_EQ(hash & mask_, cache_entry->entry()->Data()->hash & mask_);
1655 if (cache_entry->IsSameEntry(key, hash)) {
1656 if (!cache_entry->Update())
1657 cache_entry = NULL;
1658 found = true;
1659 if (find_parent && entry_addr.value() != address.value()) {
1660 Trace("Entry not on the index 0x%x", address.value());
1661 *match_error = true;
1662 parent_entry = NULL;
1664 break;
1666 if (!cache_entry->Update())
1667 cache_entry = NULL;
1668 parent_entry = cache_entry;
1669 cache_entry = NULL;
1670 if (!parent_entry.get())
1671 break;
1673 address.set_value(parent_entry->GetNextAddress());
1676 if (parent_entry.get() && (!find_parent || !found))
1677 parent_entry = NULL;
1679 if (find_parent && entry_addr.is_initialized() && !cache_entry.get()) {
1680 *match_error = true;
1681 parent_entry = NULL;
1684 if (cache_entry.get() && (find_parent || !found))
1685 cache_entry = NULL;
1687 find_parent ? parent_entry.swap(&tmp) : cache_entry.swap(&tmp);
1688 FlushIndex();
1689 return tmp;
1692 bool BackendImpl::OpenFollowingEntryFromList(Rankings::List list,
1693 CacheRankingsBlock** from_entry,
1694 EntryImpl** next_entry) {
1695 if (disabled_)
1696 return false;
1698 if (!new_eviction_ && Rankings::NO_USE != list)
1699 return false;
1701 Rankings::ScopedRankingsBlock rankings(&rankings_, *from_entry);
1702 CacheRankingsBlock* next_block = rankings_.GetNext(rankings.get(), list);
1703 Rankings::ScopedRankingsBlock next(&rankings_, next_block);
1704 *from_entry = NULL;
1706 *next_entry = GetEnumeratedEntry(next.get(), list);
1707 if (!*next_entry)
1708 return false;
1710 *from_entry = next.release();
1711 return true;
1714 EntryImpl* BackendImpl::GetEnumeratedEntry(CacheRankingsBlock* next,
1715 Rankings::List list) {
1716 if (!next || disabled_)
1717 return NULL;
1719 EntryImpl* entry;
1720 int rv = NewEntry(Addr(next->Data()->contents), &entry);
1721 if (rv) {
1722 STRESS_NOTREACHED();
1723 rankings_.Remove(next, list, false);
1724 if (rv == ERR_INVALID_ADDRESS) {
1725 // There is nothing linked from the index. Delete the rankings node.
1726 DeleteBlock(next->address(), true);
1728 return NULL;
1731 if (entry->dirty()) {
1732 // We cannot trust this entry.
1733 InternalDoomEntry(entry);
1734 entry->Release();
1735 return NULL;
1738 if (!entry->Update()) {
1739 STRESS_NOTREACHED();
1740 entry->Release();
1741 return NULL;
1744 // Note that it is unfortunate (but possible) for this entry to be clean, but
1745 // not actually the real entry. In other words, we could have lost this entry
1746 // from the index, and it could have been replaced with a newer one. It's not
1747 // worth checking that this entry is "the real one", so we just return it and
1748 // let the enumeration continue; this entry will be evicted at some point, and
1749 // the regular path will work with the real entry. With time, this problem
1750 // will disasappear because this scenario is just a bug.
1752 // Make sure that we save the key for later.
1753 entry->GetKey();
1755 return entry;
1758 EntryImpl* BackendImpl::ResurrectEntry(EntryImpl* deleted_entry) {
1759 if (ENTRY_NORMAL == deleted_entry->entry()->Data()->state) {
1760 deleted_entry->Release();
1761 stats_.OnEvent(Stats::CREATE_MISS);
1762 Trace("create entry miss ");
1763 return NULL;
1766 // We are attempting to create an entry and found out that the entry was
1767 // previously deleted.
