Perf: Update size expectations on linux-rel
[chromium-blink-merge.git] / net / quic / quic_framer.cc
blob84c6b308417e6a0b036c4c8cce36a729ec0d3d7e
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/quic_framer.h"
7 #include "base/containers/hash_tables.h"
8 #include "base/stl_util.h"
9 #include "net/quic/crypto/crypto_framer.h"
10 #include "net/quic/crypto/crypto_handshake_message.h"
11 #include "net/quic/crypto/crypto_protocol.h"
12 #include "net/quic/crypto/quic_decrypter.h"
13 #include "net/quic/crypto/quic_encrypter.h"
14 #include "net/quic/quic_data_reader.h"
15 #include "net/quic/quic_data_writer.h"
16 #include "net/quic/quic_flags.h"
17 #include "net/quic/quic_socket_address_coder.h"
19 using base::StringPiece;
20 using std::make_pair;
21 using std::map;
22 using std::max;
23 using std::min;
24 using std::numeric_limits;
25 using std::string;
27 namespace net {
29 namespace {
31 // Mask to select the lowest 48 bits of a sequence number.
32 const QuicPacketSequenceNumber k6ByteSequenceNumberMask =
33 GG_UINT64_C(0x0000FFFFFFFFFFFF);
34 const QuicPacketSequenceNumber k4ByteSequenceNumberMask =
35 GG_UINT64_C(0x00000000FFFFFFFF);
36 const QuicPacketSequenceNumber k2ByteSequenceNumberMask =
37 GG_UINT64_C(0x000000000000FFFF);
38 const QuicPacketSequenceNumber k1ByteSequenceNumberMask =
39 GG_UINT64_C(0x00000000000000FF);
41 const QuicConnectionId k1ByteConnectionIdMask = GG_UINT64_C(0x00000000000000FF);
42 const QuicConnectionId k4ByteConnectionIdMask = GG_UINT64_C(0x00000000FFFFFFFF);
44 // Number of bits the sequence number length bits are shifted from the right
45 // edge of the public header.
46 const uint8 kPublicHeaderSequenceNumberShift = 4;
48 // New Frame Types, QUIC v. >= 10:
49 // There are two interpretations for the Frame Type byte in the QUIC protocol,
50 // resulting in two Frame Types: Special Frame Types and Regular Frame Types.
52 // Regular Frame Types use the Frame Type byte simply. Currently defined
53 // Regular Frame Types are:
54 // Padding : 0b 00000000 (0x00)
55 // ResetStream : 0b 00000001 (0x01)
56 // ConnectionClose : 0b 00000010 (0x02)
57 // GoAway : 0b 00000011 (0x03)
58 // WindowUpdate : 0b 00000100 (0x04)
59 // Blocked : 0b 00000101 (0x05)
61 // Special Frame Types encode both a Frame Type and corresponding flags
62 // all in the Frame Type byte. Currently defined Special Frame Types are:
63 // Stream : 0b 1xxxxxxx
64 // Ack : 0b 01xxxxxx
65 // CongestionFeedback : 0b 001xxxxx
67 // Semantics of the flag bits above (the x bits) depends on the frame type.
69 // Masks to determine if the frame type is a special use
70 // and for specific special frame types.
71 const uint8 kQuicFrameTypeSpecialMask = 0xE0; // 0b 11100000
72 const uint8 kQuicFrameTypeStreamMask = 0x80;
73 const uint8 kQuicFrameTypeAckMask = 0x40;
74 const uint8 kQuicFrameTypeCongestionFeedbackMask = 0x20;
76 // Stream frame relative shifts and masks for interpreting the stream flags.
77 // StreamID may be 1, 2, 3, or 4 bytes.
78 const uint8 kQuicStreamIdShift = 2;
79 const uint8 kQuicStreamIDLengthMask = 0x03;
81 // Offset may be 0, 2, 3, 4, 5, 6, 7, 8 bytes.
82 const uint8 kQuicStreamOffsetShift = 3;
83 const uint8 kQuicStreamOffsetMask = 0x07;
85 // Data length may be 0 or 2 bytes.
86 const uint8 kQuicStreamDataLengthShift = 1;
87 const uint8 kQuicStreamDataLengthMask = 0x01;
89 // Fin bit may be set or not.
90 const uint8 kQuicStreamFinShift = 1;
91 const uint8 kQuicStreamFinMask = 0x01;
93 // Sequence number size shift used in AckFrames.
94 const uint8 kQuicSequenceNumberLengthShift = 2;
96 // Acks may be truncated.
97 const uint8 kQuicAckTruncatedShift = 1;
98 const uint8 kQuicAckTruncatedMask = 0x01;
100 // Acks may not have any nacks.
101 const uint8 kQuicHasNacksMask = 0x01;
103 // Returns the absolute value of the difference between |a| and |b|.
104 QuicPacketSequenceNumber Delta(QuicPacketSequenceNumber a,
105 QuicPacketSequenceNumber b) {
106 // Since these are unsigned numbers, we can't just return abs(a - b)
107 if (a < b) {
108 return b - a;
110 return a - b;
113 QuicPacketSequenceNumber ClosestTo(QuicPacketSequenceNumber target,
114 QuicPacketSequenceNumber a,
115 QuicPacketSequenceNumber b) {
116 return (Delta(target, a) < Delta(target, b)) ? a : b;
119 QuicSequenceNumberLength ReadSequenceNumberLength(uint8 flags) {
120 switch (flags & PACKET_FLAGS_6BYTE_SEQUENCE) {
121 case PACKET_FLAGS_6BYTE_SEQUENCE:
122 return PACKET_6BYTE_SEQUENCE_NUMBER;
123 case PACKET_FLAGS_4BYTE_SEQUENCE:
124 return PACKET_4BYTE_SEQUENCE_NUMBER;
125 case PACKET_FLAGS_2BYTE_SEQUENCE:
126 return PACKET_2BYTE_SEQUENCE_NUMBER;
127 case PACKET_FLAGS_1BYTE_SEQUENCE:
128 return PACKET_1BYTE_SEQUENCE_NUMBER;
129 default:
130 LOG(DFATAL) << "Unreachable case statement.";
131 return PACKET_6BYTE_SEQUENCE_NUMBER;
135 } // namespace
137 bool QuicFramerVisitorInterface::OnWindowUpdateFrame(
138 const QuicWindowUpdateFrame& frame) {
139 return true;
142 bool QuicFramerVisitorInterface::OnBlockedFrame(const QuicBlockedFrame& frame) {
143 return true;
146 QuicFramer::QuicFramer(const QuicVersionVector& supported_versions,
147 QuicTime creation_time,
148 bool is_server)
149 : visitor_(NULL),
150 fec_builder_(NULL),
151 entropy_calculator_(NULL),
152 error_(QUIC_NO_ERROR),
153 last_sequence_number_(0),
154 last_serialized_connection_id_(0),
155 supported_versions_(supported_versions),
156 decrypter_level_(ENCRYPTION_NONE),
157 alternative_decrypter_level_(ENCRYPTION_NONE),
158 alternative_decrypter_latch_(false),
159 is_server_(is_server),
160 validate_flags_(true),
161 creation_time_(creation_time),
162 last_timestamp_(QuicTime::Delta::Zero()) {
163 DCHECK(!supported_versions.empty());
164 quic_version_ = supported_versions_[0];
165 decrypter_.reset(QuicDecrypter::Create(kNULL));
166 encrypter_[ENCRYPTION_NONE].reset(
167 QuicEncrypter::Create(kNULL));
170 QuicFramer::~QuicFramer() {}
172 // static
173 size_t QuicFramer::GetMinStreamFrameSize(QuicStreamId stream_id,
174 QuicStreamOffset offset,
175 bool last_frame_in_packet,
176 InFecGroup is_in_fec_group) {
177 bool no_stream_frame_length = last_frame_in_packet &&
178 is_in_fec_group == NOT_IN_FEC_GROUP;
179 return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
180 GetStreamOffsetSize(offset) +
181 (no_stream_frame_length ? 0 : kQuicStreamPayloadLengthSize);
184 // static
185 size_t QuicFramer::GetMinAckFrameSize(
186 QuicSequenceNumberLength sequence_number_length,
187 QuicSequenceNumberLength largest_observed_length) {
188 return kQuicFrameTypeSize + kQuicEntropyHashSize +
189 largest_observed_length + kQuicDeltaTimeLargestObservedSize;
192 // static
193 size_t QuicFramer::GetStopWaitingFrameSize(
194 QuicSequenceNumberLength sequence_number_length) {
195 return kQuicFrameTypeSize + kQuicEntropyHashSize +
196 sequence_number_length;
199 // static
200 size_t QuicFramer::GetMinRstStreamFrameSize() {
201 return kQuicFrameTypeSize + kQuicMaxStreamIdSize +
202 kQuicMaxStreamOffsetSize + kQuicErrorCodeSize +
203 kQuicErrorDetailsLengthSize;
206 // static
207 size_t QuicFramer::GetMinConnectionCloseFrameSize() {
208 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize;
211 // static
212 size_t QuicFramer::GetMinGoAwayFrameSize() {
213 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
214 kQuicMaxStreamIdSize;
217 // static
218 size_t QuicFramer::GetWindowUpdateFrameSize() {
219 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize;
222 // static
223 size_t QuicFramer::GetBlockedFrameSize() {
224 return kQuicFrameTypeSize + kQuicMaxStreamIdSize;
227 // static
228 size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
229 // Sizes are 1 through 4 bytes.
230 for (int i = 1; i <= 4; ++i) {
231 stream_id >>= 8;
232 if (stream_id == 0) {
233 return i;
236 LOG(DFATAL) << "Failed to determine StreamIDSize.";
237 return 4;
240 // static
241 size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) {
242 // 0 is a special case.
243 if (offset == 0) {
244 return 0;
246 // 2 through 8 are the remaining sizes.
247 offset >>= 8;
248 for (int i = 2; i <= 8; ++i) {
249 offset >>= 8;
250 if (offset == 0) {
251 return i;
254 LOG(DFATAL) << "Failed to determine StreamOffsetSize.";
255 return 8;
258 // static
259 size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions) {
260 return kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID +
261 number_versions * kQuicVersionSize;
264 bool QuicFramer::IsSupportedVersion(const QuicVersion version) const {
265 for (size_t i = 0; i < supported_versions_.size(); ++i) {
266 if (version == supported_versions_[i]) {
267 return true;
270 return false;
273 size_t QuicFramer::GetSerializedFrameLength(
274 const QuicFrame& frame,
275 size_t free_bytes,
276 bool first_frame,
277 bool last_frame,
278 InFecGroup is_in_fec_group,
279 QuicSequenceNumberLength sequence_number_length) {
280 if (frame.type == PADDING_FRAME) {
281 // PADDING implies end of packet.
