1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef MEDIA_CAST_CAST_DEFINES_H_
6 #define MEDIA_CAST_CAST_DEFINES_H_
14 #include "base/basictypes.h"
15 #include "base/compiler_specific.h"
16 #include "base/logging.h"
17 #include "base/time/time.h"
18 #include "media/cast/net/cast_transport_config.h"
23 const int64 kDontShowTimeoutMs
= 33;
24 const float kDefaultCongestionControlBackOff
= 0.875f
;
25 const uint32 kVideoFrequency
= 90000;
26 const uint32 kStartFrameId
= UINT32_C(0xffffffff);
28 // This is an important system-wide constant. This limits how much history the
29 // implementation must retain in order to process the acknowledgements of past
31 // This value is carefully choosen such that it fits in the 8-bits range for
32 // frame IDs. It is also less than half of the full 8-bits range such that we
33 // can handle wrap around and compare two frame IDs.
34 const int kMaxUnackedFrames
= 120;
36 const int64 kCastMessageUpdateIntervalMs
= 33;
37 const int64 kNackRepeatIntervalMs
= 30;
39 enum CastInitializationStatus
{
40 STATUS_AUDIO_UNINITIALIZED
,
41 STATUS_VIDEO_UNINITIALIZED
,
42 STATUS_AUDIO_INITIALIZED
,
43 STATUS_VIDEO_INITIALIZED
,
44 STATUS_INVALID_CAST_ENVIRONMENT
,
45 STATUS_INVALID_CRYPTO_CONFIGURATION
,
46 STATUS_UNSUPPORTED_AUDIO_CODEC
,
47 STATUS_UNSUPPORTED_VIDEO_CODEC
,
48 STATUS_INVALID_AUDIO_CONFIGURATION
,
49 STATUS_INVALID_VIDEO_CONFIGURATION
,
50 STATUS_HW_VIDEO_ENCODER_NOT_SUPPORTED
,
53 enum DefaultSettings
{
54 kDefaultAudioEncoderBitrate
= 0, // This means "auto," and may mean VBR.
55 kDefaultAudioSamplingRate
= 48000,
58 kDefaultMaxFrameRate
= 30,
59 kDefaultNumberOfVideoBuffers
= 1,
60 kDefaultRtcpIntervalMs
= 500,
61 kDefaultRtpHistoryMs
= 1000,
62 kDefaultRtpMaxDelayMs
= 100,
67 kNewPacketCompletingFrame
,
72 // kRtcpCastAllPacketsLost is used in PacketIDSet and
73 // on the wire to mean that ALL packets for a particular
75 const uint16 kRtcpCastAllPacketsLost
= 0xffff;
77 // kRtcpCastLastPacket is used in PacketIDSet to ask for
78 // the last packet of a frame to be retransmitted.
79 const uint16 kRtcpCastLastPacket
= 0xfffe;
81 const size_t kMinLengthOfRtcp
= 8;
83 // Basic RTP header + cast header.
84 const size_t kMinLengthOfRtp
= 12 + 6;
86 // Each uint16 represents one packet id within a cast frame.
87 // Can also contain kRtcpCastAllPacketsLost and kRtcpCastLastPacket.
88 typedef std::set
<uint16
> PacketIdSet
;
89 // Each uint8 represents one cast frame.
90 typedef std::map
<uint8
, PacketIdSet
> MissingFramesAndPacketsMap
;
92 // TODO(pwestin): Re-factor the functions bellow into a class with static
95 // January 1970, in NTP seconds.
96 // Network Time Protocol (NTP), which is in seconds relative to 0h UTC on
98 static const int64 kUnixEpochInNtpSeconds
= INT64_C(2208988800);
100 // Magic fractional unit. Used to convert time (in microseconds) to/from
101 // fractional NTP seconds.
102 static const double kMagicFractionalUnit
= 4.294967296E3
;
104 // The maximum number of Cast receiver events to keep in history for the
105 // purpose of sending the events through RTCP.
106 // The number chosen should be more than the number of events that can be
107 // stored in a RTCP packet.
