1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/disk_cache/blockfile/index_table_v3.h"
11 #include "base/bits.h"
12 #include "net/base/io_buffer.h"
13 #include "net/base/net_errors.h"
14 #include "net/disk_cache/disk_cache.h"
17 using base::TimeDelta
;
18 using disk_cache::CellInfo
;
19 using disk_cache::CellList
;
20 using disk_cache::IndexCell
;
21 using disk_cache::IndexIterator
;
25 // The following constants describe the bitfields of an IndexCell so they are
26 // implicitly synchronized with the descrption of IndexCell on file_format_v3.h.
27 const uint64 kCellLocationMask
= (1 << 22) - 1;
28 const uint64 kCellIdMask
= (1 << 18) - 1;
29 const uint64 kCellTimestampMask
= (1 << 20) - 1;
30 const uint64 kCellReuseMask
= (1 << 4) - 1;
31 const uint8 kCellStateMask
= (1 << 3) - 1;
32 const uint8 kCellGroupMask
= (1 << 3) - 1;
33 const uint8 kCellSumMask
= (1 << 2) - 1;
35 const uint64 kCellSmallTableLocationMask
= (1 << 16) - 1;
36 const uint64 kCellSmallTableIdMask
= (1 << 24) - 1;
38 const int kCellIdOffset
= 22;
39 const int kCellTimestampOffset
= 40;
40 const int kCellReuseOffset
= 60;
41 const int kCellGroupOffset
= 3;
42 const int kCellSumOffset
= 6;
44 const int kCellSmallTableIdOffset
= 16;
46 // The number of bits that a hash has to be shifted to grab the part that
47 // defines the cell id.
48 const int kHashShift
= 14;
49 const int kSmallTableHashShift
= 8;
51 // Unfortunately we have to break the abstaction a little here: the file number
52 // where entries are stored is outside of the control of this code, and it is
53 // usually part of the stored address. However, for small tables we only store
54 // 16 bits of the address so the file number is never stored on a cell. We have
55 // to infere the file number from the type of entry (normal vs evicted), and
56 // the knowledge that given that the table will not keep more than 64k entries,
57 // a single file of each type is enough.
58 const int kEntriesFile
= disk_cache::BLOCK_ENTRIES
- 1;
59 const int kEvictedEntriesFile
= disk_cache::BLOCK_EVICTED
- 1;
60 const int kMaxLocation
= 1 << 22;
61 const int kMinFileNumber
= 1 << 16;
63 uint32
GetCellLocation(const IndexCell
& cell
) {
64 return cell
.first_part
& kCellLocationMask
;
67 uint32
GetCellSmallTableLocation(const IndexCell
& cell
) {
68 return cell
.first_part
& kCellSmallTableLocationMask
;
71 uint32
GetCellId(const IndexCell
& cell
) {
72 return (cell
.first_part
>> kCellIdOffset
) & kCellIdMask
;
75 uint32
GetCellSmallTableId(const IndexCell
& cell
) {
76 return (cell
.first_part
>> kCellSmallTableIdOffset
) &
77 kCellSmallTableIdMask
;
80 int GetCellTimestamp(const IndexCell
& cell
) {
81 return (cell
.first_part
>> kCellTimestampOffset
) & kCellTimestampMask
;
84 int GetCellReuse(const IndexCell
& cell
) {
85 return (cell
.first_part
>> kCellReuseOffset
) & kCellReuseMask
;
88 int GetCellState(const IndexCell
& cell
) {
89 return cell
.last_part
& kCellStateMask
;
92 int GetCellGroup(const IndexCell
& cell
) {
93 return (cell
.last_part
>> kCellGroupOffset
) & kCellGroupMask
;
96 int GetCellSum(const IndexCell
& cell
) {
97 return (cell
.last_part
>> kCellSumOffset
) & kCellSumMask
;
100 void SetCellLocation(IndexCell
* cell
, uint32 address
) {
101 DCHECK_LE(address
, static_cast<uint32
>(kCellLocationMask
));
102 cell
->first_part
&= ~kCellLocationMask
;
103 cell
->first_part
|= address
;
106 void SetCellSmallTableLocation(IndexCell
* cell
, uint32 address
) {
107 DCHECK_LE(address
, static_cast<uint32
>(kCellSmallTableLocationMask
));
108 cell
->first_part
&= ~kCellSmallTableLocationMask
;
109 cell
->first_part
|= address
;
112 void SetCellId(IndexCell
* cell
, uint32 hash
) {
113 DCHECK_LE(hash
, static_cast<uint32
>(kCellIdMask
));
114 cell
->first_part
&= ~(kCellIdMask
<< kCellIdOffset
);
115 cell
->first_part
|= static_cast<int64
>(hash
) << kCellIdOffset
;
118 void SetCellSmallTableId(IndexCell
* cell
, uint32 hash
) {
119 DCHECK_LE(hash
, static_cast<uint32
>(kCellSmallTableIdMask
));
120 cell
->first_part