282 return free_bytes;
284 size_t frame_len =
285 ComputeFrameLength(frame, last_frame, is_in_fec_group,
286 sequence_number_length);
287 if (frame_len <= free_bytes) {
288 // Frame fits within packet. Note that acks may be truncated.
289 return frame_len;
291 // Only truncate the first frame in a packet, so if subsequent ones go
292 // over, stop including more frames.
293 if (!first_frame) {
294 return 0;
296 bool can_truncate = frame.type == ACK_FRAME &&
297 free_bytes >= GetMinAckFrameSize(PACKET_6BYTE_SEQUENCE_NUMBER,
298 PACKET_6BYTE_SEQUENCE_NUMBER);
299 if (can_truncate) {
300 // Truncate the frame so the packet will not exceed kMaxPacketSize.
301 // Note that we may not use every byte of the writer in this case.
302 DVLOG(1) << "Truncating large frame, free bytes: " << free_bytes;
303 return free_bytes;
305 if (!FLAGS_quic_allow_oversized_packets_for_test) {
306 return 0;
308 LOG(DFATAL) << "Packet size too small to fit frame.";
309 return frame_len;
312 QuicFramer::AckFrameInfo::AckFrameInfo() : max_delta(0) {}
314 QuicFramer::AckFrameInfo::~AckFrameInfo() {}
316 QuicPacketEntropyHash QuicFramer::GetPacketEntropyHash(
317 const QuicPacketHeader& header) const {
318 return header.entropy_flag << (header.packet_sequence_number % 8);
321 SerializedPacket QuicFramer::BuildDataPacket(
322 const QuicPacketHeader& header,
323 const QuicFrames& frames,
324 size_t packet_size) {
325 QuicDataWriter writer(packet_size);
326 const SerializedPacket kNoPacket(
327 0, PACKET_1BYTE_SEQUENCE_NUMBER, NULL, 0, NULL);
328 if (!AppendPacketHeader(header, &writer)) {
329 LOG(DFATAL) << "AppendPacketHeader failed";
330 return kNoPacket;
333 for (size_t i = 0; i < frames.size(); ++i) {
334 const QuicFrame& frame = frames[i];
336 // Determine if we should write stream frame length in header.
337 const bool no_stream_frame_length =
338 (header.is_in_fec_group == NOT_IN_FEC_GROUP) &&
339 (i == frames.size() - 1);
340 if (!AppendTypeByte(frame, no_stream_frame_length, &writer)) {
341 LOG(DFATAL) << "AppendTypeByte failed";
342 return kNoPacket;
345 switch (frame.type) {
346 case PADDING_FRAME:
347 writer.WritePadding();
348 break;
349 case STREAM_FRAME:
350 if (!AppendStreamFrame(
351 *frame.stream_frame, no_stream_frame_length, &writer)) {
352 LOG(DFATAL) << "AppendStreamFrame failed";
353 return kNoPacket;
355 break;
356 case ACK_FRAME:
357 if (!AppendAckFrameAndTypeByte(
358 header, *frame.ack_frame, &writer)) {
359 LOG(DFATAL) << "AppendAckFrameAndTypeByte failed";
360 return kNoPacket;
362 break;
363 case CONGESTION_FEEDBACK_FRAME:
364 if (!AppendCongestionFeedbackFrame(
365 *frame.congestion_feedback_frame, &writer)) {
366 LOG(DFATAL) << "AppendCongestionFeedbackFrame failed";
367 return kNoPacket;
369 break;
370 case STOP_WAITING_FRAME:
371 if (!AppendStopWaitingFrame(
372 header, *frame.stop_waiting_frame, &writer)) {
373 LOG(DFATAL) << "AppendStopWaitingFrame failed";
374 return kNoPacket;
376 break;
377 case PING_FRAME:
378 if (quic_version_ == QUIC_VERSION_16) {
379 LOG(DFATAL) << "Attempt to add a PingFrame in "
380 << QuicVersionToString(quic_version_);
381 return kNoPacket;
383 // Ping has no payload.
384 break;
385 case RST_STREAM_FRAME:
386 if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) {
387 LOG(DFATAL) << "AppendRstStreamFrame failed";
388 return kNoPacket;
390 break;
391 case CONNECTION_CLOSE_FRAME:
392 if (!AppendConnectionCloseFrame(
393 *frame.connection_close_frame, &writer)) {
394 LOG(DFATAL) << "AppendConnectionCloseFrame failed";
395 return kNoPacket;
397 break;
398 case GOAWAY_FRAME:
399 if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) {
400 LOG(DFATAL) << "AppendGoAwayFrame failed";
401 return kNoPacket;
403 break;
404 case WINDOW_UPDATE_FRAME:
405 if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) {
406 LOG(DFATAL) << "AppendWindowUpdateFrame failed";
407 return kNoPacket;
409 break;
410 case BLOCKED_FRAME:
411 if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) {
412 LOG(DFATAL) << "AppendBlockedFrame failed";
413 return kNoPacket;
415 break;
416 default:
417 RaiseError(QUIC_INVALID_FRAME_DATA);
418 LOG(DFATAL) << "QUIC_INVALID_FRAME_DATA";
419 return kNoPacket;
423 // Save the length before writing, because take clears it.
424 const size_t len = writer.length();
425 // Less than or equal because truncated acks end up with max_plaintex_size
426 // length, even though they're typically slightly shorter.
427 DCHECK_LE(len, packet_size);
428 QuicPacket* packet = QuicPacket::NewDataPacket(
429 writer.take(), len, true, header.public_header.connection_id_length,
430 header.public_header.version_flag,
431 header.public_header.sequence_number_length);
433 if (fec_builder_) {
434 fec_builder_->OnBuiltFecProtectedPayload(header,
435 packet->FecProtectedData());
438 return SerializedPacket(header.packet_sequence_number,
439 header.public_header.sequence_number_length, packet,
440 GetPacketEntropyHash(header), NULL);
443 SerializedPacket QuicFramer::BuildFecPacket(const QuicPacketHeader& header,
444 const QuicFecData& fec) {
445 DCHECK_EQ(IN_FEC_GROUP, header.is_in_fec_group);
446 DCHECK_NE(0u, header.fec_group);
447 size_t len = GetPacketHeaderSize(header);
448 len += fec.redundancy.length();
450 QuicDataWriter writer(len);
451 const SerializedPacket kNoPacket(
452 0, PACKET_1BYTE_SEQUENCE_NUMBER, NULL, 0, NULL);
453 if (!AppendPacketHeader(header, &writer)) {
454 LOG(DFATAL) << "AppendPacketHeader failed";
455 return kNoPacket;
458 if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) {
459 LOG(DFATAL) << "Failed to add FEC";
460 return kNoPacket;
463 return SerializedPacket(
464 header.packet_sequence_number,
465 header.public_header.sequence_number_length,
466 QuicPacket::NewFecPacket(writer.take(), len, true,
467 header.public_header.connection_id_length,
468 header.public_header.version_flag,
469 header.public_header.sequence_number_length),
470 GetPacketEntropyHash(header), NULL);
473 // static
474 QuicEncryptedPacket* QuicFramer::BuildPublicResetPacket(
475 const QuicPublicResetPacket& packet) {
476 DCHECK(packet.public_header.reset_flag);
478 CryptoHandshakeMessage reset;
479 reset.set_tag(kPRST);
480 reset.SetValue(kRNON, packet.nonce_proof);
481 reset.SetValue(kRSEQ, packet.rejected_sequence_number);
482 if (!packet.client_address.address().empty()) {
483 // packet.client_address is non-empty.
484 QuicSocketAddressCoder address_coder(packet.client_address);
485 string serialized_address = address_coder.Encode();
486 if (serialized_address.empty()) {
487 return NULL;
489 reset.SetStringPiece(kCADR, serialized_address);
491 const QuicData& reset_serialized = reset.GetSerialized();
493 size_t len =
494 kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID + reset_serialized.length();
495 QuicDataWriter writer(len);
497 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_RST |
498 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
499 if (!writer.WriteUInt8(flags)) {
500 return NULL;
503 if (!writer.WriteUInt64(packet.public_header.connection_id)) {
504 return NULL;
507 if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) {
508 return NULL;
511 return new QuicEncryptedPacket(writer.take(), len, true);
514 QuicEncryptedPacket* QuicFramer::BuildVersionNegotiationPacket(
515 const QuicPacketPublicHeader& header,
516 const QuicVersionVector& supported_versions) {
517 DCHECK(header.version_flag);
518 size_t len = GetVersionNegotiationPacketSize(supported_versions.size());
519 QuicDataWriter writer(len);
521 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_VERSION |
522 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
523 if (!writer.WriteUInt8(flags)) {
524 return NULL;
527 if (!writer.WriteUInt64(header.connection_id)) {
528 return NULL;
531 for (size_t i = 0; i < supported_versions.size(); ++i) {
532 if (!writer.WriteUInt32(QuicVersionToQuicTag(supported_versions[i]))) {
533 return NULL;
537 return new QuicEncryptedPacket(writer.take(), len, true);
540 bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
541 DCHECK(!reader_.get());
542 reader_.reset(new QuicDataReader(packet.data(), packet.length()));
544 visitor_->OnPacket();
546 // First parse the public header.
547 QuicPacketPublicHeader public_header;
548 if (!ProcessPublicHeader(&public_header)) {
549 DLOG(WARNING) << "Unable to process public header.";
550 DCHECK_NE("", detailed_error_);
551 return RaiseError(QUIC_INVALID_PACKET_HEADER);
554 if (!visitor_->OnUnauthenticatedPublicHeader(public_header)) {
555 // The visitor suppresses further processing of the packet.
556 reader_.reset(NULL);
557 return true;
560 if (is_server_ && public_header.version_flag &&
561 public_header.versions[0] != quic_version_) {
562 if (!visitor_->OnProtocolVersionMismatch(public_header.versions[0])) {
563 reader_.reset(NULL);
564 return true;
568 bool rv;
569 if (!is_server_ && public_header.version_flag) {
570 rv = ProcessVersionNegotiationPacket(&public_header);
571 } else if (public_header.reset_flag) {
572 rv = ProcessPublicResetPacket(public_header);
573 } else {
574 rv = ProcessDataPacket(public_header, packet);
577 reader_.reset(NULL);
578 return rv;
581 bool QuicFramer::ProcessVersionNegotiationPacket(
582 QuicPacketPublicHeader* public_header) {
583 DCHECK(!is_server_);
584 // Try reading at least once to raise error if the packet is invalid.
