Cast: Stop logging kVideoFrameSentToEncoder and rename a couple events.
[chromium-blink-merge.git] / net / disk_cache / blockfile / backend_impl.cc
blob49ff0c783ce8da9aff025526c5440382ca047e97
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/disk_cache/blockfile/backend_impl.h"
7 #include "base/bind.h"
8 #include "base/bind_helpers.h"
9 #include "base/file_util.h"
10 #include "base/files/file.h"
11 #include "base/files/file_path.h"
12 #include "base/hash.h"
13 #include "base/message_loop/message_loop.h"
14 #include "base/metrics/field_trial.h"
15 #include "base/metrics/histogram.h"
16 #include "base/metrics/stats_counters.h"
17 #include "base/rand_util.h"
18 #include "base/strings/string_util.h"
19 #include "base/strings/stringprintf.h"
20 #include "base/sys_info.h"
21 #include "base/threading/thread_restrictions.h"
22 #include "base/time/time.h"
23 #include "base/timer/timer.h"
24 #include "net/base/net_errors.h"
25 #include "net/disk_cache/blockfile/disk_format.h"
26 #include "net/disk_cache/blockfile/entry_impl.h"
27 #include "net/disk_cache/blockfile/errors.h"
28 #include "net/disk_cache/blockfile/experiments.h"
29 #include "net/disk_cache/blockfile/file.h"
30 #include "net/disk_cache/blockfile/histogram_macros.h"
31 #include "net/disk_cache/cache_util.h"
33 // Provide a BackendImpl object to macros from histogram_macros.h.
34 #define CACHE_UMA_BACKEND_IMPL_OBJ this
36 using base::Time;
37 using base::TimeDelta;
38 using base::TimeTicks;
40 namespace {
42 const char* kIndexName = "index";
44 // Seems like ~240 MB correspond to less than 50k entries for 99% of the people.
45 // Note that the actual target is to keep the index table load factor under 55%
46 // for most users.
47 const int k64kEntriesStore = 240 * 1000 * 1000;
48 const int kBaseTableLen = 64 * 1024;
50 // Avoid trimming the cache for the first 5 minutes (10 timer ticks).
51 const int kTrimDelay = 10;
53 int DesiredIndexTableLen(int32 storage_size) {
54 if (storage_size <= k64kEntriesStore)
55 return kBaseTableLen;
56 if (storage_size <= k64kEntriesStore * 2)
57 return kBaseTableLen * 2;
58 if (storage_size <= k64kEntriesStore * 4)
59 return kBaseTableLen * 4;
60 if (storage_size <= k64kEntriesStore * 8)
61 return kBaseTableLen * 8;
63 // The biggest storage_size for int32 requires a 4 MB table.
64 return kBaseTableLen * 16;
67 int MaxStorageSizeForTable(int table_len) {
68 return table_len * (k64kEntriesStore / kBaseTableLen);
71 size_t GetIndexSize(int table_len) {
72 size_t table_size = sizeof(disk_cache::CacheAddr) * table_len;
73 return sizeof(disk_cache::IndexHeader) + table_size;
76 // ------------------------------------------------------------------------
78 // Sets group for the current experiment. Returns false if the files should be
79 // discarded.
80 bool InitExperiment(disk_cache::IndexHeader* header, bool cache_created) {
81 if (header->experiment == disk_cache::EXPERIMENT_OLD_FILE1 ||
82 header->experiment == disk_cache::EXPERIMENT_OLD_FILE2) {
83 // Discard current cache.
84 return false;
87 if (base::FieldTrialList::FindFullName("SimpleCacheTrial") ==
88 "ExperimentControl") {
89 if (cache_created) {
90 header->experiment = disk_cache::EXPERIMENT_SIMPLE_CONTROL;
91 return true;
93 return header->experiment == disk_cache::EXPERIMENT_SIMPLE_CONTROL;
96 header->experiment = disk_cache::NO_EXPERIMENT;
97 return true;
100 // A callback to perform final cleanup on the background thread.
101 void FinalCleanupCallback(disk_cache::BackendImpl* backend) {
102 backend->CleanupCache();
105 } // namespace
107 // ------------------------------------------------------------------------
109 namespace disk_cache {
111 BackendImpl::BackendImpl(const base::FilePath& path,
112 base::MessageLoopProxy* cache_thread,
113 net::NetLog* net_log)
114 : background_queue_(this, cache_thread),
115 path_(path),
116 block_files_(path),
117 mask_(0),
118 max_size_(0),
119 up_ticks_(0),
120 cache_type_(net::DISK_CACHE),
121 uma_report_(0),
122 user_flags_(0),
123 init_(false),
124 restarted_(false),
125 unit_test_(false),
126 read_only_(false),
127 disabled_(false),
128 new_eviction_(false),
129 first_timer_(true),
130 user_load_(false),
131 net_log_(net_log),
132 done_(true, false),
133 ptr_factory_(this) {
136 BackendImpl::BackendImpl(const base::FilePath& path,
137 uint32 mask,
138 base::MessageLoopProxy* cache_thread,
139 net::NetLog* net_log)
140 : background_queue_(this, cache_thread),
141 path_(path),
142 block_files_(path),
143 mask_(mask),
144 max_size_(0),
145 up_ticks_(0),
146 cache_type_(net::DISK_CACHE),
147 uma_report_(0),
148 user_flags_(kMask),
149 init_(false),
150 restarted_(false),
151 unit_test_(false),
152 read_only_(false),
153 disabled_(false),
154 new_eviction_(false),
155 first_timer_(true),
156 user_load_(false),
157 net_log_(net_log),
158 done_(true, false),
159 ptr_factory_(this) {
162 BackendImpl::~BackendImpl() {
163 if (user_flags_ & kNoRandom) {
164 // This is a unit test, so we want to be strict about not leaking entries
165 // and completing all the work.
166 background_queue_.WaitForPendingIO();
167 } else {
168 // This is most likely not a test, so we want to do as little work as
169 // possible at this time, at the price of leaving dirty entries behind.
170 background_queue_.DropPendingIO();
173 if (background_queue_.BackgroundIsCurrentThread()) {
174 // Unit tests may use the same thread for everything.
175 CleanupCache();
176 } else {
177 background_queue_.background_thread()->PostTask(
178 FROM_HERE, base::Bind(&FinalCleanupCallback, base::Unretained(this)));
179 // http://crbug.com/74623
180 base::ThreadRestrictions::ScopedAllowWait allow_wait;
181 done_.Wait();
185 int BackendImpl::Init(const CompletionCallback& callback) {
186 background_queue_.Init(callback);
187 return net::ERR_IO_PENDING;
190 int BackendImpl::SyncInit() {
191 #if defined(NET_BUILD_STRESS_CACHE)
192 // Start evictions right away.
193 up_ticks_ = kTrimDelay * 2;
194 #endif
195 DCHECK(!init_);
196 if (init_)
197 return net::ERR_FAILED;
199 bool create_files = false;
200 if (!InitBackingStore(&create_files)) {
201 ReportError(ERR_STORAGE_ERROR);
202 return net::ERR_FAILED;
205 num_refs_ = num_pending_io_ = max_refs_ = 0;
206 entry_count_ = byte_count_ = 0;
208 bool should_create_timer = false;
209 if (!restarted_) {
210 buffer_bytes_ = 0;
211 trace_object_ = TraceObject::GetTraceObject();
212 should_create_timer = true;
215 init_ = true;
216 Trace("Init");
218 if (data_->header.experiment != NO_EXPERIMENT &&
219 cache_type_ != net::DISK_CACHE) {
220 // No experiment for other caches.
221 return net::ERR_FAILED;
224 if (!(user_flags_ & kNoRandom)) {
225 // The unit test controls directly what to test.
226 new_eviction_ = (cache_type_ == net::DISK_CACHE);
229 if (!CheckIndex()) {
230 ReportError(ERR_INIT_FAILED);
231 return net::ERR_FAILED;
234 if (!restarted_ && (create_files || !data_->header.num_entries))
235 ReportError(ERR_CACHE_CREATED);
237 if (!(user_flags_ & kNoRandom) && cache_type_ == net::DISK_CACHE &&
238 !InitExperiment(&data_->header, create_files)) {
239 return net::ERR_FAILED;
242 // We don't care if the value overflows. The only thing we care about is that
243 // the id cannot be zero, because that value is used as "not dirty".
244 // Increasing the value once per second gives us many years before we start
245 // having collisions.
246 data_->header.this_id++;
247 if (!data_->header.this_id)
248 data_->header.this_id++;
250 bool previous_crash = (data_->header.crash != 0);
251 data_->header.crash = 1;
253 if (!block_files_.Init(create_files))
254 return net::ERR_FAILED;
256 // We want to minimize the changes to cache for an AppCache.
257 if (cache_type() == net::APP_CACHE) {
258 DCHECK(!new_eviction_);
259 read_only_ = true;
260 } else if (cache_type() == net::SHADER_CACHE) {
261 DCHECK(!new_eviction_);
264 eviction_.Init(this);
266 // stats_ and rankings_ may end up calling back to us so we better be enabled.