&= ~(kCellSmallTableIdMask
<< kCellSmallTableIdOffset
);
121 cell
->first_part
|= static_cast<int64
>(hash
) << kCellSmallTableIdOffset
;
124 void SetCellTimestamp(IndexCell
* cell
, int timestamp
) {
125 DCHECK_LT(timestamp
, 1 << 20);
126 DCHECK_GE(timestamp
, 0);
127 cell
->first_part
&= ~(kCellTimestampMask
<< kCellTimestampOffset
);
128 cell
->first_part
|= static_cast<int64
>(timestamp
) << kCellTimestampOffset
;
131 void SetCellReuse(IndexCell
* cell
, int count
) {
132 DCHECK_LT(count
, 16);
134 cell
->first_part
&= ~(kCellReuseMask
<< kCellReuseOffset
);
135 cell
->first_part
|= static_cast<int64
>(count
) << kCellReuseOffset
;
138 void SetCellState(IndexCell
* cell
, disk_cache::EntryState state
) {
139 cell
->last_part
&= ~kCellStateMask
;
140 cell
->last_part
|= state
;
143 void SetCellGroup(IndexCell
* cell
, disk_cache::EntryGroup group
) {
144 cell
->last_part
&= ~(kCellGroupMask
<< kCellGroupOffset
);
145 cell
->last_part
|= group
<< kCellGroupOffset
;
148 void SetCellSum(IndexCell
* cell
, int sum
) {
151 cell
->last_part
&= ~(kCellSumMask
<< kCellSumOffset
);
152 cell
->last_part
|= sum
<< kCellSumOffset
;
155 // This is a very particular way to calculate the sum, so it will not match if
156 // compared a gainst a pure 2 bit, modulo 2 sum.
157 int CalculateCellSum(const IndexCell
& cell
) {
158 uint32
* words
= bit_cast
<uint32
*>(&cell
);
159 uint8
* bytes
= bit_cast
<uint8
*>(&cell
);
160 uint32 result
= words
[0] + words
[1];
161 result
+= result
>> 16;
162 result
+= (result
>> 8) + (bytes
[8] & 0x3f);
163 result
+= result
>> 4;
164 result
+= result
>> 2;
168 bool SanityCheck(const IndexCell
& cell
) {
169 if (GetCellSum(cell
) != CalculateCellSum(cell
))
172 if (GetCellState(cell
) > disk_cache::ENTRY_USED
||
173 GetCellGroup(cell
) == disk_cache::ENTRY_RESERVED
||
174 GetCellGroup(cell
) > disk_cache::ENTRY_EVICTED
) {
181 int FileNumberFromLocation(int location
) {
182 return location
/ kMinFileNumber
;
185 int StartBlockFromLocation(int location
) {
186 return location
% kMinFileNumber
;
189 bool IsValidAddress(disk_cache::Addr address
) {
190 if (!address
.is_initialized() ||
191 (address
.file_type() != disk_cache::BLOCK_EVICTED
&&
192 address
.file_type() != disk_cache::BLOCK_ENTRIES
)) {
196 return address
.FileNumber() < FileNumberFromLocation(kMaxLocation
);
199 bool IsNormalState(const IndexCell
& cell
) {
200 disk_cache::EntryState state
=
201 static_cast<disk_cache::EntryState
>(GetCellState(cell
));
202 DCHECK_NE(state
, disk_cache::ENTRY_FREE
);
203 return state
!= disk_cache::ENTRY_DELETED
&&
204 state
!= disk_cache::ENTRY_FIXING
;
207 inline int GetNextBucket(int min_bucket_num
, int max_bucket_num
,
208 disk_cache::IndexBucket
* table
,
209 disk_cache::IndexBucket
** bucket
) {
210 if (!(*bucket
)->next
)
213 int bucket_num
= (*bucket
)->next
/ disk_cache::kCellsPerBucket
;
214 if (bucket_num
< min_bucket_num
|| bucket_num
> max_bucket_num
) {
215 // The next bucket must fall within the extra table. Note that this is not
216 // an uncommon path as growing the table may not cleanup the link from the
217 // main table to the extra table, and that cleanup is performed here when
218 // accessing that bucket for the first time. This behavior has to change if
219 // the tables are ever shrinked.
223 *bucket
= &table
[bucket_num
- min_bucket_num
];
227 // Updates the |iterator| with the current |cell|. This cell may cause all
228 // previous cells to be deleted (when a new target timestamp is found), the cell
229 // may be added to the list (if it matches the target timestamp), or may it be
231 void UpdateIterator(const disk_cache::EntryCell
& cell
,
233 IndexIterator
* iterator
) {
234 int time
= cell
.GetTimestamp();
235 // Look for not interesting times.
236 if (iterator
->forward
&& time
<= limit_time
)
238 if (!iterator
->forward
&& time
>= limit_time
)
241 if ((iterator
->forward
&& time
< iterator
->timestamp
) ||
242 (!iterator
->forward
&& time
> iterator
->timestamp
)) {
243 // This timestamp is better than the one we had.