585 do {
586 QuicTag version;
587 if (!reader_->ReadBytes(&version, kQuicVersionSize)) {
588 set_detailed_error("Unable to read supported version in negotiation.");
589 return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
591 public_header->versions.push_back(QuicTagToQuicVersion(version));
592 } while (!reader_->IsDoneReading());
594 visitor_->OnVersionNegotiationPacket(*public_header);
595 return true;
598 bool QuicFramer::ProcessDataPacket(
599 const QuicPacketPublicHeader& public_header,
600 const QuicEncryptedPacket& packet) {
601 QuicPacketHeader header(public_header);
602 if (!ProcessPacketHeader(&header, packet)) {
603 DLOG(WARNING) << "Unable to process data packet header.";
604 return false;
607 if (!visitor_->OnPacketHeader(header)) {
608 // The visitor suppresses further processing of the packet.
609 return true;
612 if (packet.length() > kMaxPacketSize) {
613 DLOG(WARNING) << "Packet too large: " << packet.length();
614 return RaiseError(QUIC_PACKET_TOO_LARGE);
617 // Handle the payload.
618 if (!header.fec_flag) {
619 if (header.is_in_fec_group == IN_FEC_GROUP) {
620 StringPiece payload = reader_->PeekRemainingPayload();
621 visitor_->OnFecProtectedPayload(payload);
623 if (!ProcessFrameData(header)) {
624 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
625 DLOG(WARNING) << "Unable to process frame data.";
626 return false;
628 } else {
629 QuicFecData fec_data;
630 fec_data.fec_group = header.fec_group;
631 fec_data.redundancy = reader_->ReadRemainingPayload();
632 visitor_->OnFecData(fec_data);
635 visitor_->OnPacketComplete();
636 return true;
639 bool QuicFramer::ProcessPublicResetPacket(
640 const QuicPacketPublicHeader& public_header) {
641 QuicPublicResetPacket packet(public_header);
643 scoped_ptr<CryptoHandshakeMessage> reset(
644 CryptoFramer::ParseMessage(reader_->ReadRemainingPayload()));
645 if (!reset.get()) {
646 set_detailed_error("Unable to read reset message.");
647 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
649 if (reset->tag() != kPRST) {
650 set_detailed_error("Incorrect message tag.");
651 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
654 if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) {
655 set_detailed_error("Unable to read nonce proof.");
656 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
658 // TODO(satyamshekhar): validate nonce to protect against DoS.
660 if (reset->GetUint64(kRSEQ, &packet.rejected_sequence_number) !=
661 QUIC_NO_ERROR) {
662 set_detailed_error("Unable to read rejected sequence number.");
663 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
666 StringPiece address;
667 if (reset->GetStringPiece(kCADR, &address)) {
668 QuicSocketAddressCoder address_coder;
669 if (address_coder.Decode(address.data(), address.length())) {
670 packet.client_address = IPEndPoint(address_coder.ip(),
671 address_coder.port());
675 visitor_->OnPublicResetPacket(packet);
676 return true;
679 bool QuicFramer::ProcessRevivedPacket(QuicPacketHeader* header,
680 StringPiece payload) {
681 DCHECK(!reader_.get());
683 visitor_->OnRevivedPacket();
685 header->entropy_hash = GetPacketEntropyHash(*header);
687 if (!visitor_->OnPacketHeader(*header)) {
688 return true;
691 if (payload.length() > kMaxPacketSize) {
692 set_detailed_error("Revived packet too large.");
693 return RaiseError(QUIC_PACKET_TOO_LARGE);
696 reader_.reset(new QuicDataReader(payload.data(), payload.length()));
697 if (!ProcessFrameData(*header)) {
698 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
699 DLOG(WARNING) << "Unable to process frame data.";
700 return false;
703 visitor_->OnPacketComplete();
704 reader_.reset(NULL);
705 return true;
708 bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
709 QuicDataWriter* writer) {
710 DVLOG(1) << "Appending header: " << header;
711 DCHECK(header.fec_group > 0 || header.is_in_fec_group == NOT_IN_FEC_GROUP);
712 uint8 public_flags = 0;
713 if (header.public_header.reset_flag) {
714 public_flags |= PACKET_PUBLIC_FLAGS_RST;
716 if (header.public_header.version_flag) {
717 public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
720 public_flags |=
721 GetSequenceNumberFlags(header.public_header.sequence_number_length)
722 << kPublicHeaderSequenceNumberShift;
724 switch (header.public_header.connection_id_length) {
725 case PACKET_0BYTE_CONNECTION_ID:
726 if (!writer->WriteUInt8(
727 public_flags | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) {
728 return false;
730 break;
731 case PACKET_1BYTE_CONNECTION_ID:
732 if (!writer->WriteUInt8(
733 public_flags | PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID)) {
734 return false;
736 if (!writer->WriteUInt8(
737 header.public_header.connection_id & k1ByteConnectionIdMask)) {
738 return false;
740 break;
741 case PACKET_4BYTE_CONNECTION_ID:
742 if (!writer->WriteUInt8(
743 public_flags | PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID)) {
744 return false;
746 if (!writer->WriteUInt32(
747 header.public_header.connection_id & k4ByteConnectionIdMask)) {
748 return false;
750 break;
751 case PACKET_8BYTE_CONNECTION_ID:
752 if (!writer->WriteUInt8(
753 public_flags | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID)) {
754 return false;
756 if (!writer->WriteUInt64(header.public_header.connection_id)) {
757 return false;
759 break;
761 last_serialized_connection_id_ = header.public_header.connection_id;
763 if (header.public_header.version_flag) {
764 DCHECK(!is_server_);
765 writer->WriteUInt32(QuicVersionToQuicTag(quic_version_));
768 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
769 header.packet_sequence_number, writer)) {
770 return false;
773 uint8 private_flags = 0;
774 if (header.entropy_flag) {
775 private_flags |= PACKET_PRIVATE_FLAGS_ENTROPY;
777 if (header.is_in_fec_group == IN_FEC_GROUP) {
778 private_flags |= PACKET_PRIVATE_FLAGS_FEC_GROUP;
780 if (header.fec_flag) {
781 private_flags |= PACKET_PRIVATE_FLAGS_FEC;
783 if (!writer->WriteUInt8(private_flags)) {
784 return false;
787 // The FEC group number is the sequence number of the first fec
788 // protected packet, or 0 if this packet is not protected.
789 if (header.is_in_fec_group == IN_FEC_GROUP) {
790 DCHECK_GE(header.packet_sequence_number, header.fec_group);
791 DCHECK_GT(255u, header.packet_sequence_number - header.fec_group);
792 // Offset from the current packet sequence number to the first fec
793 // protected packet.
794 uint8 first_fec_protected_packet_offset =
795 header.packet_sequence_number - header.fec_group;
796 if (!writer->WriteBytes(&first_fec_protected_packet_offset, 1)) {
797 return false;
801 return true;
804 const QuicTime::Delta QuicFramer::CalculateTimestampFromWire(
805 uint32 time_delta_us) {
806 // The new time_delta might have wrapped to the next epoch, or it
807 // might have reverse wrapped to the previous epoch, or it might
808 // remain in the same epoch. Select the time closest to the previous
809 // time.
811 // epoch_delta is the delta between epochs. A delta is 4 bytes of
812 // microseconds.
813 const uint64 epoch_delta = GG_UINT64_C(1) << 32;
814 uint64 epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1);
815 // Wrapping is safe here because a wrapped value will not be ClosestTo below.
816 uint64 prev_epoch = epoch - epoch_delta;
817 uint64 next_epoch = epoch + epoch_delta;
819 uint64 time = ClosestTo(last_timestamp_.ToMicroseconds(),
820 epoch + time_delta_us,
821 ClosestTo(last_timestamp_.ToMicroseconds(),
822 prev_epoch + time_delta_us,
823 next_epoch + time_delta_us));
825 return QuicTime::Delta::FromMicroseconds(time);
828 QuicPacketSequenceNumber QuicFramer::CalculatePacketSequenceNumberFromWire(
829 QuicSequenceNumberLength sequence_number_length,
830 QuicPacketSequenceNumber packet_sequence_number) const {
831 // The new sequence number might have wrapped to the next epoch, or
832 // it might have reverse wrapped to the previous epoch, or it might
833 // remain in the same epoch. Select the sequence number closest to the
834 // next expected sequence number, the previous sequence number plus 1.
836 // epoch_delta is the delta between epochs the sequence number was serialized
837 // with, so the correct value is likely the same epoch as the last sequence
838 // number or an adjacent epoch.
839 const QuicPacketSequenceNumber epoch_delta =
840 GG_UINT64_C(1) << (8 * sequence_number_length);
841 QuicPacketSequenceNumber next_sequence_number = last_sequence_number_ + 1;
842 QuicPacketSequenceNumber epoch = last_sequence_number_ & ~(epoch_delta - 1);
843 QuicPacketSequenceNumber prev_epoch = epoch - epoch_delta;
844 QuicPacketSequenceNumber next_epoch = epoch + epoch_delta;
846 return ClosestTo(next_sequence_number,
847 epoch + packet_sequence_number,
848 ClosestTo(next_sequence_number,
849 prev_epoch + packet_sequence_number,
850 next_epoch + packet_sequence_number));
853 bool QuicFramer::ProcessPublicHeader(
854 QuicPacketPublicHeader* public_header) {
855 uint8 public_flags;
856 if (!reader_->ReadBytes(&public_flags, 1)) {
857 set_detailed_error("Unable to read public flags.");
858 return false;
861 public_header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
862 public_header->version_flag =
863 (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;
865 if (validate_flags_ &&
866 !public_header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
867 set_detailed_error("Illegal public flags value.");
868 return false;
871 if (public_header->reset_flag && public_header->version_flag) {
872 set_detailed_error("Got version flag in reset packet");
873 return false;
876 switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) {
877 case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID:
878 if (!reader_->ReadUInt64(&public_header->connection_id)) {
879 set_detailed_error("Unable to read ConnectionId.");
880 return false;
882 public_header->connection_id_length = PACKET_8BYTE_CONNECTION_ID;
883 break;
884 case PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID:
885 // If the connection_id is truncated, expect to read the last serialized
886 // connection_id.