1769 eviction_.OnCreateEntry(deleted_entry);
1770 entry_count_++;
1772 stats_.OnEvent(Stats::RESURRECT_HIT);
1773 Trace("Resurrect entry hit ");
1774 return deleted_entry;
1777 void BackendImpl::DestroyInvalidEntry(EntryImpl* entry) {
1778 LOG(WARNING) << "Destroying invalid entry.";
1779 Trace("Destroying invalid entry 0x%p", entry);
1781 entry->SetPointerForInvalidEntry(GetCurrentEntryId());
1783 eviction_.OnDoomEntry(entry);
1784 entry->InternalDoom();
1786 if (!new_eviction_)
1787 DecreaseNumEntries();
1788 stats_.OnEvent(Stats::INVALID_ENTRY);
1791 void BackendImpl::AddStorageSize(int32 bytes) {
1792 data_->header.num_bytes += bytes;
1793 DCHECK_GE(data_->header.num_bytes, 0);
1796 void BackendImpl::SubstractStorageSize(int32 bytes) {
1797 data_->header.num_bytes -= bytes;
1798 DCHECK_GE(data_->header.num_bytes, 0);
1801 void BackendImpl::IncreaseNumRefs() {
1802 num_refs_++;
1803 if (max_refs_ < num_refs_)
1804 max_refs_ = num_refs_;
1807 void BackendImpl::DecreaseNumRefs() {
1808 DCHECK(num_refs_);
1809 num_refs_--;
1811 if (!num_refs_ && disabled_)
1812 base::MessageLoop::current()->PostTask(
1813 FROM_HERE, base::Bind(&BackendImpl::RestartCache, GetWeakPtr(), true));
1816 void BackendImpl::IncreaseNumEntries() {
1817 data_->header.num_entries++;
1818 DCHECK_GT(data_->header.num_entries, 0);
1821 void BackendImpl::DecreaseNumEntries() {
1822 data_->header.num_entries--;
1823 if (data_->header.num_entries < 0) {
1824 NOTREACHED();
1825 data_->header.num_entries = 0;
1829 void BackendImpl::LogStats() {
1830 StatsItems stats;
1831 GetStats(&stats);
1833 for (size_t index = 0; index < stats.size(); index++)
1834 VLOG(1) << stats[index].first << ": " << stats[index].second;
1837 void BackendImpl::ReportStats() {
1838 CACHE_UMA(COUNTS, "Entries", 0, data_->header.num_entries);
1840 int current_size = data_->header.num_bytes / (1024 * 1024);
1841 int max_size = max_size_ / (1024 * 1024);
1842 int hit_ratio_as_percentage = stats_.GetHitRatio();
1844 CACHE_UMA(COUNTS_10000, "Size2", 0, current_size);
1845 // For any bin in HitRatioBySize2, the hit ratio of caches of that size is the
1846 // ratio of that bin's total count to the count in the same bin in the Size2
1847 // histogram.
1848 if (base::RandInt(0, 99) < hit_ratio_as_percentage)
1849 CACHE_UMA(COUNTS_10000, "HitRatioBySize2", 0, current_size);
1850 CACHE_UMA(COUNTS_10000, "MaxSize2", 0, max_size);
1851 if (!max_size)
1852 max_size++;
1853 CACHE_UMA(PERCENTAGE, "UsedSpace", 0, current_size * 100 / max_size);
1855 CACHE_UMA(COUNTS_10000, "AverageOpenEntries2", 0,
1856 static_cast<int>(stats_.GetCounter(Stats::OPEN_ENTRIES)));
1857 CACHE_UMA(COUNTS_10000, "MaxOpenEntries2", 0,
1858 static_cast<int>(stats_.GetCounter(Stats::MAX_ENTRIES)));
1859 stats_.SetCounter(Stats::MAX_ENTRIES, 0);
1861 CACHE_UMA(COUNTS_10000, "TotalFatalErrors", 0,
1862 static_cast<int>(stats_.GetCounter(Stats::FATAL_ERROR)));
1863 CACHE_UMA(COUNTS_10000, "TotalDoomCache", 0,
1864 static_cast<int>(stats_.GetCounter(Stats::DOOM_CACHE)));
1865 CACHE_UMA(COUNTS_10000, "TotalDoomRecentEntries", 0,
1866 static_cast<int>(stats_.GetCounter(Stats::DOOM_RECENT)));
1867 stats_.SetCounter(Stats::FATAL_ERROR, 0);
1868 stats_.SetCounter(Stats::DOOM_CACHE, 0);
1869 stats_.SetCounter(Stats::DOOM_RECENT, 0);
1871 int age = (Time::Now() -
1872 Time::FromInternalValue(data_->header.create_time)).InHours();
1873 if (age)
1874 CACHE_UMA(HOURS, "FilesAge", 0, age);
1876 int64 total_hours = stats_.GetCounter(Stats::TIMER) / 120;
1877 if (!data_->header.create_time || !data_->header.lru.filled) {
1878 int cause = data_->header.create_time ? 0 : 1;
1879 if (!data_->header.lru.filled)
1880 cause |= 2;
1881 CACHE_UMA(CACHE_ERROR, "ShortReport", 0, cause);
1882 CACHE_UMA(HOURS, "TotalTimeNotFull", 0, static_cast<int>(total_hours));
1883 return;
1886 // This is an up to date client that will report FirstEviction() data. After
1887 // that event, start reporting this:
1889 CACHE_UMA(HOURS, "TotalTime", 0, static_cast<int>(total_hours));
1890 // For any bin in HitRatioByTotalTime, the hit ratio of caches of that total
1891 // time is the ratio of that bin's total count to the count in the same bin in
1892 // the TotalTime histogram.