267 disabled_ = false;
268 if (!InitStats())
269 return net::ERR_FAILED;
271 disabled_ = !rankings_.Init(this, new_eviction_);
273 #if defined(STRESS_CACHE_EXTENDED_VALIDATION)
274 trace_object_->EnableTracing(false);
275 int sc = SelfCheck();
276 if (sc < 0 && sc != ERR_NUM_ENTRIES_MISMATCH)
277 NOTREACHED();
278 trace_object_->EnableTracing(true);
279 #endif
281 if (previous_crash) {
282 ReportError(ERR_PREVIOUS_CRASH);
283 } else if (!restarted_) {
284 ReportError(ERR_NO_ERROR);
287 FlushIndex();
289 if (!disabled_ && should_create_timer) {
290 // Create a recurrent timer of 30 secs.
291 int timer_delay = unit_test_ ? 1000 : 30000;
292 timer_.reset(new base::RepeatingTimer<BackendImpl>());
293 timer_->Start(FROM_HERE, TimeDelta::FromMilliseconds(timer_delay), this,
294 &BackendImpl::OnStatsTimer);
297 return disabled_ ? net::ERR_FAILED : net::OK;
300 void BackendImpl::CleanupCache() {
301 Trace("Backend Cleanup");
302 eviction_.Stop();
303 timer_.reset();
305 if (init_) {
306 StoreStats();
307 if (data_)
308 data_->header.crash = 0;
310 if (user_flags_ & kNoRandom) {
311 // This is a net_unittest, verify that we are not 'leaking' entries.
312 File::WaitForPendingIO(&num_pending_io_);
313 DCHECK(!num_refs_);
314 } else {
315 File::DropPendingIO();
318 block_files_.CloseFiles();
319 FlushIndex();
320 index_ = NULL;
321 ptr_factory_.InvalidateWeakPtrs();
322 done_.Signal();
325 // ------------------------------------------------------------------------
327 int BackendImpl::OpenPrevEntry(void** iter, Entry** prev_entry,
328 const CompletionCallback& callback) {
329 DCHECK(!callback.is_null());
330 background_queue_.OpenPrevEntry(iter, prev_entry, callback);
331 return net::ERR_IO_PENDING;
334 int BackendImpl::SyncOpenEntry(const std::string& key, Entry** entry) {
335 DCHECK(entry);
336 *entry = OpenEntryImpl(key);
337 return (*entry) ? net::OK : net::ERR_FAILED;
340 int BackendImpl::SyncCreateEntry(const std::string& key, Entry** entry) {
341 DCHECK(entry);
342 *entry = CreateEntryImpl(key);
343 return (*entry) ? net::OK : net::ERR_FAILED;
346 int BackendImpl::SyncDoomEntry(const std::string& key) {
347 if (disabled_)
348 return net::ERR_FAILED;
350 EntryImpl* entry = OpenEntryImpl(key);
351 if (!entry)
352 return net::ERR_FAILED;
354 entry->DoomImpl();
355 entry->Release();
356 return net::OK;
359 int BackendImpl::SyncDoomAllEntries() {
360 // This is not really an error, but it is an interesting condition.
361 ReportError(ERR_CACHE_DOOMED);
362 stats_.OnEvent(Stats::DOOM_CACHE);
363 if (!num_refs_) {
364 RestartCache(false);
365 return disabled_ ? net::ERR_FAILED : net::OK;
366 } else {
367 if (disabled_)
368 return net::ERR_FAILED;
370 eviction_.TrimCache(true);
371 return net::OK;
375 int BackendImpl::SyncDoomEntriesBetween(const base::Time initial_time,
376 const base::Time end_time) {
377 DCHECK_NE(net::APP_CACHE, cache_type_);
378 if (end_time.is_null())
379 return SyncDoomEntriesSince(initial_time);
381 DCHECK(end_time >= initial_time);
383 if (disabled_)
384 return net::ERR_FAILED;
386 EntryImpl* node;
387 void* iter = NULL;
388 EntryImpl* next = OpenNextEntryImpl(&iter);
389 if (!next)
390 return net::OK;
392 while (next) {
393 node = next;
394 next = OpenNextEntryImpl(&iter);
396 if (node->GetLastUsed() >= initial_time &&
397 node->GetLastUsed() < end_time) {
398 node->DoomImpl();
399 } else if (node->GetLastUsed() < initial_time) {
400 if (next)
401 next->Release();
402 next = NULL;
403 SyncEndEnumeration(iter);
406 node->Release();
409 return net::OK;
412 // We use OpenNextEntryImpl to retrieve elements from the cache, until we get
413 // entries that are too old.
414 int BackendImpl::SyncDoomEntriesSince(const base::Time initial_time) {
415 DCHECK_NE(net::APP_CACHE, cache_type_);
416 if (disabled_)
417 return net::ERR_FAILED;
419 stats_.OnEvent(Stats::DOOM_RECENT);
420 for (;;) {
421 void* iter = NULL;
422 EntryImpl* entry = OpenNextEntryImpl(&iter);
423 if (!entry)
424 return net::OK;
426 if (initial_time > entry->GetLastUsed()) {
427 entry->Release();
428 SyncEndEnumeration(iter);
429 return net::OK;
432 entry->DoomImpl();
433 entry->Release();
434 SyncEndEnumeration(iter); // Dooming the entry invalidates the iterator.
438 int BackendImpl::SyncOpenNextEntry(void** iter, Entry** next_entry) {
439 *next_entry = OpenNextEntryImpl(iter);
440 return (*next_entry) ? net::OK : net::ERR_FAILED;
443 int BackendImpl::SyncOpenPrevEntry(void** iter, Entry** prev_entry) {
444 *prev_entry = OpenPrevEntryImpl(iter);
445 return (*prev_entry) ? net::OK : net::ERR_FAILED;
448 void BackendImpl::SyncEndEnumeration(void* iter) {
449 scoped_ptr<Rankings::Iterator> iterator(
450 reinterpret_cast<Rankings::Iterator*>(iter));
453 void BackendImpl::SyncOnExternalCacheHit(const std::string& key) {
454 if (disabled_)
455 return;
457 uint32 hash = base::Hash(key);
458 bool error;
459 EntryImpl* cache_entry = MatchEntry(key, hash, false, Addr(), &error);
460 if (cache_entry) {
461 if (ENTRY_NORMAL == cache_entry->entry()->Data()->state) {
462 UpdateRank(cache_entry, cache_type() == net::SHADER_CACHE);
464 cache_entry->Release();
468 EntryImpl* BackendImpl::OpenEntryImpl(const std::string& key) {
469 if (disabled_)
470 return NULL;
472 TimeTicks start = TimeTicks::Now();
473 uint32 hash = base::Hash(key);
474 Trace("Open hash 0x%x", hash);
476 bool error;
477 EntryImpl* cache_entry = MatchEntry(key, hash, false, Addr(), &error);
478 if (cache_entry && ENTRY_NORMAL != cache_entry->entry()->Data()->state) {
479 // The entry was already evicted.
480 cache_entry->Release();
481 cache_entry = NULL;
484 int current_size = data_->header.num_bytes / (1024 * 1024);
485 int64 total_hours = stats_.GetCounter(Stats::TIMER) / 120;
486 int64 no_use_hours = stats_.GetCounter(Stats::LAST_REPORT_TIMER) / 120;
487 int64 use_hours = total_hours - no_use_hours;
489 if (!cache_entry) {
490 CACHE_UMA(AGE_MS, "OpenTime.Miss", 0, start);
491 CACHE_UMA(COUNTS_10000, "AllOpenBySize.Miss", 0, current_size);
492 CACHE_UMA(HOURS, "AllOpenByTotalHours.Miss", 0, total_hours);
493 CACHE_UMA(HOURS, "AllOpenByUseHours.Miss", 0, use_hours);
494 stats_.OnEvent(Stats::OPEN_MISS);
495 return NULL;
498 eviction_.OnOpenEntry(cache_entry);
499 entry_count_++;
501 Trace("Open hash 0x%x end: 0x%x", hash,
502 cache_entry->entry()->address().value());
503 CACHE_UMA(AGE_MS, "OpenTime", 0, start);
504 CACHE_UMA(COUNTS_10000, "AllOpenBySize.Hit", 0, current_size);
505 CACHE_UMA(HOURS, "AllOpenByTotalHours.Hit", 0, total_hours);
506 CACHE_UMA(HOURS, "AllOpenByUseHours.Hit", 0, use_hours);
507 stats_.OnEvent(Stats::OPEN_HIT);
508 SIMPLE_STATS_COUNTER("disk_cache.hit");
509 return cache_entry;
512 EntryImpl* BackendImpl::CreateEntryImpl(const std::string& key) {
513 if (disabled_ || key.empty())
514 return NULL;
516 TimeTicks start = TimeTicks::Now();
517 uint32 hash = base::Hash(key);
518 Trace("Create hash 0x%x", hash);
520 scoped_refptr<EntryImpl> parent;
521 Addr entry_address(data_->table[hash & mask_]);
522 if (entry_address.is_initialized()) {
523 // We have an entry already. It could be the one we are looking for, or just
524 // a hash conflict.
525 bool error;
526 EntryImpl* old_entry = MatchEntry(key, hash, false, Addr(), &error);
527 if (old_entry)
528 return ResurrectEntry(old_entry);
530 EntryImpl* parent_entry = MatchEntry(key, hash, true, Addr(), &error);
531 DCHECK(!error);
532 if (parent_entry) {
533 parent.swap(&parent_entry);
534 } else if (data_->table[hash & mask_]) {
535 // We should have corrected the problem.