887 if (!reader_->ReadBytes(&public_header->connection_id,
888 PACKET_4BYTE_CONNECTION_ID)) {
889 set_detailed_error("Unable to read ConnectionId.");
890 return false;
892 if ((public_header->connection_id & k4ByteConnectionIdMask) !=
893 (last_serialized_connection_id_ & k4ByteConnectionIdMask)) {
894 set_detailed_error("Truncated 4 byte ConnectionId does not match "
895 "previous connection_id.");
896 return false;
898 public_header->connection_id_length = PACKET_4BYTE_CONNECTION_ID;
899 public_header->connection_id = last_serialized_connection_id_;
900 break;
901 case PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID:
902 if (!reader_->ReadBytes(&public_header->connection_id,
903 PACKET_1BYTE_CONNECTION_ID)) {
904 set_detailed_error("Unable to read ConnectionId.");
905 return false;
907 if ((public_header->connection_id & k1ByteConnectionIdMask) !=
908 (last_serialized_connection_id_ & k1ByteConnectionIdMask)) {
909 set_detailed_error("Truncated 1 byte ConnectionId does not match "
910 "previous connection_id.");
911 return false;
913 public_header->connection_id_length = PACKET_1BYTE_CONNECTION_ID;
914 public_header->connection_id = last_serialized_connection_id_;
915 break;
916 case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID:
917 public_header->connection_id_length = PACKET_0BYTE_CONNECTION_ID;
918 public_header->connection_id = last_serialized_connection_id_;
919 break;
922 public_header->sequence_number_length =
923 ReadSequenceNumberLength(
924 public_flags >> kPublicHeaderSequenceNumberShift);
926 // Read the version only if the packet is from the client.
927 // version flag from the server means version negotiation packet.
928 if (public_header->version_flag && is_server_) {
929 QuicTag version_tag;
930 if (!reader_->ReadUInt32(&version_tag)) {
931 set_detailed_error("Unable to read protocol version.");
932 return false;
935 // If the version from the new packet is the same as the version of this
936 // framer, then the public flags should be set to something we understand.
937 // If not, this raises an error.
938 QuicVersion version = QuicTagToQuicVersion(version_tag);
939 if (version == quic_version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
940 set_detailed_error("Illegal public flags value.");
941 return false;
943 public_header->versions.push_back(version);
945 return true;
948 // static
949 QuicSequenceNumberLength QuicFramer::GetMinSequenceNumberLength(
950 QuicPacketSequenceNumber sequence_number) {
951 if (sequence_number < 1 << (PACKET_1BYTE_SEQUENCE_NUMBER * 8)) {
952 return PACKET_1BYTE_SEQUENCE_NUMBER;
953 } else if (sequence_number < 1 << (PACKET_2BYTE_SEQUENCE_NUMBER * 8)) {
954 return PACKET_2BYTE_SEQUENCE_NUMBER;
955 } else if (sequence_number <
956 GG_UINT64_C(1) << (PACKET_4BYTE_SEQUENCE_NUMBER * 8)) {
957 return PACKET_4BYTE_SEQUENCE_NUMBER;
958 } else {
959 return PACKET_6BYTE_SEQUENCE_NUMBER;
963 // static
964 uint8 QuicFramer::GetSequenceNumberFlags(
965 QuicSequenceNumberLength sequence_number_length) {
966 switch (sequence_number_length) {
967 case PACKET_1BYTE_SEQUENCE_NUMBER:
968 return PACKET_FLAGS_1BYTE_SEQUENCE;
969 case PACKET_2BYTE_SEQUENCE_NUMBER:
970 return PACKET_FLAGS_2BYTE_SEQUENCE;
971 case PACKET_4BYTE_SEQUENCE_NUMBER:
972 return PACKET_FLAGS_4BYTE_SEQUENCE;
973 case PACKET_6BYTE_SEQUENCE_NUMBER:
974 return PACKET_FLAGS_6BYTE_SEQUENCE;
975 default:
976 LOG(DFATAL) << "Unreachable case statement.";
977 return PACKET_FLAGS_6BYTE_SEQUENCE;
981 // static
982 QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
983 const QuicAckFrame& frame) {
984 AckFrameInfo ack_info;
985 if (!frame.missing_packets.empty()) {
986 DCHECK_GE(frame.largest_observed, *frame.missing_packets.rbegin());
987 size_t cur_range_length = 0;
988 SequenceNumberSet::const_iterator iter = frame.missing_packets.begin();
989 QuicPacketSequenceNumber last_missing = *iter;
990 ++iter;
991 for (; iter != frame.missing_packets.end(); ++iter) {
992 if (cur_range_length != numeric_limits<uint8>::max() &&
993 *iter == (last_missing + 1)) {
994 ++cur_range_length;
995 } else {
996 ack_info.nack_ranges[last_missing - cur_range_length] =
997 cur_range_length;
998 cur_range_length = 0;
1000 ack_info.max_delta = max(ack_info.max_delta, *iter - last_missing);
1001 last_missing = *iter;
1003 // Include the last nack range.
1004 ack_info.nack_ranges[last_missing - cur_range_length] = cur_range_length;
1005 // Include the range to the largest observed.
1006 ack_info.max_delta = max(ack_info.max_delta,
1007 frame.largest_observed - last_missing);
1009 return ack_info;
1012 bool QuicFramer::ProcessPacketHeader(
1013 QuicPacketHeader* header,
1014 const QuicEncryptedPacket& packet) {
1015 if (!ProcessPacketSequenceNumber(header->public_header.sequence_number_length,
1016 &header->packet_sequence_number)) {
1017 set_detailed_error("Unable to read sequence number.");
1018 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1021 if (header->packet_sequence_number == 0u) {
1022 set_detailed_error("Packet sequence numbers cannot be 0.");
1023 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1026 if (!visitor_->OnUnauthenticatedHeader(*header)) {
1027 return false;
1030 if (!DecryptPayload(*header, packet)) {
1031 set_detailed_error("Unable to decrypt payload.");
1032 return RaiseError(QUIC_DECRYPTION_FAILURE);
1035 uint8 private_flags;
1036 if (!reader_->ReadBytes(&private_flags, 1)) {
1037 set_detailed_error("Unable to read private flags.");
1038 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1041 if (private_flags > PACKET_PRIVATE_FLAGS_MAX) {
1042 set_detailed_error("Illegal private flags value.");
1043 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1046 header->entropy_flag = (private_flags & PACKET_PRIVATE_FLAGS_ENTROPY) != 0;
1047 header->fec_flag = (private_flags & PACKET_PRIVATE_FLAGS_FEC) != 0;
1049 if ((private_flags & PACKET_PRIVATE_FLAGS_FEC_GROUP) != 0) {
1050 header->is_in_fec_group = IN_FEC_GROUP;
1051 uint8 first_fec_protected_packet_offset;
1052 if (!reader_->ReadBytes(&first_fec_protected_packet_offset, 1)) {
1053 set_detailed_error("Unable to read first fec protected packet offset.");
1054 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1056 if (first_fec_protected_packet_offset >= header->packet_sequence_number) {
1057 set_detailed_error("First fec protected packet offset must be less "
1058 "than the sequence number.");
1059 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1061 header->fec_group =
1062 header->packet_sequence_number - first_fec_protected_packet_offset;
1065 header->entropy_hash = GetPacketEntropyHash(*header);
1066 // Set the last sequence number after we have decrypted the packet
1067 // so we are confident is not attacker controlled.
1068 last_sequence_number_ = header->packet_sequence_number;
1069 return true;
1072 bool QuicFramer::ProcessPacketSequenceNumber(
1073 QuicSequenceNumberLength sequence_number_length,
1074 QuicPacketSequenceNumber* sequence_number) {
1075 QuicPacketSequenceNumber wire_sequence_number = 0u;
1076 if (!reader_->ReadBytes(&wire_sequence_number, sequence_number_length)) {
1077 return false;
1080 // TODO(ianswett): Explore the usefulness of trying multiple sequence numbers
1081 // in case the first guess is incorrect.
1082 *sequence_number =
1083 CalculatePacketSequenceNumberFromWire(sequence_number_length,
1084 wire_sequence_number);
1085 return true;
1088 bool QuicFramer::ProcessFrameData(const QuicPacketHeader& header) {
1089 if (reader_->IsDoneReading()) {
1090 set_detailed_error("Packet has no frames.");
1091 return RaiseError(QUIC_MISSING_PAYLOAD);
1093 while (!reader_->IsDoneReading()) {
1094 uint8 frame_type;
1095 if (!reader_->ReadBytes(&frame_type, 1)) {
1096 set_detailed_error("Unable to read frame type.");
1097 return RaiseError(QUIC_INVALID_FRAME_DATA);
1100 if (frame_type & kQuicFrameTypeSpecialMask) {
1101 // Stream Frame
1102 if (frame_type & kQuicFrameTypeStreamMask) {
1103 QuicStreamFrame frame;
1104 if (!ProcessStreamFrame(frame_type, &frame)) {
1105 return RaiseError(QUIC_INVALID_STREAM_DATA);
1107 if (!visitor_->OnStreamFrame(frame)) {
1108 DVLOG(1) << "Visitor asked to stop further processing.";
1109 // Returning true since there was no parsing error.
1110 return true;
1112 continue;
1115 // Ack Frame
1116 if (frame_type & kQuicFrameTypeAckMask) {
1117 QuicAckFrame frame;
1118 if (!ProcessAckFrame(frame_type, &frame)) {
1119 return RaiseError(QUIC_INVALID_ACK_DATA);
1121 if (!visitor_->OnAckFrame(frame)) {
1122 DVLOG(1) << "Visitor asked to stop further processing.";
1123 // Returning true since there was no parsing error.
1124 return true;
1126 continue;
1129 // Congestion Feedback Frame
1130 if (frame_type & kQuicFrameTypeCongestionFeedbackMask) {
1131 if (quic_version_ > QUIC_VERSION_22) {
1132 set_detailed_error("Congestion Feedback Frame has been deprecated.");
1133 DLOG(WARNING) << "Congestion Feedback Frame has been deprecated.";
1135 QuicCongestionFeedbackFrame frame;
1136 if (!ProcessCongestionFeedbackFrame(&frame)) {
1137 return RaiseError(QUIC_INVALID_CONGESTION_FEEDBACK_DATA);
1139 if (!visitor_->OnCongestionFeedbackFrame(frame)) {
1140 DVLOG(1) << "Visitor asked to stop further processing.";
1141 // Returning true since there was no parsing error.
1142 return true;
1144 continue;
1147 // This was a special frame type that did not match any
1148 // of the known ones. Error.
1149 set_detailed_error("Illegal frame type.");
1150 DLOG(WARNING) << "Illegal frame type: "
1151 << static_cast<int>(frame_type);
1152 return RaiseError(QUIC_INVALID_FRAME_DATA);
1155 switch (frame_type) {
1156 case PADDING_FRAME:
1157 // We're done with the packet.