1893 if (base::RandInt(0, 99) < hit_ratio_as_percentage)
1894 CACHE_UMA(HOURS, "HitRatioByTotalTime", 0, static_cast<int>(total_hours));
1896 int64 use_hours = stats_.GetCounter(Stats::LAST_REPORT_TIMER) / 120;
1897 stats_.SetCounter(Stats::LAST_REPORT_TIMER, stats_.GetCounter(Stats::TIMER));
1899 // We may see users with no use_hours at this point if this is the first time
1900 // we are running this code.
1901 if (use_hours)
1902 use_hours = total_hours - use_hours;
1904 if (!use_hours || !GetEntryCount() || !data_->header.num_bytes)
1905 return;
1907 CACHE_UMA(HOURS, "UseTime", 0, static_cast<int>(use_hours));
1908 // For any bin in HitRatioByUseTime, the hit ratio of caches of that use time
1909 // is the ratio of that bin's total count to the count in the same bin in the
1910 // UseTime histogram.
1911 if (base::RandInt(0, 99) < hit_ratio_as_percentage)
1912 CACHE_UMA(HOURS, "HitRatioByUseTime", 0, static_cast<int>(use_hours));
1913 CACHE_UMA(PERCENTAGE, "HitRatio", 0, hit_ratio_as_percentage);
1915 int64 trim_rate = stats_.GetCounter(Stats::TRIM_ENTRY) / use_hours;
1916 CACHE_UMA(COUNTS, "TrimRate", 0, static_cast<int>(trim_rate));
1918 int avg_size = data_->header.num_bytes / GetEntryCount();
1919 CACHE_UMA(COUNTS, "EntrySize", 0, avg_size);
1920 CACHE_UMA(COUNTS, "EntriesFull", 0, data_->header.num_entries);
1922 CACHE_UMA(PERCENTAGE, "IndexLoad", 0,
1923 data_->header.num_entries * 100 / (mask_ + 1));
1925 int large_entries_bytes = stats_.GetLargeEntriesSize();
1926 int large_ratio = large_entries_bytes * 100 / data_->header.num_bytes;
1927 CACHE_UMA(PERCENTAGE, "LargeEntriesRatio", 0, large_ratio);
1929 if (new_eviction_) {
1930 CACHE_UMA(PERCENTAGE, "ResurrectRatio", 0, stats_.GetResurrectRatio());
1931 CACHE_UMA(PERCENTAGE, "NoUseRatio", 0,
1932 data_->header.lru.sizes[0] * 100 / data_->header.num_entries);
1933 CACHE_UMA(PERCENTAGE, "LowUseRatio", 0,
1934 data_->header.lru.sizes[1] * 100 / data_->header.num_entries);
1935 CACHE_UMA(PERCENTAGE, "HighUseRatio", 0,
1936 data_->header.lru.sizes[2] * 100 / data_->header.num_entries);
1937 CACHE_UMA(PERCENTAGE, "DeletedRatio", 0,
1938 data_->header.lru.sizes[4] * 100 / data_->header.num_entries);
1941 stats_.ResetRatios();
1942 stats_.SetCounter(Stats::TRIM_ENTRY, 0);
1944 if (cache_type_ == net::DISK_CACHE)
1945 block_files_.ReportStats();
1948 void BackendImpl::UpgradeTo2_1() {
1949 // 2.1 is basically the same as 2.0, except that new fields are actually
1950 // updated by the new eviction algorithm.
1951 DCHECK(0x20000 == data_->header.version);
1952 data_->header.version = 0x20001;
1953 data_->header.lru.sizes[Rankings::NO_USE] = data_->header.num_entries;
1956 bool BackendImpl::CheckIndex() {
1957 DCHECK(data_);
1959 size_t current_size = index_->GetLength();
1960 if (current_size < sizeof(Index)) {
1961 LOG(ERROR) << "Corrupt Index file";
1962 return false;
1965 if (new_eviction_) {
1966 // We support versions 2.0 and 2.1, upgrading 2.0 to 2.1.