536 NOTREACHED();
537 return NULL;
541 // The general flow is to allocate disk space and initialize the entry data,
542 // followed by saving that to disk, then linking the entry though the index
543 // and finally through the lists. If there is a crash in this process, we may
544 // end up with:
545 // a. Used, unreferenced empty blocks on disk (basically just garbage).
546 // b. Used, unreferenced but meaningful data on disk (more garbage).
547 // c. A fully formed entry, reachable only through the index.
548 // d. A fully formed entry, also reachable through the lists, but still dirty.
550 // Anything after (b) can be automatically cleaned up. We may consider saving
551 // the current operation (as we do while manipulating the lists) so that we
552 // can detect and cleanup (a) and (b).
554 int num_blocks = EntryImpl::NumBlocksForEntry(key.size());
555 if (!block_files_.CreateBlock(BLOCK_256, num_blocks, &entry_address)) {
556 LOG(ERROR) << "Create entry failed " << key.c_str();
557 stats_.OnEvent(Stats::CREATE_ERROR);
558 return NULL;
561 Addr node_address(0);
562 if (!block_files_.CreateBlock(RANKINGS, 1, &node_address)) {
563 block_files_.DeleteBlock(entry_address, false);
564 LOG(ERROR) << "Create entry failed " << key.c_str();
565 stats_.OnEvent(Stats::CREATE_ERROR);
566 return NULL;
569 scoped_refptr<EntryImpl> cache_entry(
570 new EntryImpl(this, entry_address, false));
571 IncreaseNumRefs();
573 if (!cache_entry->CreateEntry(node_address, key, hash)) {
574 block_files_.DeleteBlock(entry_address, false);
575 block_files_.DeleteBlock(node_address, false);
576 LOG(ERROR) << "Create entry failed " << key.c_str();
577 stats_.OnEvent(Stats::CREATE_ERROR);
578 return NULL;
581 cache_entry->BeginLogging(net_log_, true);
583 // We are not failing the operation; let's add this to the map.
584 open_entries_[entry_address.value()] = cache_entry.get();
586 // Save the entry.
587 cache_entry->entry()->Store();
588 cache_entry->rankings()->Store();
589 IncreaseNumEntries();
590 entry_count_++;
592 // Link this entry through the index.
593 if (parent.get()) {
594 parent->SetNextAddress(entry_address);
595 } else {
596 data_->table[hash & mask_] = entry_address.value();
599 // Link this entry through the lists.
600 eviction_.OnCreateEntry(cache_entry.get());
602 CACHE_UMA(AGE_MS, "CreateTime", 0, start);
603 stats_.OnEvent(Stats::CREATE_HIT);
604 SIMPLE_STATS_COUNTER("disk_cache.miss");
605 Trace("create entry hit ");
606 FlushIndex();
607 cache_entry->AddRef();
608 return cache_entry.get();
611 EntryImpl* BackendImpl::OpenNextEntryImpl(void** iter) {
612 return OpenFollowingEntry(true, iter);
615 EntryImpl* BackendImpl::OpenPrevEntryImpl(void** iter) {
616 return OpenFollowingEntry(false, iter);
619 bool BackendImpl::SetMaxSize(int max_bytes) {
620 COMPILE_ASSERT(sizeof(max_bytes) == sizeof(max_size_), unsupported_int_model);
621 if (max_bytes < 0)
622 return false;
624 // Zero size means use the default.
625 if (!max_bytes)
626 return true;
628 // Avoid a DCHECK later on.
629 if (max_bytes >= kint32max - kint32max / 10)
630 max_bytes = kint32max - kint32max / 10 - 1;
632 user_flags_ |= kMaxSize;
633 max_size_ = max_bytes;
634 return true;
637 void BackendImpl::SetType(net::CacheType type) {
638 DCHECK_NE(net::MEMORY_CACHE, type);
639 cache_type_ = type;
642 base::FilePath BackendImpl::GetFileName(Addr address) const {
643 if (!address.is_separate_file() || !address.is_initialized()) {
644 NOTREACHED();
645 return base::FilePath();
648 std::string tmp = base::StringPrintf("f_%06x", address.FileNumber());
649 return path_.AppendASCII(tmp);
652 MappedFile* BackendImpl::File(Addr address) {
653 if (disabled_)
654 return NULL;
655 return block_files_.GetFile(address);
658 base::WeakPtr<InFlightBackendIO> BackendImpl::GetBackgroundQueue() {
659 return background_queue_.GetWeakPtr();
662 bool BackendImpl::CreateExternalFile(Addr* address) {
663 int file_number = data_->header.last_file + 1;
664 Addr file_address(0);
665 bool success = false;
666 for (int i = 0; i < 0x0fffffff; i++, file_number++) {
667 if (!file_address.SetFileNumber(file_number)) {
668 file_number = 1;
669 continue;
671 base::FilePath name = GetFileName(file_address);
672 int flags = base::File::FLAG_READ | base::File::FLAG_WRITE |
673 base::File::FLAG_CREATE | base::File::FLAG_EXCLUSIVE_WRITE;
674 base::File file(name, flags);
675 if (!file.IsValid()) {
676 base::File::Error error = file.error_details();
677 if (error != base::File::FILE_ERROR_EXISTS) {
678 LOG(ERROR) << "Unable to create file: " << error;
679 return false;
681 continue;
684 success = true;
685 break;
688 DCHECK(success);
689 if (!success)
690 return false;
692 data_->header.last_file = file_number;
693 address->set_value(file_address.value());
694 return true;
697 bool BackendImpl::CreateBlock(FileType block_type, int block_count,
698 Addr* block_address) {
699 return block_files_.CreateBlock(block_type, block_count, block_address);
702 void BackendImpl::DeleteBlock(Addr block_address, bool deep) {
703 block_files_.DeleteBlock(block_address, deep);
706 LruData* BackendImpl::GetLruData() {
707 return &data_->header.lru;
710 void BackendImpl::UpdateRank(EntryImpl* entry, bool modified) {
711 if (read_only_ || (!modified && cache_type() == net::SHADER_CACHE))
712 return;
713 eviction_.UpdateRank(entry, modified);
716 void BackendImpl::RecoveredEntry(CacheRankingsBlock* rankings) {
717 Addr address(rankings->Data()->contents);
718 EntryImpl* cache_entry = NULL;
719 if (NewEntry(address, &cache_entry)) {
720 STRESS_NOTREACHED();
721 return;
724 uint32 hash = cache_entry->GetHash();
725 cache_entry->Release();
727 // Anything on the table means that this entry is there.
728 if (data_->table[hash & mask_])
729 return;
731 data_->table[hash & mask_] = address.value();
732 FlushIndex();
735 void BackendImpl::InternalDoomEntry(EntryImpl* entry) {
736 uint32 hash = entry->GetHash();
737 std::string key = entry->GetKey();
738 Addr entry_addr = entry->entry()->address();
739 bool error;
740 EntryImpl* parent_entry = MatchEntry(key, hash, true, entry_addr, &error);
741 CacheAddr child(entry->GetNextAddress());
743 Trace("Doom entry 0x%p", entry);
745 if (!entry->doomed()) {
746 // We may have doomed this entry from within MatchEntry.
747 eviction_.OnDoomEntry(entry);
748 entry->InternalDoom();
749 if (!new_eviction_) {
750 DecreaseNumEntries();
752 stats_.OnEvent(Stats::DOOM_ENTRY);
755 if (parent_entry) {
756 parent_entry->SetNextAddress(Addr(child));
757 parent_entry->Release();
758 } else if (!error) {
759 data_->table[hash & mask_] = child;
762 FlushIndex();
765 #if defined(NET_BUILD_STRESS_CACHE)
767 CacheAddr BackendImpl::GetNextAddr(Addr address) {
768 EntriesMap::iterator it = open_entries_.find(address.value());
769 if (it != open_entries_.end()) {
770 EntryImpl* this_entry = it->second;
771 return this_entry->GetNextAddress();
773 DCHECK(block_files_.IsValid(address));
774 DCHECK(!address.is_separate_file() && address.file_type() == BLOCK_256);
776 CacheEntryBlock entry(File(address), address);
777 CHECK(entry.Load());
778 return entry.Data()->next;
781 void BackendImpl::NotLinked(EntryImpl* entry) {
782 Addr entry_addr = entry->entry()->address();
783 uint32 i = entry->GetHash() & mask_;
784 Addr address(data_->table[i]);
785 if (!address.is_initialized())
786 return;
788 for (;;) {
789 DCHECK(entry_addr.value() != address.value());
790 address.set_value(GetNextAddr(address));
791 if (!address.is_initialized())
792 break;
795 #endif // NET_BUILD_STRESS_CACHE
797 // An entry may be linked on the DELETED list for a while after being doomed.
798 // This function is called when we want to remove it.