1158 return true;
1160 case RST_STREAM_FRAME: {
1161 QuicRstStreamFrame frame;
1162 if (!ProcessRstStreamFrame(&frame)) {
1163 return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
1165 if (!visitor_->OnRstStreamFrame(frame)) {
1166 DVLOG(1) << "Visitor asked to stop further processing.";
1167 // Returning true since there was no parsing error.
1168 return true;
1170 continue;
1173 case CONNECTION_CLOSE_FRAME: {
1174 QuicConnectionCloseFrame frame;
1175 if (!ProcessConnectionCloseFrame(&frame)) {
1176 return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
1179 if (!visitor_->OnConnectionCloseFrame(frame)) {
1180 DVLOG(1) << "Visitor asked to stop further processing.";
1181 // Returning true since there was no parsing error.
1182 return true;
1184 continue;
1187 case GOAWAY_FRAME: {
1188 QuicGoAwayFrame goaway_frame;
1189 if (!ProcessGoAwayFrame(&goaway_frame)) {
1190 return RaiseError(QUIC_INVALID_GOAWAY_DATA);
1192 if (!visitor_->OnGoAwayFrame(goaway_frame)) {
1193 DVLOG(1) << "Visitor asked to stop further processing.";
1194 // Returning true since there was no parsing error.
1195 return true;
1197 continue;
1200 case WINDOW_UPDATE_FRAME: {
1201 QuicWindowUpdateFrame window_update_frame;
1202 if (!ProcessWindowUpdateFrame(&window_update_frame)) {
1203 return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA);
1205 if (!visitor_->OnWindowUpdateFrame(window_update_frame)) {
1206 DVLOG(1) << "Visitor asked to stop further processing.";
1207 // Returning true since there was no parsing error.
1208 return true;
1210 continue;
1213 case BLOCKED_FRAME: {
1214 QuicBlockedFrame blocked_frame;
1215 if (!ProcessBlockedFrame(&blocked_frame)) {
1216 return RaiseError(QUIC_INVALID_BLOCKED_DATA);
1218 if (!visitor_->OnBlockedFrame(blocked_frame)) {
1219 DVLOG(1) << "Visitor asked to stop further processing.";
1220 // Returning true since there was no parsing error.
1221 return true;
1223 continue;
1226 case STOP_WAITING_FRAME: {
1227 QuicStopWaitingFrame stop_waiting_frame;
1228 if (!ProcessStopWaitingFrame(header, &stop_waiting_frame)) {
1229 return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
1231 if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) {
1232 DVLOG(1) << "Visitor asked to stop further processing.";
1233 // Returning true since there was no parsing error.
1234 return true;
1236 continue;
1238 case PING_FRAME: {
1239 if (quic_version_ == QUIC_VERSION_16) {
1240 LOG(DFATAL) << "Trying to read a Ping in "
1241 << QuicVersionToString(quic_version_);
1242 return RaiseError(QUIC_INTERNAL_ERROR);
1244 // Ping has no payload.
1245 QuicPingFrame ping_frame;
1246 if (!visitor_->OnPingFrame(ping_frame)) {
1247 DVLOG(1) << "Visitor asked to stop further processing.";
1248 // Returning true since there was no parsing error.
1249 return true;
1251 continue;
1254 default:
1255 set_detailed_error("Illegal frame type.");
1256 DLOG(WARNING) << "Illegal frame type: "
1257 << static_cast<int>(frame_type);
1258 return RaiseError(QUIC_INVALID_FRAME_DATA);
1262 return true;
1265 bool QuicFramer::ProcessStreamFrame(uint8 frame_type,
1266 QuicStreamFrame* frame) {
1267 uint8 stream_flags = frame_type;
1269 stream_flags &= ~kQuicFrameTypeStreamMask;
1271 // Read from right to left: StreamID, Offset, Data Length, Fin.
1272 const uint8 stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1;
1273 stream_flags >>= kQuicStreamIdShift;
1275 uint8 offset_length = (stream_flags & kQuicStreamOffsetMask);
1276 // There is no encoding for 1 byte, only 0 and 2 through 8.
1277 if (offset_length > 0) {
1278 offset_length += 1;
1280 stream_flags >>= kQuicStreamOffsetShift;
1282 bool has_data_length =
1283 (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask;
1284 stream_flags >>= kQuicStreamDataLengthShift;
1286 frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift;
1288 frame->stream_id = 0;
1289 if (!reader_->ReadBytes(&frame->stream_id, stream_id_length)) {
1290 set_detailed_error("Unable to read stream_id.");
1291 return false;
1294 frame->offset = 0;
1295 if (!reader_->ReadBytes(&frame->offset, offset_length)) {
1296 set_detailed_error("Unable to read offset.");
1297 return false;
1300 StringPiece frame_data;
1301 if (has_data_length) {
1302 if (!reader_->ReadStringPiece16(&frame_data)) {
1303 set_detailed_error("Unable to read frame data.");
1304 return false;
1306 } else {
1307 if (!reader_->ReadStringPiece(&frame_data, reader_->BytesRemaining())) {
1308 set_detailed_error("Unable to read frame data.");
1309 return false;
1312 // Point frame to the right data.
1313 frame->data.Clear();
1314 if (!frame_data.empty()) {
1315 frame->data.Append(const_cast<char*>(frame_data.data()), frame_data.size());
1318 return true;
1321 bool QuicFramer::ProcessAckFrame(uint8 frame_type, QuicAckFrame* ack_frame) {
1322 // Determine the three lengths from the frame type: largest observed length,
1323 // missing sequence number length, and missing range length.
1324 const QuicSequenceNumberLength missing_sequence_number_length =
1325 ReadSequenceNumberLength(frame_type);
1326 frame_type >>= kQuicSequenceNumberLengthShift;
1327 const QuicSequenceNumberLength largest_observed_sequence_number_length =
1328 ReadSequenceNumberLength(frame_type);
1329 frame_type >>= kQuicSequenceNumberLengthShift;
1330 ack_frame->is_truncated = frame_type & kQuicAckTruncatedMask;
1331 frame_type >>= kQuicAckTruncatedShift;
1332 bool has_nacks = frame_type & kQuicHasNacksMask;
1334 if (!reader_->ReadBytes(&ack_frame->entropy_hash, 1)) {
1335 set_detailed_error("Unable to read entropy hash for received packets.");
1336 return false;
1339 if (!reader_->ReadBytes(&ack_frame->largest_observed,
1340 largest_observed_sequence_number_length)) {
1341 set_detailed_error("Unable to read largest observed.");
1342 return false;
1345 uint64 delta_time_largest_observed_us;
1346 if (!reader_->ReadUFloat16(&delta_time_largest_observed_us)) {
1347 set_detailed_error("Unable to read delta time largest observed.");
1348 return false;
1351 if (delta_time_largest_observed_us == kUFloat16MaxValue) {
1352 ack_frame->delta_time_largest_observed = QuicTime::Delta::Infinite();
1353 } else {
1354 ack_frame->delta_time_largest_observed =
1355 QuicTime::Delta::FromMicroseconds(delta_time_largest_observed_us);
1358 if (!ProcessTimestampsInAckFrame(ack_frame)) {
1359 return false;
1362 if (!has_nacks) {
1363 return true;
1366 uint8 num_missing_ranges;
1367 if (!reader_->ReadBytes(&num_missing_ranges, 1)) {
1368 set_detailed_error("Unable to read num missing packet ranges.");
1369 return false;
1372 QuicPacketSequenceNumber last_sequence_number = ack_frame->largest_observed;
1373 for (size_t i = 0; i < num_missing_ranges; ++i) {
1374 QuicPacketSequenceNumber missing_delta = 0;
1375 if (!reader_->ReadBytes(&missing_delta, missing_sequence_number_length)) {
1376 set_detailed_error("Unable to read missing sequence number delta.");
1377 return false;
1379 last_sequence_number -= missing_delta;
1380 QuicPacketSequenceNumber range_length = 0;
1381 if (!reader_->ReadBytes(&range_length, PACKET_1BYTE_SEQUENCE_NUMBER)) {
1382 set_detailed_error("Unable to read missing sequence number range.");
1383 return false;
1385 for (size_t i = 0; i <= range_length; ++i) {
1386 ack_frame->missing_packets.insert(last_sequence_number - i);
1388 // Subtract an extra 1 to ensure ranges are represented efficiently and
1389 // can't overlap by 1 sequence number. This allows a missing_delta of 0
1390 // to represent an adjacent nack range.
1391 last_sequence_number -= (range_length + 1);
1394 // Parse the revived packets list.
1395 uint8 num_revived_packets;
1396 if (!reader_->ReadBytes(&num_revived_packets, 1)) {
1397 set_detailed_error("Unable to read num revived packets.");
1398 return false;
1401 for (size_t i = 0; i < num_revived_packets; ++i) {
1402 QuicPacketSequenceNumber revived_packet = 0;
1403 if (!reader_->ReadBytes(&revived_packet,
1404 largest_observed_sequence_number_length)) {
1405 set_detailed_error("Unable to read revived packet.");
1406 return false;
1409 ack_frame->revived_packets.insert(revived_packet);
1412 return true;
1415 bool QuicFramer::ProcessTimestampsInAckFrame(QuicAckFrame* ack_frame) {
1416 if (version() > QUIC_VERSION_22 && !ack_frame->is_truncated) {
1417 uint8 num_received_packets;
1418 if (!reader_->ReadBytes(&num_received_packets, 1)) {
1419 set_detailed_error("Unable to read num received packets.");
1420 return false;
1423 if (num_received_packets > 0) {
1424 uint8 delta_from_largest_observed;
1425 if (!reader_->ReadBytes(&delta_from_largest_observed,
1426 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1427 set_detailed_error(
1428 "Unable to read sequence delta in received packets.");
1429 return false;
1431 QuicPacketSequenceNumber seq_num = ack_frame->largest_observed -
1432 delta_from_largest_observed;
1434 // Time delta from the framer creation.
1435 uint32 time_delta_us;
1436 if (!reader_->ReadBytes(&time_delta_us, sizeof(time_delta_us))) {
1437 set_detailed_error("Unable to read time delta in received packets.");
1438 return false;
1441 last_timestamp_ = CalculateTimestampFromWire(time_delta_us);
1443 ack_frame->received_packet_times.push_back(
1444 make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1446 for (uint8 i = 1; i < num_received_packets; ++i) {
1447 if (!reader_->ReadBytes(&delta_from_largest_observed,
1448 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1449 set_detailed_error(
1450 "Unable to read sequence delta in received packets.");
1451 return false;
1453 seq_num = ack_frame->largest_observed - delta_from_largest_observed;
1455 // Time delta from the previous timestamp.