108 static const size_t kReceiverRtcpEventHistorySize
= 512;
110 inline bool IsNewerFrameId(uint32 frame_id
, uint32 prev_frame_id
) {
111 return (frame_id
!= prev_frame_id
) &&
112 static_cast<uint32
>(frame_id
- prev_frame_id
) < 0x80000000;
115 inline bool IsNewerRtpTimestamp(uint32 timestamp
, uint32 prev_timestamp
) {
116 return (timestamp
!= prev_timestamp
) &&
117 static_cast<uint32
>(timestamp
- prev_timestamp
) < 0x80000000;
120 inline bool IsOlderFrameId(uint32 frame_id
, uint32 prev_frame_id
) {
121 return (frame_id
== prev_frame_id
) || IsNewerFrameId(prev_frame_id
, frame_id
);
124 inline bool IsNewerPacketId(uint16 packet_id
, uint16 prev_packet_id
) {
125 return (packet_id
!= prev_packet_id
) &&
126 static_cast<uint16
>(packet_id
- prev_packet_id
) < 0x8000;
129 inline bool IsNewerSequenceNumber(uint16 sequence_number
,
130 uint16 prev_sequence_number
) {
131 // Same function as IsNewerPacketId just different data and name.
132 return IsNewerPacketId(sequence_number
, prev_sequence_number
);
135 // Create a NTP diff from seconds and fractions of seconds; delay_fraction is
136 // fractions of a second where 0x80000000 is half a second.
137 inline uint32
ConvertToNtpDiff(uint32 delay_seconds
, uint32 delay_fraction
) {
138 return ((delay_seconds
& 0x0000FFFF) << 16) +
139 ((delay_fraction
& 0xFFFF0000) >> 16);
142 inline base::TimeDelta
ConvertFromNtpDiff(uint32 ntp_delay
) {
143 uint32 delay_ms
= (ntp_delay
& 0x0000ffff) * 1000;
145 delay_ms
+= ((ntp_delay
& 0xffff0000) >> 16) * 1000;
146 return base::TimeDelta::FromMilliseconds(delay_ms
);
149 inline void ConvertTimeToFractions(int64 ntp_time_us
,
152 DCHECK_GE(ntp_time_us
, 0) << "Time must NOT be negative";
153 const int64 seconds_component
=
154 ntp_time_us
/ base::Time::kMicrosecondsPerSecond
;
155 // NTP time will overflow in the year 2036. Also, make sure unit tests don't
156 // regress and use an origin past the year 2036. If this overflows here, the
157 // inverse calculation fails to compute the correct TimeTicks value, throwing
158 // off the entire system.
159 DCHECK_LT(seconds_component
, INT64_C(4263431296))
160 << "One year left to fix the NTP year 2036 wrap-around issue!";
161 *seconds
= static_cast<uint32
>(seconds_component
);
162 *fractions
= static_cast<uint32
>(
163 (ntp_time_us
% base::Time::kMicrosecondsPerSecond
) *
164 kMagicFractionalUnit
);
167 inline void ConvertTimeTicksToNtp(const base::TimeTicks
& time
,
169 uint32
* ntp_fractions
) {
170 base::TimeDelta elapsed_since_unix_epoch
=
171 time
- base::TimeTicks::UnixEpoch();
174 elapsed_since_unix_epoch
.InMicroseconds() +
175 (kUnixEpochInNtpSeconds
* base::Time::kMicrosecondsPerSecond
);
177 ConvertTimeToFractions(ntp_time_us
, ntp_seconds
, ntp_fractions
);
180 inline base::TimeTicks
ConvertNtpToTimeTicks(uint32 ntp_seconds
,
181 uint32 ntp_fractions
) {
182 // We need to ceil() here because the calculation of |fractions| in
183 // ConvertTimeToFractions() effectively does a floor().
184 int64 ntp_time_us
= ntp_seconds
* base::Time::kMicrosecondsPerSecond
+
185 static_cast<int64
>(std::ceil(ntp_fractions
/ kMagicFractionalUnit
));
187 base::TimeDelta elapsed_since_unix_epoch
= base::TimeDelta::FromMicroseconds(
189 (kUnixEpochInNtpSeconds
* base::Time::kMicrosecondsPerSecond
));
190 return base::TimeTicks::UnixEpoch() + elapsed_since_unix_epoch
;
193 inline base::TimeDelta
RtpDeltaToTimeDelta(int64 rtp_delta
, int rtp_timebase
) {
194 DCHECK_GT(rtp_timebase
, 0);
195 return rtp_delta
* base::TimeDelta::FromSeconds(1) / rtp_timebase
;
198 inline int64
TimeDeltaToRtpDelta(base::TimeDelta delta
, int rtp_timebase
) {
199 DCHECK_GT(rtp_timebase
, 0);
200 return delta
* rtp_timebase
/ base::TimeDelta::FromSeconds(1);
206 #endif // MEDIA_CAST_CAST_DEFINES_H_