799 void BackendImpl::RemoveEntry(EntryImpl* entry) {
800 #if defined(NET_BUILD_STRESS_CACHE)
801 NotLinked(entry);
802 #endif
803 if (!new_eviction_)
804 return;
806 DCHECK_NE(ENTRY_NORMAL, entry->entry()->Data()->state);
808 Trace("Remove entry 0x%p", entry);
809 eviction_.OnDestroyEntry(entry);
810 DecreaseNumEntries();
813 void BackendImpl::OnEntryDestroyBegin(Addr address) {
814 EntriesMap::iterator it = open_entries_.find(address.value());
815 if (it != open_entries_.end())
816 open_entries_.erase(it);
819 void BackendImpl::OnEntryDestroyEnd() {
820 DecreaseNumRefs();
821 if (data_->header.num_bytes > max_size_ && !read_only_ &&
822 (up_ticks_ > kTrimDelay || user_flags_ & kNoRandom))
823 eviction_.TrimCache(false);
826 EntryImpl* BackendImpl::GetOpenEntry(CacheRankingsBlock* rankings) const {
827 DCHECK(rankings->HasData());
828 EntriesMap::const_iterator it =
829 open_entries_.find(rankings->Data()->contents);
830 if (it != open_entries_.end()) {
831 // We have this entry in memory.
832 return it->second;
835 return NULL;
838 int32 BackendImpl::GetCurrentEntryId() const {
839 return data_->header.this_id;
842 int BackendImpl::MaxFileSize() const {
843 return cache_type() == net::PNACL_CACHE ? max_size_ : max_size_ / 8;
846 void BackendImpl::ModifyStorageSize(int32 old_size, int32 new_size) {
847 if (disabled_ || old_size == new_size)
848 return;
849 if (old_size > new_size)
850 SubstractStorageSize(old_size - new_size);
851 else
852 AddStorageSize(new_size - old_size);
854 FlushIndex();
856 // Update the usage statistics.
857 stats_.ModifyStorageStats(old_size, new_size);
860 void BackendImpl::TooMuchStorageRequested(int32 size) {
861 stats_.ModifyStorageStats(0, size);
864 bool BackendImpl::IsAllocAllowed(int current_size, int new_size) {
865 DCHECK_GT(new_size, current_size);
866 if (user_flags_ & kNoBuffering)
867 return false;
869 int to_add = new_size - current_size;
870 if (buffer_bytes_ + to_add > MaxBuffersSize())
871 return false;
873 buffer_bytes_ += to_add;
874 CACHE_UMA(COUNTS_50000, "BufferBytes", 0, buffer_bytes_ / 1024);
875 return true;
878 void BackendImpl::BufferDeleted(int size) {
879 buffer_bytes_ -= size;
880 DCHECK_GE(size, 0);
883 bool BackendImpl::IsLoaded() const {
884 CACHE_UMA(COUNTS, "PendingIO", 0, num_pending_io_);
885 if (user_flags_ & kNoLoadProtection)
886 return false;
888 return (num_pending_io_ > 5 || user_load_);
891 std::string BackendImpl::HistogramName(const char* name, int experiment) const {
892 if (!experiment)
893 return base::StringPrintf("DiskCache.%d.%s", cache_type_, name);
894 return base::StringPrintf("DiskCache.%d.%s_%d", cache_type_,
895 name, experiment);
898 base::WeakPtr<BackendImpl> BackendImpl::GetWeakPtr() {
899 return ptr_factory_.GetWeakPtr();
902 // We want to remove biases from some histograms so we only send data once per
903 // week.
904 bool BackendImpl::ShouldReportAgain() {
905 if (uma_report_)
906 return uma_report_ == 2;
908 uma_report_++;
909 int64 last_report = stats_.GetCounter(Stats::LAST_REPORT);
910 Time last_time = Time::FromInternalValue(last_report);
911 if (!last_report || (Time::Now() - last_time).InDays() >= 7) {
912 stats_.SetCounter(Stats::LAST_REPORT, Time::Now().ToInternalValue());
913 uma_report_++;
914 return true;
916 return false;
919 void BackendImpl::FirstEviction() {
920 DCHECK(data_->header.create_time);
921 if (!GetEntryCount())
922 return; // This is just for unit tests.
924 Time create_time = Time::FromInternalValue(data_->header.create_time);
925 CACHE_UMA(AGE, "FillupAge", 0, create_time);
927 int64 use_time = stats_.GetCounter(Stats::TIMER);
928 CACHE_UMA(HOURS, "FillupTime", 0, static_cast<int>(use_time / 120));
929 CACHE_UMA(PERCENTAGE, "FirstHitRatio", 0, stats_.GetHitRatio());
931 if (!use_time)
932 use_time = 1;
933 CACHE_UMA(COUNTS_10000, "FirstEntryAccessRate", 0,
934 static_cast<int>(data_->header.num_entries / use_time));
935 CACHE_UMA(COUNTS, "FirstByteIORate", 0,
936 static_cast<int>((data_->header.num_bytes / 1024) / use_time));
938 int avg_size = data_->header.num_bytes / GetEntryCount();
939 CACHE_UMA(COUNTS, "FirstEntrySize", 0, avg_size);
941 int large_entries_bytes = stats_.GetLargeEntriesSize();
942 int large_ratio = large_entries_bytes * 100 / data_->header.num_bytes;
943 CACHE_UMA(PERCENTAGE, "FirstLargeEntriesRatio", 0, large_ratio);
945 if (new_eviction_) {
946 CACHE_UMA(PERCENTAGE, "FirstResurrectRatio", 0, stats_.GetResurrectRatio());
947 CACHE_UMA(PERCENTAGE, "FirstNoUseRatio", 0,
948 data_->header.lru.sizes[0] * 100 / data_->header.num_entries);
949 CACHE_UMA(PERCENTAGE, "FirstLowUseRatio", 0,
950 data_->header.lru.sizes[1] * 100 / data_->header.num_entries);
951 CACHE_UMA(PERCENTAGE, "FirstHighUseRatio", 0,
952 data_->header.lru.sizes[2] * 100 / data_->header.num_entries);
955 stats_.ResetRatios();
958 void BackendImpl::CriticalError(int error) {
959 STRESS_NOTREACHED();
960 LOG(ERROR) << "Critical error found " << error;
961 if (disabled_)
962 return;
964 stats_.OnEvent(Stats::FATAL_ERROR);
965 LogStats();
966 ReportError(error);
968 // Setting the index table length to an invalid value will force re-creation
969 // of the cache files.
970 data_->header.table_len = 1;
971 disabled_ = true;
973 if (!num_refs_)
974 base::MessageLoop::current()->PostTask(
975 FROM_HERE, base::Bind(&BackendImpl::RestartCache, GetWeakPtr(), true));
978 void BackendImpl::ReportError(int error) {
979 STRESS_DCHECK(!error || error == ERR_PREVIOUS_CRASH ||
980 error == ERR_CACHE_CREATED);
982 // We transmit positive numbers, instead of direct error codes.
983 DCHECK_LE(error, 0);
984 CACHE_UMA(CACHE_ERROR, "Error", 0, error * -1);
987 void BackendImpl::OnEvent(Stats::Counters an_event) {
988 stats_.OnEvent(an_event);
991 void BackendImpl::OnRead(int32 bytes) {
992 DCHECK_GE(bytes, 0);
993 byte_count_ += bytes;
994 if (byte_count_ < 0)
995 byte_count_ = kint32max;
998 void BackendImpl::OnWrite(int32 bytes) {
999 // We use the same implementation as OnRead... just log the number of bytes.
1000 OnRead(bytes);
1003 void BackendImpl::OnStatsTimer() {
1004 if (disabled_)
1005 return;
1007 stats_.OnEvent(Stats::TIMER);
1008 int64 time = stats_.GetCounter(Stats::TIMER);
1009 int64 current = stats_.GetCounter(Stats::OPEN_ENTRIES);
1011 // OPEN_ENTRIES is a sampled average of the number of open entries, avoiding
1012 // the bias towards 0.
1013 if (num_refs_ && (current != num_refs_)) {
1014 int64 diff = (num_refs_ - current) / 50;
1015 if (!diff)
1016 diff = num_refs_ > current ? 1 : -1;
1017 current = current + diff;
1018 stats_.SetCounter(Stats::OPEN_ENTRIES, current);
1019 stats_.SetCounter(Stats::MAX_ENTRIES, max_refs_);
1022 CACHE_UMA(COUNTS, "NumberOfReferences", 0, num_refs_);
1024 CACHE_UMA(COUNTS_10000, "EntryAccessRate", 0, entry_count_);
1025 CACHE_UMA(COUNTS, "ByteIORate", 0, byte_count_ / 1024);
1027 // These values cover about 99.5% of the population (Oct 2011).
1028 user_load_ = (entry_count_ > 300 || byte_count_ > 7 * 1024 * 1024);
1029 entry_count_ = 0;
1030 byte_count_ = 0;
1031 up_ticks_++;
1033 if (!data_)
1034 first_timer_ = false;
1035 if (first_timer_) {
1036 first_timer_ = false;
1037 if (ShouldReportAgain())
1038 ReportStats();
1041 // Save stats to disk at 5 min intervals.