1456 uint64 incremental_time_delta_us;
1457 if (!reader_->ReadUFloat16(&incremental_time_delta_us)) {
1458 set_detailed_error(
1459 "Unable to read incremental time delta in received packets.");
1460 return false;
1463 last_timestamp_ = last_timestamp_.Add(
1464 QuicTime::Delta::FromMicroseconds(incremental_time_delta_us));
1465 ack_frame->received_packet_times.push_back(
1466 make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1470 return true;
1473 bool QuicFramer::ProcessStopWaitingFrame(const QuicPacketHeader& header,
1474 QuicStopWaitingFrame* stop_waiting) {
1475 if (!reader_->ReadBytes(&stop_waiting->entropy_hash, 1)) {
1476 set_detailed_error("Unable to read entropy hash for sent packets.");
1477 return false;
1480 QuicPacketSequenceNumber least_unacked_delta = 0;
1481 if (!reader_->ReadBytes(&least_unacked_delta,
1482 header.public_header.sequence_number_length)) {
1483 set_detailed_error("Unable to read least unacked delta.");
1484 return false;
1486 DCHECK_GE(header.packet_sequence_number, least_unacked_delta);
1487 stop_waiting->least_unacked =
1488 header.packet_sequence_number - least_unacked_delta;
1490 return true;
1493 bool QuicFramer::ProcessCongestionFeedbackFrame(
1494 QuicCongestionFeedbackFrame* frame) {
1495 uint8 feedback_type;
1496 if (!reader_->ReadBytes(&feedback_type, 1)) {
1497 set_detailed_error("Unable to read congestion feedback type.");
1498 return false;
1500 frame->type =
1501 static_cast<CongestionFeedbackType>(feedback_type);
1503 switch (frame->type) {
1504 case kTCP: {
1505 CongestionFeedbackMessageTCP* tcp = &frame->tcp;
1506 uint16 receive_window = 0;
1507 if (!reader_->ReadUInt16(&receive_window)) {
1508 set_detailed_error("Unable to read receive window.");
1509 return false;
1511 // Simple bit packing, don't send the 4 least significant bits.
1512 tcp->receive_window = static_cast<QuicByteCount>(receive_window) << 4;
1513 break;
1515 default:
1516 set_detailed_error("Illegal congestion feedback type.");
1517 DLOG(WARNING) << "Illegal congestion feedback type: "
1518 << frame->type;
1519 return RaiseError(QUIC_INVALID_FRAME_DATA);
1522 return true;
1525 bool QuicFramer::ProcessRstStreamFrame(QuicRstStreamFrame* frame) {
1526 if (!reader_->ReadUInt32(&frame->stream_id)) {
1527 set_detailed_error("Unable to read stream_id.");
1528 return false;
1531 if (!reader_->ReadUInt64(&frame->byte_offset)) {
1532 set_detailed_error("Unable to read rst stream sent byte offset.");
1533 return false;
1536 uint32 error_code;
1537 if (!reader_->ReadUInt32(&error_code)) {
1538 set_detailed_error("Unable to read rst stream error code.");
1539 return false;
1542 if (error_code >= QUIC_STREAM_LAST_ERROR ||
1543 error_code < QUIC_STREAM_NO_ERROR) {
1544 set_detailed_error("Invalid rst stream error code.");
1545 return false;
1548 frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code);
1550 StringPiece error_details;
1551 if (!reader_->ReadStringPiece16(&error_details)) {
1552 set_detailed_error("Unable to read rst stream error details.");
1553 return false;
1555 frame->error_details = error_details.as_string();
1557 return true;
1560 bool QuicFramer::ProcessConnectionCloseFrame(QuicConnectionCloseFrame* frame) {
1561 uint32 error_code;
1562 if (!reader_->ReadUInt32(&error_code)) {
1563 set_detailed_error("Unable to read connection close error code.");
1564 return false;
1567 if (error_code >= QUIC_LAST_ERROR ||
1568 error_code < QUIC_NO_ERROR) {
1569 set_detailed_error("Invalid error code.");
1570 return false;
1573 frame->error_code = static_cast<QuicErrorCode>(error_code);
1575 StringPiece error_details;
1576 if (!reader_->ReadStringPiece16(&error_details)) {
1577 set_detailed_error("Unable to read connection close error details.");
1578 return false;
1580 frame->error_details = error_details.as_string();
1582 return true;
1585 bool QuicFramer::ProcessGoAwayFrame(QuicGoAwayFrame* frame) {
1586 uint32 error_code;
1587 if (!reader_->ReadUInt32(&error_code)) {
1588 set_detailed_error("Unable to read go away error code.");
1589 return false;
1591 frame->error_code = static_cast<QuicErrorCode>(error_code);
1593 if (error_code >= QUIC_LAST_ERROR ||
1594 error_code < QUIC_NO_ERROR) {
1595 set_detailed_error("Invalid error code.");
1596 return false;
1599 uint32 stream_id;
1600 if (!reader_->ReadUInt32(&stream_id)) {
1601 set_detailed_error("Unable to read last good stream id.");
1602 return false;
1604 frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id);
1606 StringPiece reason_phrase;
1607 if (!reader_->ReadStringPiece16(&reason_phrase)) {
1608 set_detailed_error("Unable to read goaway reason.");
1609 return false;
1611 frame->reason_phrase = reason_phrase.as_string();
1613 return true;
1616 bool QuicFramer::ProcessWindowUpdateFrame(QuicWindowUpdateFrame* frame) {
1617 if (!reader_->ReadUInt32(&frame->stream_id)) {
1618 set_detailed_error("Unable to read stream_id.");
1619 return false;
1622 if (!reader_->ReadUInt64(&frame->byte_offset)) {
1623 set_detailed_error("Unable to read window byte_offset.");
1624 return false;
1627 return true;
1630 bool QuicFramer::ProcessBlockedFrame(QuicBlockedFrame* frame) {
1631 if (!reader_->ReadUInt32(&frame->stream_id)) {
1632 set_detailed_error("Unable to read stream_id.");
1633 return false;
1636 return true;
1639 // static
1640 StringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket(
1641 const QuicEncryptedPacket& encrypted,
1642 QuicConnectionIdLength connection_id_length,
1643 bool includes_version,
1644 QuicSequenceNumberLength sequence_number_length) {
1645 return StringPiece(
1646 encrypted.data() + kStartOfHashData, GetStartOfEncryptedData(
1647 connection_id_length, includes_version, sequence_number_length)
1648 - kStartOfHashData);
1651 void QuicFramer::SetDecrypter(QuicDecrypter* decrypter,
1652 EncryptionLevel level) {
1653 DCHECK(alternative_decrypter_.get() == NULL);
1654 DCHECK_GE(level, decrypter_level_);
1655 decrypter_.reset(decrypter);
1656 decrypter_level_ = level;
1659 void QuicFramer::SetAlternativeDecrypter(QuicDecrypter* decrypter,
1660 EncryptionLevel level,
1661 bool latch_once_used) {
1662 alternative_decrypter_.reset(decrypter);
1663 alternative_decrypter_level_ = level;
1664 alternative_decrypter_latch_ = latch_once_used;
1667 const QuicDecrypter* QuicFramer::decrypter() const {
1668 return decrypter_.get();
1671 const QuicDecrypter* QuicFramer::alternative_decrypter() const {
1672 return alternative_decrypter_.get();
1675 void QuicFramer::SetEncrypter(EncryptionLevel level,
1676 QuicEncrypter* encrypter) {
1677 DCHECK_GE(level, 0);
1678 DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1679 encrypter_[level].reset(encrypter);
1682 const QuicEncrypter* QuicFramer::encrypter(EncryptionLevel level) const {
1683 DCHECK_GE(level, 0);
1684 DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1685 DCHECK(encrypter_[level].get() != NULL);
1686 return encrypter_[level].get();
1689 QuicEncryptedPacket* QuicFramer::EncryptPacket(
1690 EncryptionLevel level,
1691 QuicPacketSequenceNumber packet_sequence_number,
1692 const QuicPacket& packet) {
1693 DCHECK(encrypter_[level].get() != NULL);
1695 scoped_ptr<QuicData> out(encrypter_[level]->EncryptPacket(
1696 packet_sequence_number, packet.AssociatedData(), packet.Plaintext()));
1697 if (out.get() == NULL) {
1698 RaiseError(QUIC_ENCRYPTION_FAILURE);
1699 return NULL;
1701 StringPiece header_data = packet.BeforePlaintext();
1702 size_t len = header_data.length() + out->length();
1703 char* buffer = new char[len];
1704 // TODO(rch): eliminate this buffer copy by passing in a buffer to Encrypt().
1705 memcpy(buffer, header_data.data(), header_data.length());
1706 memcpy(buffer + header_data.length(), out->data(), out->length());
1707 return new QuicEncryptedPacket(buffer, len, true);
1710 size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
1711 // In order to keep the code simple, we don't have the current encryption
1712 // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
1713 size_t min_plaintext_size = ciphertext_size;
1715 for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) {
1716 if (encrypter_[i].get() != NULL) {
1717 size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size);
1718 if (size < min_plaintext_size) {
1719 min_plaintext_size = size;
1724 return min_plaintext_size;
1727 bool QuicFramer::DecryptPayload(const QuicPacketHeader& header,
1728 const QuicEncryptedPacket& packet) {
1729 StringPiece encrypted;
1730 if (!reader_->ReadStringPiece(&encrypted, reader_->BytesRemaining())) {
1731 return false;
1733 DCHECK(decrypter_.get() != NULL);
1734 decrypted_.reset(decrypter_->DecryptPacket(
1735 header.packet_sequence_number,
1736 GetAssociatedDataFromEncryptedPacket(
1737 packet,
1738 header.public_header.connection_id_length,
1739 header.public_header.version_flag,
1740 header.public_header.sequence_number_length),
1741 encrypted));
1742 if (decrypted_.get() != NULL) {
1743 visitor_->OnDecryptedPacket(decrypter_level_);
1744 } else if (alternative_decrypter_.get() != NULL) {
1745 decrypted_.reset(alternative_decrypter_->DecryptPacket(
1746 header.packet_sequence_number,
1747 GetAssociatedDataFromEncryptedPacket(
1748 packet,
1749 header.public_header.connection_id_length,
1750 header.public_header.version_flag,
1751 header.public_header.sequence_number_length),
1752 encrypted));
1753 if (decrypted_.get() != NULL) {
1754 visitor_->OnDecryptedPacket(alternative_decrypter_level_);
1755 if (alternative_decrypter_latch_) {
1756 // Switch to the alternative decrypter and latch so that we cannot
1757 // switch back.