1967 if (kIndexMagic != data_->header.magic ||
1968 kCurrentVersion >> 16 != data_->header.version >> 16) {
1969 LOG(ERROR) << "Invalid file version or magic";
1970 return false;
1972 if (kCurrentVersion == data_->header.version) {
1973 // We need file version 2.1 for the new eviction algorithm.
1974 UpgradeTo2_1();
1976 } else {
1977 if (kIndexMagic != data_->header.magic ||
1978 kCurrentVersion != data_->header.version) {
1979 LOG(ERROR) << "Invalid file version or magic";
1980 return false;
1984 if (!data_->header.table_len) {
1985 LOG(ERROR) << "Invalid table size";
1986 return false;
1989 if (current_size < GetIndexSize(data_->header.table_len) ||
1990 data_->header.table_len & (kBaseTableLen - 1)) {
1991 LOG(ERROR) << "Corrupt Index file";
1992 return false;
1995 AdjustMaxCacheSize(data_->header.table_len);
1997 #if !defined(NET_BUILD_STRESS_CACHE)
1998 if (data_->header.num_bytes < 0 ||
1999 (max_size_ < kint32max - kDefaultCacheSize &&
2000 data_->header.num_bytes > max_size_ + kDefaultCacheSize)) {
2001 LOG(ERROR) << "Invalid cache (current) size";
2002 return false;
2004 #endif
2006 if (data_->header.num_entries < 0) {
2007 LOG(ERROR) << "Invalid number of entries";
2008 return false;
2011 if (!mask_)
2012 mask_ = data_->header.table_len - 1;
2014 // Load the table into memory.
2015 return index_->Preload();
2018 int BackendImpl::CheckAllEntries() {
2019 int num_dirty = 0;
2020 int num_entries = 0;
2021 DCHECK(mask_ < kuint32max);
2022 for (unsigned int i = 0; i <= mask_; i++) {
2023 Addr address(data_->table[i]);
2024 if (!address.is_initialized())
2025 continue;
2026 for (;;) {
2027 EntryImpl* tmp;
2028 int ret = NewEntry(address, &tmp);
2029 if (ret) {
2030 STRESS_NOTREACHED();
2031 return ret;
2033 scoped_refptr<EntryImpl> cache_entry;
2034 cache_entry.swap(&tmp);
2036 if (cache_entry->dirty())
2037 num_dirty++;
2038 else if (CheckEntry(cache_entry.get()))
2039 num_entries++;
2040 else
2041 return ERR_INVALID_ENTRY;
2043 DCHECK_EQ(i, cache_entry->entry()->Data()->hash & mask_);
2044 address.set_value(cache_entry->GetNextAddress());
2045 if (!address.is_initialized())
2046 break;
2050 Trace("CheckAllEntries End");
2051 if (num_entries + num_dirty != data_->header.num_entries) {
2052 LOG(ERROR) << "Number of entries " << num_entries << " " << num_dirty <<
2053 " " << data_->header.num_entries;
2054 DCHECK_LT(num_entries, data_->header.num_entries);
2055 return ERR_NUM_ENTRIES_MISMATCH;
2058 return num_dirty;
2061 bool BackendImpl::CheckEntry(EntryImpl* cache_entry) {
2062 bool ok = block_files_.IsValid(cache_entry->entry()->address());
2063 ok = ok && block_files_.IsValid(cache_entry->rankings()->address());
2064 EntryStore* data = cache_entry->entry()->Data();
2065 for (size_t i = 0; i < arraysize(data->data_addr); i++) {
2066 if (data->data_addr[i]) {
2067 Addr address(data->data_addr[i]);
2068 if (address.is_block_file())
2069 ok = ok && block_files_.IsValid(address);
2073 return ok && cache_entry->rankings()->VerifyHash();
2076 int BackendImpl::MaxBuffersSize() {
2077 static int64 total_memory = base::SysInfo::AmountOfPhysicalMemory();
2078 static bool done = false;
2080 if (!done) {
2081 const int kMaxBuffersSize = 30 * 1024 * 1024;
2083 // We want to use up to 2% of the computer's memory.
2084 total_memory = total_memory * 2 / 100;
2085 if (total_memory > kMaxBuffersSize || total_memory <= 0)
2086 total_memory = kMaxBuffersSize;
2088 done = true;
2091 return static_cast<int>(total_memory);
2094 } // namespace disk_cache