1042 if (time % 10 == 0)
1043 StoreStats();
1046 void BackendImpl::IncrementIoCount() {
1047 num_pending_io_++;
1050 void BackendImpl::DecrementIoCount() {
1051 num_pending_io_--;
1054 void BackendImpl::SetUnitTestMode() {
1055 user_flags_ |= kUnitTestMode;
1056 unit_test_ = true;
1059 void BackendImpl::SetUpgradeMode() {
1060 user_flags_ |= kUpgradeMode;
1061 read_only_ = true;
1064 void BackendImpl::SetNewEviction() {
1065 user_flags_ |= kNewEviction;
1066 new_eviction_ = true;
1069 void BackendImpl::SetFlags(uint32 flags) {
1070 user_flags_ |= flags;
1073 void BackendImpl::ClearRefCountForTest() {
1074 num_refs_ = 0;
1077 int BackendImpl::FlushQueueForTest(const CompletionCallback& callback) {
1078 background_queue_.FlushQueue(callback);
1079 return net::ERR_IO_PENDING;
1082 int BackendImpl::RunTaskForTest(const base::Closure& task,
1083 const CompletionCallback& callback) {
1084 background_queue_.RunTask(task, callback);
1085 return net::ERR_IO_PENDING;
1088 void BackendImpl::TrimForTest(bool empty) {
1089 eviction_.SetTestMode();
1090 eviction_.TrimCache(empty);
1093 void BackendImpl::TrimDeletedListForTest(bool empty) {
1094 eviction_.SetTestMode();
1095 eviction_.TrimDeletedList(empty);
1098 base::RepeatingTimer<BackendImpl>* BackendImpl::GetTimerForTest() {
1099 return timer_.get();
1102 int BackendImpl::SelfCheck() {
1103 if (!init_) {
1104 LOG(ERROR) << "Init failed";
1105 return ERR_INIT_FAILED;
1108 int num_entries = rankings_.SelfCheck();
1109 if (num_entries < 0) {
1110 LOG(ERROR) << "Invalid rankings list, error " << num_entries;
1111 #if !defined(NET_BUILD_STRESS_CACHE)
1112 return num_entries;
1113 #endif
1116 if (num_entries != data_->header.num_entries) {
1117 LOG(ERROR) << "Number of entries mismatch";
1118 #if !defined(NET_BUILD_STRESS_CACHE)
1119 return ERR_NUM_ENTRIES_MISMATCH;
1120 #endif
1123 return CheckAllEntries();
1126 void BackendImpl::FlushIndex() {
1127 if (index_.get() && !disabled_)
1128 index_->Flush();
1131 // ------------------------------------------------------------------------
1133 net::CacheType BackendImpl::GetCacheType() const {
1134 return cache_type_;
1137 int32 BackendImpl::GetEntryCount() const {
1138 if (!index_.get() || disabled_)
1139 return 0;
1140 // num_entries includes entries already evicted.
1141 int32 not_deleted = data_->header.num_entries -
1142 data_->header.lru.sizes[Rankings::DELETED];
1144 if (not_deleted < 0) {
1145 NOTREACHED();
1146 not_deleted = 0;
1149 return not_deleted;
1152 int BackendImpl::OpenEntry(const std::string& key, Entry** entry,
1153 const CompletionCallback& callback) {
1154 DCHECK(!callback.is_null());
1155 background_queue_.OpenEntry(key, entry, callback);
1156 return net::ERR_IO_PENDING;
1159 int BackendImpl::CreateEntry(const std::string& key, Entry** entry,
1160 const CompletionCallback& callback) {
1161 DCHECK(!callback.is_null());
1162 background_queue_.CreateEntry(key, entry, callback);
1163 return net::ERR_IO_PENDING;
1166 int BackendImpl::DoomEntry(const std::string& key,
1167 const CompletionCallback& callback) {
1168 DCHECK(!callback.is_null());
1169 background_queue_.DoomEntry(key, callback);
1170 return net::ERR_IO_PENDING;
1173 int BackendImpl::DoomAllEntries(const CompletionCallback& callback) {
1174 DCHECK(!callback.is_null());
1175 background_queue_.DoomAllEntries(callback);
1176 return net::ERR_IO_PENDING;
1179 int BackendImpl::DoomEntriesBetween(const base::Time initial_time,
1180 const base::Time end_time,
1181 const CompletionCallback& callback) {
1182 DCHECK(!callback.is_null());
1183 background_queue_.DoomEntriesBetween(initial_time, end_time, callback);
1184 return net::ERR_IO_PENDING;
1187 int BackendImpl::DoomEntriesSince(const base::Time initial_time,
1188 const CompletionCallback& callback) {
1189 DCHECK(!callback.is_null());
1190 background_queue_.DoomEntriesSince(initial_time, callback);
1191 return net::ERR_IO_PENDING;
1194 int BackendImpl::OpenNextEntry(void** iter, Entry** next_entry,
1195 const CompletionCallback& callback) {
1196 DCHECK(!callback.is_null());
1197 background_queue_.OpenNextEntry(iter, next_entry, callback);
1198 return net::ERR_IO_PENDING;
1201 void BackendImpl::EndEnumeration(void** iter) {
1202 background_queue_.EndEnumeration(*iter);
1203 *iter = NULL;
1206 void BackendImpl::GetStats(StatsItems* stats) {
1207 if (disabled_)
1208 return;
1210 std::pair<std::string, std::string> item;
1212 item.first = "Entries";
1213 item.second = base::StringPrintf("%d", data_->header.num_entries);
1214 stats->push_back(item);
1216 item.first = "Pending IO";
1217 item.second = base::StringPrintf("%d", num_pending_io_);
1218 stats->push_back(item);
1220 item.first = "Max size";
1221 item.second = base::StringPrintf("%d", max_size_);
1222 stats->push_back(item);
1224 item.first = "Current size";
1225 item.second = base::StringPrintf("%d", data_->header.num_bytes);
1226 stats->push_back(item);
1228 item.first = "Cache type";
1229 item.second = "Blockfile Cache";
1230 stats->push_back(item);
1232 stats_.GetItems(stats);
1235 void BackendImpl::OnExternalCacheHit(const std::string& key) {
1236 background_queue_.OnExternalCacheHit(key);
1239 // ------------------------------------------------------------------------
1241 // We just created a new file so we're going to write the header and set the
1242 // file length to include the hash table (zero filled).
1243 bool BackendImpl::CreateBackingStore(disk_cache::File* file) {
1244 AdjustMaxCacheSize(0);
1246 IndexHeader header;
1247 header.table_len = DesiredIndexTableLen(max_size_);
1249 // We need file version 2.1 for the new eviction algorithm.
1250 if (new_eviction_)
1251 header.version = 0x20001;
1253 header.create_time = Time::Now().ToInternalValue();
1255 if (!file->Write(&header, sizeof(header), 0))
1256 return false;
1258 return file->SetLength(GetIndexSize(header.table_len));
1261 bool BackendImpl::InitBackingStore(bool* file_created) {
1262 if (!base::CreateDirectory(path_))
1263 return false;
1265 base::FilePath index_name = path_.AppendASCII(kIndexName);
1267 int flags = base::File::FLAG_READ | base::File::FLAG_WRITE |
1268 base::File::FLAG_OPEN_ALWAYS | base::File::FLAG_EXCLUSIVE_WRITE;
1269 base::File base_file(index_name, flags);
1270 if (!base_file.IsValid())
1271 return false;
1273 bool ret = true;
1274 *file_created = base_file.created();
1276 scoped_refptr<disk_cache::File> file(new disk_cache::File(base_file.Pass()));
1277 if (*file_created)
1278 ret = CreateBackingStore(file.get());
1280 file = NULL;
1281 if (!ret)
1282 return false;
1284 index_ = new MappedFile();
1285 data_ = static_cast<Index*>(index_->Init(index_name, 0));
1286 if (!data_) {
1287 LOG(ERROR) << "Unable to map Index file";
1288 return false;
1291 if (index_->GetLength() < sizeof(Index)) {
1292 // We verify this again on CheckIndex() but it's easier to make sure now
1293 // that the header is there.
1294 LOG(ERROR) << "Corrupt Index file";
1295 return false;
1298 return true;
1301 // The maximum cache size will be either set explicitly by the caller, or
1302 // calculated by this code.
1303 void BackendImpl::AdjustMaxCacheSize(int table_len) {
1304 if (max_size_)
1305 return;
1307 // If table_len is provided, the index file exists.
1308 DCHECK(!table_len || data_->header.magic);
1310 // The user is not setting the size, let's figure it out.
1311 int64 available = base::SysInfo::AmountOfFreeDiskSpace(path_);
1312 if (available < 0) {
1313 max_size_ = kDefaultCacheSize;
1314 return;
1317 if (table_len)
1318 available += data_->header.num_bytes;
1320 max_size_ = PreferredCacheSize(available);
1322 if (!table_len)
1323 return;
1325 // If we already have a table, adjust the size to it.
1326 int current_max_size = MaxStorageSizeForTable(table_len);
1327 if (max_size_ > current_max_size)
1328 max_size_= current_max_size;
1331 bool BackendImpl::InitStats() {
1332 Addr address(data_->header.stats);
1333 int size = stats_.StorageSize();
1335 if (!address.is_initialized()) {
1336 FileType file_type = Addr::RequiredFileType(size);
1337 DCHECK_NE(file_type, EXTERNAL);
1338 int num_blocks = Addr::RequiredBlocks(size, file_type);
1340 if (!CreateBlock(file_type, num_blocks, &address))
1341 return false;
1343 data_->header.stats = address.value();
1344 return stats_.Init(NULL, 0, address);
1347 if (!address.is_block_file()) {
1348 NOTREACHED();
1349 return false;
1352 // Load the required data.