1758 decrypter_.reset(alternative_decrypter_.release());
1759 decrypter_level_ = alternative_decrypter_level_;
1760 alternative_decrypter_level_ = ENCRYPTION_NONE;
1761 } else {
1762 // Switch the alternative decrypter so that we use it first next time.
1763 decrypter_.swap(alternative_decrypter_);
1764 EncryptionLevel level = alternative_decrypter_level_;
1765 alternative_decrypter_level_ = decrypter_level_;
1766 decrypter_level_ = level;
1771 if (decrypted_.get() == NULL) {
1772 DLOG(WARNING) << "DecryptPacket failed for sequence_number:"
1773 << header.packet_sequence_number;
1774 return false;
1777 reader_.reset(new QuicDataReader(decrypted_->data(), decrypted_->length()));
1778 return true;
1781 size_t QuicFramer::GetAckFrameSize(
1782 const QuicAckFrame& ack,
1783 QuicSequenceNumberLength sequence_number_length) {
1784 AckFrameInfo ack_info = GetAckFrameInfo(ack);
1785 QuicSequenceNumberLength largest_observed_length =
1786 GetMinSequenceNumberLength(ack.largest_observed);
1787 QuicSequenceNumberLength missing_sequence_number_length =
1788 GetMinSequenceNumberLength(ack_info.max_delta);
1790 size_t ack_size = GetMinAckFrameSize(sequence_number_length,
1791 largest_observed_length);
1792 if (!ack_info.nack_ranges.empty()) {
1793 ack_size += kNumberOfNackRangesSize + kNumberOfRevivedPacketsSize;
1794 ack_size += min(ack_info.nack_ranges.size(), kMaxNackRanges) *
1795 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1796 ack_size += min(ack.revived_packets.size(),
1797 kMaxRevivedPackets) * largest_observed_length;
1800 // In version 23, if the ack will be truncated due to too many nack ranges,
1801 // then do not include the number of timestamps (1 byte).
1802 if (version() > QUIC_VERSION_22 &&
1803 ack_info.nack_ranges.size() <= kMaxNackRanges) {
1804 // 1 byte for the number of timestamps.
1805 ack_size += 1;
1806 if (ack.received_packet_times.size() > 0) {
1807 // 1 byte for sequence number, 4 bytes for timestamp for the first
1808 // packet.
1809 ack_size += 5;
1811 // 1 byte for sequence number, 2 bytes for timestamp for the other
1812 // packets.
1813 ack_size += 3 * (ack.received_packet_times.size() - 1);
1817 return ack_size;
1820 size_t QuicFramer::ComputeFrameLength(
1821 const QuicFrame& frame,
1822 bool last_frame_in_packet,
1823 InFecGroup is_in_fec_group,
1824 QuicSequenceNumberLength sequence_number_length) {
1825 switch (frame.type) {
1826 case STREAM_FRAME:
1827 return GetMinStreamFrameSize(frame.stream_frame->stream_id,
1828 frame.stream_frame->offset,
1829 last_frame_in_packet,
1830 is_in_fec_group) +
1831 frame.stream_frame->data.TotalBufferSize();
1832 case ACK_FRAME: {
1833 return GetAckFrameSize(*frame.ack_frame, sequence_number_length);
1835 case CONGESTION_FEEDBACK_FRAME: {
1836 size_t len = kQuicFrameTypeSize;
1837 const QuicCongestionFeedbackFrame& congestion_feedback =
1838 *frame.congestion_feedback_frame;
1839 len += 1; // Congestion feedback type.
1841 switch (congestion_feedback.type) {
1842 case kTCP:
1843 len += 2; // Receive window.
1844 break;
1845 default:
1846 set_detailed_error("Illegal feedback type.");
1847 DVLOG(1) << "Illegal feedback type: " << congestion_feedback.type;
1848 break;
1850 return len;
1852 case STOP_WAITING_FRAME:
1853 return GetStopWaitingFrameSize(sequence_number_length);
1854 case PING_FRAME:
1855 // Ping has no payload.
1856 return kQuicFrameTypeSize;
1857 case RST_STREAM_FRAME:
1858 return GetMinRstStreamFrameSize() +
1859 frame.rst_stream_frame->error_details.size();
1860 case CONNECTION_CLOSE_FRAME:
1861 return GetMinConnectionCloseFrameSize() +
1862 frame.connection_close_frame->error_details.size();
1863 case GOAWAY_FRAME:
1864 return GetMinGoAwayFrameSize() + frame.goaway_frame->reason_phrase.size();
1865 case WINDOW_UPDATE_FRAME:
1866 return GetWindowUpdateFrameSize();
1867 case BLOCKED_FRAME:
1868 return GetBlockedFrameSize();
1869 case PADDING_FRAME:
1870 DCHECK(false);
1871 return 0;
1872 case NUM_FRAME_TYPES:
1873 DCHECK(false);
1874 return 0;
1877 // Not reachable, but some Chrome compilers can't figure that out. *sigh*
1878 DCHECK(false);
1879 return 0;
1882 bool QuicFramer::AppendTypeByte(const QuicFrame& frame,
1883 bool no_stream_frame_length,
1884 QuicDataWriter* writer) {
1885 uint8 type_byte = 0;
1886 switch (frame.type) {
1887 case STREAM_FRAME: {
1888 if (frame.stream_frame == NULL) {
1889 LOG(DFATAL) << "Failed to append STREAM frame with no stream_frame.";
1891 // Fin bit.
1892 type_byte |= frame.stream_frame->fin ? kQuicStreamFinMask : 0;
1894 // Data Length bit.
1895 type_byte <<= kQuicStreamDataLengthShift;
1896 type_byte |= no_stream_frame_length ? 0: kQuicStreamDataLengthMask;
1898 // Offset 3 bits.
1899 type_byte <<= kQuicStreamOffsetShift;
1900 const size_t offset_len = GetStreamOffsetSize(frame.stream_frame->offset);
1901 if (offset_len > 0) {
1902 type_byte |= offset_len - 1;
1905 // stream id 2 bits.
1906 type_byte <<= kQuicStreamIdShift;
1907 type_byte |= GetStreamIdSize(frame.stream_frame->stream_id) - 1;
1908 type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1.
1909 break;
1911 case ACK_FRAME:
1912 return true;
1913 case CONGESTION_FEEDBACK_FRAME: {
1914 // TODO(ianswett): Use extra 5 bits in the congestion feedback framing.
1915 type_byte = kQuicFrameTypeCongestionFeedbackMask;
1916 break;
1918 default:
1919 type_byte = frame.type;
1920 break;
1923 return writer->WriteUInt8(type_byte);
1926 // static
1927 bool QuicFramer::AppendPacketSequenceNumber(
1928 QuicSequenceNumberLength sequence_number_length,
1929 QuicPacketSequenceNumber packet_sequence_number,
1930 QuicDataWriter* writer) {
1931 // Ensure the entire sequence number can be written.
1932 if (writer->capacity() - writer->length() <
1933 static_cast<size_t>(sequence_number_length)) {
1934 return false;
1936 switch (sequence_number_length) {
1937 case PACKET_1BYTE_SEQUENCE_NUMBER:
1938 return writer->WriteUInt8(
1939 packet_sequence_number & k1ByteSequenceNumberMask);
1940 break;
1941 case PACKET_2BYTE_SEQUENCE_NUMBER:
1942 return writer->WriteUInt16(
1943 packet_sequence_number & k2ByteSequenceNumberMask);
1944 break;
1945 case PACKET_4BYTE_SEQUENCE_NUMBER:
1946 return writer->WriteUInt32(
1947 packet_sequence_number & k4ByteSequenceNumberMask);
1948 break;
1949 case PACKET_6BYTE_SEQUENCE_NUMBER:
1950 return writer->WriteUInt48(
1951 packet_sequence_number & k6ByteSequenceNumberMask);
1952 break;
1953 default:
1954 DCHECK(false) << "sequence_number_length: " << sequence_number_length;
1955 return false;
1959 bool QuicFramer::AppendStreamFrame(
1960 const QuicStreamFrame& frame,
1961 bool no_stream_frame_length,
1962 QuicDataWriter* writer) {
1963 if (!writer->WriteBytes(&frame.stream_id, GetStreamIdSize(frame.stream_id))) {
1964 LOG(DFATAL) << "Writing stream id size failed.";
1965 return false;
1967 if (!writer->WriteBytes(&frame.offset, GetStreamOffsetSize(frame.offset))) {
1968 LOG(DFATAL) << "Writing offset size failed.";
1969 return false;
1971 if (!no_stream_frame_length) {
1972 if (!writer->WriteUInt16(frame.data.TotalBufferSize())) {
1973 LOG(DFATAL) << "Writing stream frame length failed";
1974 return false;
1978 if (!writer->WriteIOVector(frame.data)) {
1979 LOG(DFATAL) << "Writing frame data failed.";
1980 return false;
1982 return true;
1985 // static
1986 void QuicFramer::set_version(const QuicVersion version) {
1987 DCHECK(IsSupportedVersion(version)) << QuicVersionToString(version);
1988 quic_version_ = version;
1991 bool QuicFramer::AppendAckFrameAndTypeByte(
1992 const QuicPacketHeader& header,
1993 const QuicAckFrame& frame,
1994 QuicDataWriter* writer) {
1995 AckFrameInfo ack_info = GetAckFrameInfo(frame);
1996 QuicPacketSequenceNumber ack_largest_observed = frame.largest_observed;
1997 QuicSequenceNumberLength largest_observed_length =
1998 GetMinSequenceNumberLength(ack_largest_observed);
1999 QuicSequenceNumberLength missing_sequence_number_length =
2000 GetMinSequenceNumberLength(ack_info.max_delta);
2001 // Determine whether we need to truncate ranges.
2002 size_t available_range_bytes = writer->capacity() - writer->length() -
2003 kNumberOfRevivedPacketsSize - kNumberOfNackRangesSize -
2004 GetMinAckFrameSize(header.public_header.sequence_number_length,
2005 largest_observed_length);
2006 size_t max_num_ranges = available_range_bytes /
2007 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
2008 max_num_ranges = min(kMaxNackRanges, max_num_ranges);
2009 bool truncated = ack_info.nack_ranges.size() > max_num_ranges;
2010 DVLOG_IF(1, truncated) << "Truncating ack from "
2011 << ack_info.nack_ranges.size() << " ranges to "
2012 << max_num_ranges;
2013 // Write out the type byte by setting the low order bits and doing shifts
2014 // to make room for the next bit flags to be set.
2015 // Whether there are any nacks.
2016 uint8 type_byte = ack_info.nack_ranges.empty() ? 0 : kQuicHasNacksMask;
2018 // truncating bit.