1353 size = address.num_blocks() * address.BlockSize();
1354 MappedFile* file = File(address);
1355 if (!file)
1356 return false;
1358 scoped_ptr<char[]> data(new char[size]);
1359 size_t offset = address.start_block() * address.BlockSize() +
1360 kBlockHeaderSize;
1361 if (!file->Read(data.get(), size, offset))
1362 return false;
1364 if (!stats_.Init(data.get(), size, address))
1365 return false;
1366 if (cache_type_ == net::DISK_CACHE && ShouldReportAgain())
1367 stats_.InitSizeHistogram();
1368 return true;
1371 void BackendImpl::StoreStats() {
1372 int size = stats_.StorageSize();
1373 scoped_ptr<char[]> data(new char[size]);
1374 Addr address;
1375 size = stats_.SerializeStats(data.get(), size, &address);
1376 DCHECK(size);
1377 if (!address.is_initialized())
1378 return;
1380 MappedFile* file = File(address);
1381 if (!file)
1382 return;
1384 size_t offset = address.start_block() * address.BlockSize() +
1385 kBlockHeaderSize;
1386 file->Write(data.get(), size, offset); // ignore result.
1389 void BackendImpl::RestartCache(bool failure) {
1390 int64 errors = stats_.GetCounter(Stats::FATAL_ERROR);
1391 int64 full_dooms = stats_.GetCounter(Stats::DOOM_CACHE);
1392 int64 partial_dooms = stats_.GetCounter(Stats::DOOM_RECENT);
1393 int64 last_report = stats_.GetCounter(Stats::LAST_REPORT);
1395 PrepareForRestart();
1396 if (failure) {
1397 DCHECK(!num_refs_);
1398 DCHECK(!open_entries_.size());
1399 DelayedCacheCleanup(path_);
1400 } else {
1401 DeleteCache(path_, false);
1404 // Don't call Init() if directed by the unit test: we are simulating a failure
1405 // trying to re-enable the cache.
1406 if (unit_test_)
1407 init_ = true; // Let the destructor do proper cleanup.
1408 else if (SyncInit() == net::OK) {
1409 stats_.SetCounter(Stats::FATAL_ERROR, errors);
1410 stats_.SetCounter(Stats::DOOM_CACHE, full_dooms);
1411 stats_.SetCounter(Stats::DOOM_RECENT, partial_dooms);
1412 stats_.SetCounter(Stats::LAST_REPORT, last_report);
1416 void BackendImpl::PrepareForRestart() {
1417 // Reset the mask_ if it was not given by the user.
1418 if (!(user_flags_ & kMask))
1419 mask_ = 0;
1421 if (!(user_flags_ & kNewEviction))
1422 new_eviction_ = false;
1424 disabled_ = true;
1425 data_->header.crash = 0;
1426 index_->Flush();
1427 index_ = NULL;
1428 data_ = NULL;
1429 block_files_.CloseFiles();
1430 rankings_.Reset();
1431 init_ = false;
1432 restarted_ = true;
1435 int BackendImpl::NewEntry(Addr address, EntryImpl** entry) {
1436 EntriesMap::iterator it = open_entries_.find(address.value());
1437 if (it != open_entries_.end()) {
1438 // Easy job. This entry is already in memory.
1439 EntryImpl* this_entry = it->second;
1440 this_entry->AddRef();
1441 *entry = this_entry;
1442 return 0;
1445 STRESS_DCHECK(block_files_.IsValid(address));
1447 if (!address.SanityCheckForEntryV2()) {
1448 LOG(WARNING) << "Wrong entry address.";
1449 STRESS_NOTREACHED();
1450 return ERR_INVALID_ADDRESS;
1453 scoped_refptr<EntryImpl> cache_entry(
1454 new EntryImpl(this, address, read_only_));
1455 IncreaseNumRefs();
1456 *entry = NULL;
1458 TimeTicks start = TimeTicks::Now();
1459 if (!cache_entry->entry()->Load())
1460 return ERR_READ_FAILURE;
1462 if (IsLoaded()) {
1463 CACHE_UMA(AGE_MS, "LoadTime", 0, start);
1466 if (!cache_entry->SanityCheck()) {
1467 LOG(WARNING) << "Messed up entry found.";
1468 STRESS_NOTREACHED();
1469 return ERR_INVALID_ENTRY;
1472 STRESS_DCHECK(block_files_.IsValid(
1473 Addr(cache_entry->entry()->Data()->rankings_node)));
1475 if (!cache_entry->LoadNodeAddress())
1476 return ERR_READ_FAILURE;
1478 if (!rankings_.SanityCheck(cache_entry->rankings(), false)) {
1479 STRESS_NOTREACHED();
1480 cache_entry->SetDirtyFlag(0);
1481 // Don't remove this from the list (it is not linked properly). Instead,
1482 // break the link back to the entry because it is going away, and leave the
1483 // rankings node to be deleted if we find it through a list.
1484 rankings_.SetContents(cache_entry->rankings(), 0);
1485 } else if (!rankings_.DataSanityCheck(cache_entry->rankings(), false)) {
1486 STRESS_NOTREACHED();
1487 cache_entry->SetDirtyFlag(0);
1488 rankings_.SetContents(cache_entry->rankings(), address.value());
1491 if (!cache_entry->DataSanityCheck()) {
1492 LOG(WARNING) << "Messed up entry found.";
1493 cache_entry->SetDirtyFlag(0);
1494 cache_entry->FixForDelete();
1497 // Prevent overwriting the dirty flag on the destructor.
1498 cache_entry->SetDirtyFlag(GetCurrentEntryId());
1500 if (cache_entry->dirty()) {
1501 Trace("Dirty entry 0x%p 0x%x", reinterpret_cast<void*>(cache_entry.get()),
1502 address.value());
1505 open_entries_[address.value()] = cache_entry.get();
1507 cache_entry->BeginLogging(net_log_, false);
1508 cache_entry.swap(entry);
1509 return 0;
1512 EntryImpl* BackendImpl::MatchEntry(const std::string& key, uint32 hash,
1513 bool find_parent, Addr entry_addr,
1514 bool* match_error) {
1515 Addr address(data_->table[hash & mask_]);
1516 scoped_refptr<EntryImpl> cache_entry, parent_entry;
1517 EntryImpl* tmp = NULL;
1518 bool found = false;
1519 std::set<CacheAddr> visited;
1520 *match_error = false;
1522 for (;;) {
1523 if (disabled_)
1524 break;
1526 if (visited.find(address.value()) != visited.end()) {
1527 // It's possible for a buggy version of the code to write a loop. Just
1528 // break it.
1529 Trace("Hash collision loop 0x%x", address.value());
1530 address.set_value(0);
1531 parent_entry->SetNextAddress(address);
1533 visited.insert(address.value());
1535 if (!address.is_initialized()) {
1536 if (find_parent)
1537 found = true;
1538 break;
1541 int error = NewEntry(address, &tmp);
1542 cache_entry.swap(&tmp);
1544 if (error || cache_entry->dirty()) {
1545 // This entry is dirty on disk (it was not properly closed): we cannot
1546 // trust it.
1547 Addr child(0);
1548 if (!error)
1549 child.set_value(cache_entry->GetNextAddress());
1551 if (parent_entry.get()) {
1552 parent_entry->SetNextAddress(child);
1553 parent_entry = NULL;
1554 } else {
1555 data_->table[hash & mask_] = child.value();
1558 Trace("MatchEntry dirty %d 0x%x 0x%x", find_parent, entry_addr.value(),
1559 address.value());
1561 if (!error) {
1562 // It is important to call DestroyInvalidEntry after removing this
1563 // entry from the table.
1564 DestroyInvalidEntry(cache_entry.get());
1565 cache_entry = NULL;
1566 } else {
1567 Trace("NewEntry failed on MatchEntry 0x%x", address.value());
1570 // Restart the search.
1571 address.set_value(data_->table[hash & mask_]);
1572 visited.clear();
1573 continue;
1576 DCHECK_EQ(hash & mask_, cache_entry->entry()->Data()->hash & mask_);
1577 if (cache_entry->IsSameEntry(key, hash)) {
1578 if (!cache_entry->Update())
1579 cache_entry = NULL;
1580 found = true;
1581 if (find_parent && entry_addr.value() != address.value()) {
1582 Trace("Entry not on the index 0x%x", address.value());
1583 *match_error = true;
1584 parent_entry = NULL;
1586 break;
1588 if (!cache_entry->Update())
1589 cache_entry = NULL;
1590 parent_entry = cache_entry;
1591 cache_entry = NULL;
1592 if (!parent_entry.get())
1593 break;
1595 address.set_value(parent_entry->GetNextAddress());
1598 if (parent_entry.get() && (!find_parent || !found))
1599 parent_entry = NULL;
1601 if (find_parent && entry_addr.is_initialized() && !cache_entry.get()) {
1602 *match_error = true;
1603 parent_entry = NULL;
1606 if (cache_entry.get() && (find_parent || !found))
1607 cache_entry = NULL;
1609 find_parent ? parent_entry.swap(&tmp) : cache_entry.swap(&tmp);
1610 FlushIndex();
1611 return tmp;
1614 // This is the actual implementation for OpenNextEntry and OpenPrevEntry.
1615 EntryImpl* BackendImpl::OpenFollowingEntry(bool forward, void** iter) {
1616 if (disabled_)
1617 return NULL;
1619 DCHECK(iter);
1621 const int kListsToSearch = 3;
1622 scoped_refptr<EntryImpl> entries[kListsToSearch];
1623 scoped_ptr<Rankings::Iterator> iterator(
1624 reinterpret_cast<Rankings::Iterator*>(*iter));
1625 *iter = NULL;
1627 if (!iterator.get()) {
1628 iterator.reset(new Rankings::Iterator(&rankings_));
1629 bool ret = false;
1631 // Get an entry from each list.
1632 for (int i = 0; i < kListsToSearch; i++) {
1633 EntryImpl* temp = NULL;
1634 ret |= OpenFollowingEntryFromList(forward, static_cast<Rankings::List>(i),
1635 &iterator->nodes[i], &temp);
1636 entries[i].swap(&temp); // The entry was already addref'd.
1638 if (!ret)
1639 return NULL;
1640 } else {
1641 // Get the next entry from the last list, and the actual entries for the
1642 // elements on the other lists.
1643 for (int i = 0; i < kListsToSearch; i++) {
1644 EntryImpl* temp = NULL;
1645 if (iterator->list == i) {
1646 OpenFollowingEntryFromList(forward, iterator->list,
1647 &iterator->nodes[i], &temp);
1648 } else {
1649 temp = GetEnumeratedEntry(iterator->nodes[i],
1650 static_cast<Rankings::List>(i));
1653 entries[i].swap(&temp); // The entry was already addref'd.
1657 int newest = -1;
1658 int oldest = -1;
1659 Time access_times[kListsToSearch];
1660 for (int i = 0; i < kListsToSearch; i++) {
1661 if (entries[i].get()) {
1662 access_times[i] = entries[i]->GetLastUsed();
1663 if (newest < 0) {
1664 DCHECK_LT(oldest, 0);
1665 newest = oldest = i;
1666 continue;
1668 if (access_times[i] > access_times[newest])
1669 newest = i;
1670 if (access_times[i] < access_times[oldest])
1671 oldest = i;
1675 if (newest < 0 || oldest < 0)
1676 return NULL;
1678 EntryImpl* next_entry;
1679 if (forward) {
1680 next_entry = entries[newest].get();
1681 iterator->list = static_cast<Rankings::List>(newest);
1682 } else {
1683 next_entry = entries[oldest].get();
1684 iterator->list = static_cast<Rankings::List>(oldest);
1687 *iter = iterator.release();
1688 next_entry->AddRef();
1689 return next_entry;
1692 bool BackendImpl::OpenFollowingEntryFromList(bool forward, Rankings::List list,
1693 CacheRankingsBlock** from_entry,
1694 EntryImpl** next_entry) {
1695 if (disabled_)
1696 return false;
1698 if (!new_eviction_ && Rankings::NO_USE != list)
1699 return false;
1701 Rankings::ScopedRankingsBlock rankings(&rankings_, *from_entry);
1702 CacheRankingsBlock* next_block = forward ?
1703 rankings_.GetNext(rankings.get(), list) :
1704 rankings_.GetPrev(rankings.get(), list);
1705 Rankings::ScopedRankingsBlock next(&rankings_, next_block);
1706 *from_entry = NULL;
1708 *next_entry = GetEnumeratedEntry(next.get(), list);
1709 if (!*next_entry)
1710 return false;
1712 *from_entry = next.release();
1713 return true;
1716 EntryImpl* BackendImpl::GetEnumeratedEntry(CacheRankingsBlock* next,
1717 Rankings::List list) {
1718 if (!next || disabled_)
1719 return NULL;
1721 EntryImpl* entry;
1722 int rv = NewEntry(Addr(next->Data()->contents), &entry);
1723 if (rv) {
1724 STRESS_NOTREACHED();
1725 rankings_.Remove(next, list, false);
1726 if (rv == ERR_INVALID_ADDRESS) {
1727 // There is nothing linked from the index. Delete the rankings node.
1728 DeleteBlock(next->address(), true);
1730 return NULL;
1733 if (entry->dirty()) {
1734 // We cannot trust this entry.
1735 InternalDoomEntry(entry);
1736 entry->Release();
1737 return NULL;
1740 if (!entry->Update()) {
1741 STRESS_NOTREACHED();
1742 entry->Release();
1743 return NULL;
1746 // Note that it is unfortunate (but possible) for this entry to be clean, but
1747 // not actually the real entry. In other words, we could have lost this entry
1748 // from the index, and it could have been replaced with a newer one. It's not
1749 // worth checking that this entry is "the real one", so we just return it and
1750 // let the enumeration continue; this entry will be evicted at some point, and
1751 // the regular path will work with the real entry. With time, this problem
1752 // will disasappear because this scenario is just a bug.
1754 // Make sure that we save the key for later.
1755 entry->GetKey();
1757 return entry;
1760 EntryImpl* BackendImpl::ResurrectEntry(EntryImpl* deleted_entry) {
1761 if (ENTRY_NORMAL == deleted_entry->entry()->Data()->state) {
1762 deleted_entry->Release();
1763 stats_.OnEvent(Stats::CREATE_MISS);
1764 Trace("create entry miss ");
1765 return NULL;
1768 // We are attempting to create an entry and found out that the entry was
1769 // previously deleted.
1771 eviction_.OnCreateEntry(deleted_entry);
1772 entry_count_++;
1774 stats_.OnEvent(Stats::RESURRECT_HIT);
1775 Trace("Resurrect entry hit ");
1776 return deleted_entry;
1779 void BackendImpl::DestroyInvalidEntry(EntryImpl* entry) {
1780 LOG(WARNING) << "Destroying invalid entry.";
1781 Trace("Destroying invalid entry 0x%p", entry);
1783 entry->SetPointerForInvalidEntry(GetCurrentEntryId());
1785 eviction_.OnDoomEntry(entry);
1786 entry->InternalDoom();
1788 if (!new_eviction_)
1789 DecreaseNumEntries();
1790 stats_.OnEvent(Stats::INVALID_ENTRY);
1793 void BackendImpl::AddStorageSize(int32 bytes) {
1794 data_->header.num_bytes += bytes;
1795 DCHECK_GE(data_->header.num_bytes, 0);
1798 void BackendImpl::SubstractStorageSize(int32 bytes) {
1799 data_->header.num_bytes -= bytes;
1800 DCHECK_GE(data_->header.num_bytes, 0);
1803 void BackendImpl::IncreaseNumRefs() {
1804 num_refs_++;
1805 if (max_refs_ < num_refs_)
1806 max_refs_ = num_refs_;
1809 void BackendImpl::DecreaseNumRefs() {
1810 DCHECK(num_refs_);
1811 num_refs_--;
1813 if (!num_refs_ && disabled_)
1814 base::MessageLoop::current()->PostTask(
1815 FROM_HERE, base::Bind(&BackendImpl::RestartCache, GetWeakPtr(), true));
1818 void BackendImpl::IncreaseNumEntries() {
1819 data_->header.num_entries++;
1820 DCHECK_GT(data_->header.num_entries, 0);
1823 void BackendImpl::DecreaseNumEntries() {
1824 data_->header.num_entries--;
1825 if (data_->header.num_entries < 0) {
1826 NOTREACHED();
1827 data_->header.num_entries = 0;
1831 void BackendImpl::LogStats() {
1832 StatsItems stats;
1833 GetStats(&stats);
1835 for (size_t index = 0; index < stats.size(); index++)
1836 VLOG(1) << stats[index].first << ": " << stats[index].second;
1839 void BackendImpl::ReportStats() {
1840 CACHE_UMA(COUNTS, "Entries", 0, data_->header.num_entries);
1842 int current_size = data_->header.num_bytes / (1024 * 1024);
1843 int max_size = max_size_ / (1024 * 1024);
1844 int hit_ratio_as_percentage = stats_.GetHitRatio();
1846 CACHE_UMA(COUNTS_10000, "Size2", 0, current_size);
1847 // For any bin in HitRatioBySize2, the hit ratio of caches of that size is the
1848 // ratio of that bin's total count to the count in the same bin in the Size2
1849 // histogram.
1850 if (base::RandInt(0, 99) < hit_ratio_as_percentage)
1851 CACHE_UMA(COUNTS_10000, "HitRatioBySize2", 0, current_size);
1852 CACHE_UMA(COUNTS_10000, "MaxSize2", 0, max_size);
1853 if (!max_size)
1854 max_size++;
1855 CACHE_UMA(PERCENTAGE, "UsedSpace", 0, current_size * 100 / max_size);
1857 CACHE_UMA(COUNTS_10000, "AverageOpenEntries2", 0,
1858 static_cast<int>(stats_.GetCounter(Stats::OPEN_ENTRIES)));
1859 CACHE_UMA(COUNTS_10000, "MaxOpenEntries2", 0,
1860 static_cast<int>(stats_.GetCounter(Stats::MAX_ENTRIES)));
1861 stats_.SetCounter(Stats::MAX_ENTRIES, 0);
1863 CACHE_UMA(COUNTS_10000, "TotalFatalErrors", 0,
1864 static_cast<int>(stats_.GetCounter(Stats::FATAL_ERROR)));
1865 CACHE_UMA(COUNTS_10000, "TotalDoomCache", 0,
1866 static_cast<int>(stats_.GetCounter(Stats::DOOM_CACHE)));
1867 CACHE_UMA(COUNTS_10000, "TotalDoomRecentEntries", 0,
1868 static_cast<int>(stats_.GetCounter(Stats::DOOM_RECENT)));
1869 stats_.SetCounter(Stats::FATAL_ERROR, 0);
1870 stats_.SetCounter(Stats::DOOM_CACHE, 0);
1871 stats_.SetCounter(Stats::DOOM_RECENT, 0);
1873 int age = (Time::Now() -
1874 Time::FromInternalValue(data_->header.create_time)).InHours();
1875 if (age)
1876 CACHE_UMA(HOURS, "FilesAge", 0, age);
1878 int64 total_hours = stats_.GetCounter(Stats::TIMER) / 120;
1879 if (!data_->header.create_time || !data_->header.lru.filled) {
1880 int cause = data_->header.create_time ? 0 : 1;
1881 if (!data_->header.lru.filled)
1882 cause |= 2;
1883 CACHE_UMA(CACHE_ERROR, "ShortReport", 0, cause);
1884 CACHE_UMA(HOURS, "TotalTimeNotFull", 0, static_cast<int>(total_hours));
1885 return;
1888 // This is an up to date client that will report FirstEviction() data. After
1889 // that event, start reporting this:
1891 CACHE_UMA(HOURS, "TotalTime", 0, static_cast<int>(total_hours));
1892 // For any bin in HitRatioByTotalTime, the hit ratio of caches of that total
1893 // time is the ratio of that bin's total count to the count in the same bin in
1894 // the TotalTime histogram.