2019 type_byte <<= kQuicAckTruncatedShift;
2020 type_byte |= truncated ? kQuicAckTruncatedMask : 0;
2022 // Largest observed sequence number length.
2023 type_byte <<= kQuicSequenceNumberLengthShift;
2024 type_byte |= GetSequenceNumberFlags(largest_observed_length);
2026 // Missing sequence number length.
2027 type_byte <<= kQuicSequenceNumberLengthShift;
2028 type_byte |= GetSequenceNumberFlags(missing_sequence_number_length);
2030 type_byte |= kQuicFrameTypeAckMask;
2032 if (!writer->WriteUInt8(type_byte)) {
2033 return false;
2036 QuicPacketEntropyHash ack_entropy_hash = frame.entropy_hash;
2037 NackRangeMap::reverse_iterator ack_iter = ack_info.nack_ranges.rbegin();
2038 if (truncated) {
2039 // Skip the nack ranges which the truncated ack won't include and set
2040 // a correct largest observed for the truncated ack.
2041 for (size_t i = 1; i < (ack_info.nack_ranges.size() - max_num_ranges);
2042 ++i) {
2043 ++ack_iter;
2045 // If the last range is followed by acks, include them.
2046 // If the last range is followed by another range, specify the end of the
2047 // range as the largest_observed.
2048 ack_largest_observed = ack_iter->first - 1;
2049 // Also update the entropy so it matches the largest observed.
2050 ack_entropy_hash = entropy_calculator_->EntropyHash(ack_largest_observed);
2051 ++ack_iter;
2054 if (!writer->WriteUInt8(ack_entropy_hash)) {
2055 return false;
2058 if (!AppendPacketSequenceNumber(largest_observed_length,
2059 ack_largest_observed, writer)) {
2060 return false;
2063 uint64 delta_time_largest_observed_us = kUFloat16MaxValue;
2064 if (!frame.delta_time_largest_observed.IsInfinite()) {
2065 DCHECK_LE(0u, frame.delta_time_largest_observed.ToMicroseconds());
2066 delta_time_largest_observed_us =
2067 frame.delta_time_largest_observed.ToMicroseconds();
2070 if (!writer->WriteUFloat16(delta_time_largest_observed_us)) {
2071 return false;
2074 // Timestamp goes at the end of the required fields.
2075 if (version() > QUIC_VERSION_22 && !truncated) {
2076 if (!AppendTimestampToAckFrame(frame, writer)) {
2077 return false;
2081 if (ack_info.nack_ranges.empty()) {
2082 return true;
2085 const uint8 num_missing_ranges =
2086 min(ack_info.nack_ranges.size(), max_num_ranges);
2087 if (!writer->WriteBytes(&num_missing_ranges, 1)) {
2088 return false;
2091 int num_ranges_written = 0;
2092 QuicPacketSequenceNumber last_sequence_written = ack_largest_observed;
2093 for (; ack_iter != ack_info.nack_ranges.rend(); ++ack_iter) {
2094 // Calculate the delta to the last number in the range.
2095 QuicPacketSequenceNumber missing_delta =
2096 last_sequence_written - (ack_iter->first + ack_iter->second);
2097 if (!AppendPacketSequenceNumber(missing_sequence_number_length,
2098 missing_delta, writer)) {
2099 return false;
2101 if (!AppendPacketSequenceNumber(PACKET_1BYTE_SEQUENCE_NUMBER,
2102 ack_iter->second, writer)) {
2103 return false;
2105 // Subtract 1 so a missing_delta of 0 means an adjacent range.
2106 last_sequence_written = ack_iter->first - 1;
2107 ++num_ranges_written;
2109 DCHECK_EQ(num_missing_ranges, num_ranges_written);
2111 // Append revived packets.
2112 // If not all the revived packets fit, only mention the ones that do.
2113 uint8 num_revived_packets = min(frame.revived_packets.size(),
2114 kMaxRevivedPackets);
2115 num_revived_packets = min(
2116 static_cast<size_t>(num_revived_packets),
2117 (writer->capacity() - writer->length()) / largest_observed_length);
2118 if (!writer->WriteBytes(&num_revived_packets, 1)) {
2119 return false;
2122 SequenceNumberSet::const_iterator iter = frame.revived_packets.begin();
2123 for (int i = 0; i < num_revived_packets; ++i, ++iter) {
2124 LOG_IF(DFATAL, !ContainsKey(frame.missing_packets, *iter));
2125 if (!AppendPacketSequenceNumber(largest_observed_length,
2126 *iter, writer)) {
2127 return false;
2131 return true;
2134 bool QuicFramer::AppendCongestionFeedbackFrame(
2135 const QuicCongestionFeedbackFrame& frame,
2136 QuicDataWriter* writer) {
2137 if (!writer->WriteBytes(&frame.type, 1)) {
2138 return false;
2141 switch (frame.type) {
2142 case kTCP: {
2143 const CongestionFeedbackMessageTCP& tcp = frame.tcp;
2144 DCHECK_LE(tcp.receive_window, 1u << 20);
2145 // Simple bit packing, don't send the 4 least significant bits.
2146 uint16 receive_window = static_cast<uint16>(tcp.receive_window >> 4);
2147 if (!writer->WriteUInt16(receive_window)) {
2148 return false;
2150 break;
2152 default:
2153 return false;
2156 return true;
2159 bool QuicFramer::AppendTimestampToAckFrame(const QuicAckFrame& frame,
2160 QuicDataWriter* writer) {
2161 DCHECK_GE(version(), QUIC_VERSION_23);
2162 DCHECK_GE(numeric_limits<uint8>::max(), frame.received_packet_times.size());
2163 // num_received_packets is only 1 byte.
2164 if (frame.received_packet_times.size() > numeric_limits<uint8>::max()) {
2165 return false;
2168 uint8 num_received_packets = frame.received_packet_times.size();
2170 if (!writer->WriteBytes(&num_received_packets, 1)) {
2171 return false;
2173 if (num_received_packets == 0) {
2174 return true;
2177 PacketTimeList::const_iterator it = frame.received_packet_times.begin();
2178 QuicPacketSequenceNumber sequence_number = it->first;
2179 QuicPacketSequenceNumber delta_from_largest_observed =
2180 frame.largest_observed - sequence_number;
2182 DCHECK_GE(numeric_limits<uint8>::max(), delta_from_largest_observed);
2183 if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2184 return false;
2187 if (!writer->WriteUInt8(
2188 delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2189 return false;
2192 // Use the lowest 4 bytes of the time delta from the creation_time_.
2193 const uint64 time_epoch_delta_us = GG_UINT64_C(1) << 32;
2194 uint32 time_delta_us =
2195 static_cast<uint32>(it->second.Subtract(creation_time_).ToMicroseconds()
2196 & (time_epoch_delta_us - 1));
2197 if (!writer->WriteBytes(&time_delta_us, sizeof(time_delta_us))) {
2198 return false;
2201 QuicTime prev_time = it->second;
2203 for (++it; it != frame.received_packet_times.end(); ++it) {
2204 sequence_number = it->first;
2205 delta_from_largest_observed = frame.largest_observed - sequence_number;
2207 if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2208 return false;
2211 if (!writer->WriteUInt8(
2212 delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2213 return false;
2216 uint64 time_delta_us = it->second.Subtract(prev_time).ToMicroseconds();
2217 prev_time = it->second;
2218 if (!writer->WriteUFloat16(time_delta_us)) {
2219 return false;
2222 return true;
2225 bool QuicFramer::AppendStopWaitingFrame(
2226 const QuicPacketHeader& header,
2227 const QuicStopWaitingFrame& frame,
2228 QuicDataWriter* writer) {
2229 DCHECK_GE(header.packet_sequence_number, frame.least_unacked);
2230 const QuicPacketSequenceNumber least_unacked_delta =
2231 header.packet_sequence_number - frame.least_unacked;
2232 const QuicPacketSequenceNumber length_shift =
2233 header.public_header.sequence_number_length * 8;
2234 if (!writer->WriteUInt8(frame.entropy_hash)) {
2235 LOG(DFATAL) << " hash failed";
2236 return false;
2239 if (least_unacked_delta >> length_shift > 0) {
2240 LOG(DFATAL) << "sequence_number_length "
2241 << header.public_header.sequence_number_length
2242 << " is too small for least_unacked_delta: "
2243 << least_unacked_delta;
2244 return false;
2246 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
2247 least_unacked_delta, writer)) {
2248 LOG(DFATAL) << " seq failed: "
2249 << header.public_header.sequence_number_length;
2250 return false;
2253 return true;
2256 bool QuicFramer::AppendRstStreamFrame(
2257 const QuicRstStreamFrame& frame,
2258 QuicDataWriter* writer) {
2259 if (!writer->WriteUInt32(frame.stream_id)) {
2260 return false;
2263 if (!writer->WriteUInt64(frame.byte_offset)) {
2264 return false;
2267 uint32 error_code = static_cast<uint32>(frame.error_code);
2268 if (!writer->WriteUInt32(error_code)) {
2269 return false;
2272 if (!writer->WriteStringPiece16(frame.error_details)) {
2273 return false;
2275 return true;
2278 bool QuicFramer::AppendConnectionCloseFrame(
2279 const QuicConnectionCloseFrame& frame,
2280 QuicDataWriter* writer) {
2281 uint32 error_code = static_cast<uint32>(frame.error_code);
2282 if (!writer->WriteUInt32(error_code)) {
2283 return false;
2285 if (!writer->WriteStringPiece16(frame.error_details)) {
2286 return false;
2288 return true;
2291 bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame,
2292 QuicDataWriter* writer) {
2293 uint32 error_code = static_cast<uint32>(frame.error_code);
2294 if (!writer->WriteUInt32(error_code)) {
2295 return false;
2297 uint32 stream_id = static_cast<uint32>(frame.last_good_stream_id);
2298 if (!writer->WriteUInt32(stream_id)) {
2299 return false;
2301 if (!writer->WriteStringPiece16(frame.reason_phrase)) {
2302 return false;
2304 return true;
2307 bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame,
2308 QuicDataWriter* writer) {
2309 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2310 if (!writer->WriteUInt32(stream_id)) {
2311 return false;
2313 if (!writer->WriteUInt64(frame.byte_offset)) {
2314 return false;
2316 return true;
2319 bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame,
2320 QuicDataWriter* writer) {
2321 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2322 if (!writer->WriteUInt32(stream_id)) {
2323 return false;
2325 return true;
2328 bool QuicFramer::RaiseError(QuicErrorCode error) {
2329 DVLOG(1) << "Error detail: " << detailed_error_;
2330 set_error(error);
2331 visitor_->OnError(this);
2332 reader_.reset(NULL);
2333 return false;
2336 } // namespace net