1895 if (base::RandInt(0, 99) < hit_ratio_as_percentage)
1896 CACHE_UMA(HOURS, "HitRatioByTotalTime", 0, implicit_cast<int>(total_hours));
1898 int64 use_hours = stats_.GetCounter(Stats::LAST_REPORT_TIMER) / 120;
1899 stats_.SetCounter(Stats::LAST_REPORT_TIMER, stats_.GetCounter(Stats::TIMER));
1901 // We may see users with no use_hours at this point if this is the first time
1902 // we are running this code.
1903 if (use_hours)
1904 use_hours = total_hours - use_hours;
1906 if (!use_hours || !GetEntryCount() || !data_->header.num_bytes)
1907 return;
1909 CACHE_UMA(HOURS, "UseTime", 0, static_cast<int>(use_hours));
1910 // For any bin in HitRatioByUseTime, the hit ratio of caches of that use time
1911 // is the ratio of that bin's total count to the count in the same bin in the
1912 // UseTime histogram.
1913 if (base::RandInt(0, 99) < hit_ratio_as_percentage)
1914 CACHE_UMA(HOURS, "HitRatioByUseTime", 0, implicit_cast<int>(use_hours));
1915 CACHE_UMA(PERCENTAGE, "HitRatio", 0, hit_ratio_as_percentage);
1917 int64 trim_rate = stats_.GetCounter(Stats::TRIM_ENTRY) / use_hours;
1918 CACHE_UMA(COUNTS, "TrimRate", 0, static_cast<int>(trim_rate));
1920 int avg_size = data_->header.num_bytes / GetEntryCount();
1921 CACHE_UMA(COUNTS, "EntrySize", 0, avg_size);
1922 CACHE_UMA(COUNTS, "EntriesFull", 0, data_->header.num_entries);
1924 CACHE_UMA(PERCENTAGE, "IndexLoad", 0,
1925 data_->header.num_entries * 100 / (mask_ + 1));
1927 int large_entries_bytes = stats_.GetLargeEntriesSize();
1928 int large_ratio = large_entries_bytes * 100 / data_->header.num_bytes;
1929 CACHE_UMA(PERCENTAGE, "LargeEntriesRatio", 0, large_ratio);
1931 if (new_eviction_) {
1932 CACHE_UMA(PERCENTAGE, "ResurrectRatio", 0, stats_.GetResurrectRatio());
1933 CACHE_UMA(PERCENTAGE, "NoUseRatio", 0,
1934 data_->header.lru.sizes[0] * 100 / data_->header.num_entries);
1935 CACHE_UMA(PERCENTAGE, "LowUseRatio", 0,
1936 data_->header.lru.sizes[1] * 100 / data_->header.num_entries);
1937 CACHE_UMA(PERCENTAGE, "HighUseRatio", 0,
1938 data_->header.lru.sizes[2] * 100 / data_->header.num_entries);
1939 CACHE_UMA(PERCENTAGE, "DeletedRatio", 0,
1940 data_->header.lru.sizes[4] * 100 / data_->header.num_entries);
1943 stats_.ResetRatios();
1944 stats_.SetCounter(Stats::TRIM_ENTRY, 0);
1946 if (cache_type_ == net::DISK_CACHE)
1947 block_files_.ReportStats();
1950 void BackendImpl::UpgradeTo2_1() {
1951 // 2.1 is basically the same as 2.0, except that new fields are actually
1952 // updated by the new eviction algorithm.
1953 DCHECK(0x20000 == data_->header.version);
1954 data_->header.version = 0x20001;
1955 data_->header.lru.sizes[Rankings::NO_USE] = data_->header.num_entries;
1958 bool BackendImpl::CheckIndex() {
1959 DCHECK(data_);
1961 size_t current_size = index_->GetLength();
1962 if (current_size < sizeof(Index)) {
1963 LOG(ERROR) << "Corrupt Index file";
1964 return false;
1967 if (new_eviction_) {
1968 // We support versions 2.0 and 2.1, upgrading 2.0 to 2.1.
1969 if (kIndexMagic != data_->header.magic ||
1970 kCurrentVersion >> 16 != data_->header.version >> 16) {
1971 LOG(ERROR) << "Invalid file version or magic";
1972 return false;
1974 if (kCurrentVersion == data_->header.version) {
1975 // We need file version 2.1 for the new eviction algorithm.
1976 UpgradeTo2_1();
1978 } else {
1979 if (kIndexMagic != data_->header.magic ||
1980 kCurrentVersion != data_->header.version) {
1981 LOG(ERROR) << "Invalid file version or magic";
1982 return false;
1986 if (!data_->header.table_len) {
1987 LOG(ERROR) << "Invalid table size";
1988 return false;
1991 if (current_size < GetIndexSize(data_->header.table_len) ||
1992 data_->header.table_len & (kBaseTableLen - 1)) {
1993 LOG(ERROR) << "Corrupt Index file";
1994 return false;
1997 AdjustMaxCacheSize(data_->header.table_len);
1999 #if !defined(NET_BUILD_STRESS_CACHE)
2000 if (data_->header.num_bytes < 0 ||
2001 (max_size_ < kint32max - kDefaultCacheSize &&
2002 data_->header.num_bytes > max_size_ + kDefaultCacheSize)) {
2003 LOG(ERROR) << "Invalid cache (current) size";
2004 return false;
2006 #endif
2008 if (data_->header.num_entries < 0) {
2009 LOG(ERROR) << "Invalid number of entries";
2010 return false;
2013 if (!mask_)
2014 mask_ = data_->header.table_len - 1;
2016 // Load the table into memory.
2017 return index_->Preload();
2020 int BackendImpl::CheckAllEntries() {
2021 int num_dirty = 0;
2022 int num_entries = 0;
2023 DCHECK(mask_ < kuint32max);
2024 for (unsigned int i = 0; i <= mask_; i++) {
2025 Addr address(data_->table[i]);
2026 if (!address.is_initialized())
2027 continue;
2028 for (;;) {
2029 EntryImpl* tmp;
2030 int ret = NewEntry(address, &tmp);
2031 if (ret) {
2032 STRESS_NOTREACHED();
2033 return ret;
2035 scoped_refptr<EntryImpl> cache_entry;
2036 cache_entry.swap(&tmp);
2038 if (cache_entry->dirty())
2039 num_dirty++;
2040 else if (CheckEntry(cache_entry.get()))
2041 num_entries++;
2042 else
2043 return ERR_INVALID_ENTRY;
2045 DCHECK_EQ(i, cache_entry->entry()->Data()->hash & mask_);
2046 address.set_value(cache_entry->GetNextAddress());
2047 if (!address.is_initialized())
2048 break;
2052 Trace("CheckAllEntries End");
2053 if (num_entries + num_dirty != data_->header.num_entries) {
2054 LOG(ERROR) << "Number of entries " << num_entries << " " << num_dirty <<
2055 " " << data_->header.num_entries;
2056 DCHECK_LT(num_entries, data_->header.num_entries);
2057 return ERR_NUM_ENTRIES_MISMATCH;
2060 return num_dirty;
2063 bool BackendImpl::CheckEntry(EntryImpl* cache_entry) {
2064 bool ok = block_files_.IsValid(cache_entry->entry()->address());
2065 ok = ok && block_files_.IsValid(cache_entry->rankings()->address());
2066 EntryStore* data = cache_entry->entry()->Data();
2067 for (size_t i = 0; i < arraysize(data->data_addr); i++) {
2068 if (data->data_addr[i]) {
2069 Addr address(data->data_addr[i]);
2070 if (address.is_block_file())
2071 ok = ok && block_files_.IsValid(address);
2075 return ok && cache_entry->rankings()->VerifyHash();
2078 int BackendImpl::MaxBuffersSize() {
2079 static int64 total_memory = base::SysInfo::AmountOfPhysicalMemory();
2080 static bool done = false;
2082 if (!done) {
2083 const int kMaxBuffersSize = 30 * 1024 * 1024;
2085 // We want to use up to 2% of the computer's memory.
2086 total_memory = total_memory * 2 / 100;
2087 if (total_memory > kMaxBuffersSize || total_memory <= 0)
2088 total_memory = kMaxBuffersSize;
2090 done = true;
2093 return static_cast<int>(total_memory);
2096 } // namespace disk_cache