244 iterator
->timestamp
= time
;
245 iterator
->cells
.clear();
247 if (time
== iterator
->timestamp
) {
248 CellInfo cell_info
= { cell
.hash(), cell
.GetAddress() };
249 iterator
->cells
.push_back(cell_info
);
253 void InitIterator(IndexIterator
* iterator
) {
254 iterator
->cells
.clear();
255 iterator
->timestamp
= iterator
->forward
? kint32max
: 0;
260 namespace disk_cache
{
262 EntryCell::~EntryCell() {
265 bool EntryCell::IsValid() const {
266 return GetCellLocation(cell_
) != 0;
269 // This code has to map the cell address (up to 22 bits) to a general cache Addr
270 // (up to 24 bits of general addressing). It also set the implied file_number
271 // in the case of small tables. See also the comment by the definition of
273 Addr
EntryCell::GetAddress() const {
274 uint32 location
= GetLocation();
275 int file_number
= FileNumberFromLocation(location
);
277 DCHECK_EQ(0, file_number
);
278 file_number
= (GetGroup() == ENTRY_EVICTED
) ? kEvictedEntriesFile
:
281 DCHECK_NE(0, file_number
);
282 FileType file_type
= (GetGroup() == ENTRY_EVICTED
) ? BLOCK_EVICTED
:
284 return Addr(file_type
, 1, file_number
, StartBlockFromLocation(location
));
287 EntryState
EntryCell::GetState() const {
288 return static_cast<EntryState
>(GetCellState(cell_
));
291 EntryGroup
EntryCell::GetGroup() const {
292 return static_cast<EntryGroup
>(GetCellGroup(cell_
));
295 int EntryCell::GetReuse() const {
296 return GetCellReuse(cell_
);
299 int EntryCell::GetTimestamp() const {
300 return GetCellTimestamp(cell_
);
303 void EntryCell::SetState(EntryState state
) {
304 SetCellState(&cell_
, state
);
307 void EntryCell::SetGroup(EntryGroup group
) {
308 SetCellGroup(&cell_
, group
);
311 void EntryCell::SetReuse(int count
) {
312 SetCellReuse(&cell_
, count
);
315 void EntryCell::SetTimestamp(int timestamp
) {
316 SetCellTimestamp(&cell_
, timestamp
);
320 EntryCell
EntryCell::GetEntryCellForTest(int32 cell_num
,
326 EntryCell
entry_cell(cell_num
, hash
, *cell
, small_table
);
330 return EntryCell(cell_num
, hash
, address
, small_table
);
333 void EntryCell::SerializaForTest(IndexCell
* destination
) {
335 Serialize(destination
);
338 EntryCell::EntryCell() : cell_num_(0), hash_(0), small_table_(false) {
342 EntryCell::EntryCell(int32 cell_num
,
346 : cell_num_(cell_num
),
348 small_table_(small_table
) {
349 DCHECK(IsValidAddress(address
) || !address
.value());
352 SetCellState(&cell_
, ENTRY_NEW
);
353 SetCellGroup(&cell_
, ENTRY_NO_USE
);
355 DCHECK(address
.FileNumber() == kEntriesFile
||
356 address
.FileNumber() == kEvictedEntriesFile
);
357 SetCellSmallTableLocation(&cell_
, address
.start_block());
358 SetCellSmallTableId(&cell_
, hash
>> kSmallTableHashShift
);
360 uint32 location
= address
.FileNumber() << 16 | address
.start_block();
361 SetCellLocation(&cell_
, location
);
362 SetCellId(&cell_
, hash
>> kHashShift
);
366 EntryCell::EntryCell(int32 cell_num
,
368 const IndexCell
& cell
,
370 : cell_num_(cell_num
),
373 small_table_(small_table
) {
376 void EntryCell::FixSum() {
377 SetCellSum(&cell_
, CalculateCellSum(cell_
));
380 uint32
EntryCell::GetLocation() const {
382 return GetCellSmallTableLocation(cell_
);
384 return GetCellLocation(cell_
);
387 uint32
EntryCell::RecomputeHash() {
389 hash_
&= (1 << kSmallTableHashShift
) - 1;
390 hash_
|= GetCellSmallTableId(cell_
) << kSmallTableHashShift
;
394 hash_
&= (1 << kHashShift
) - 1;
395 hash_
|= GetCellId(cell_
) << kHashShift
;
399 void EntryCell::Serialize(IndexCell
* destination
) const {
400 *destination
= cell_
;
403 EntrySet::EntrySet() : evicted_count(0), current(0) {
406 EntrySet::~EntrySet() {
409 IndexIterator::IndexIterator() {
412 IndexIterator::~IndexIterator() {
415 IndexTableInitData::IndexTableInitData() {
418 IndexTableInitData::~IndexTableInitData() {
421 // -----------------------------------------------------------------------
423 IndexTable::IndexTable(IndexTableBackend
* backend
)
429 small_table_(false) {
432 IndexTable::~IndexTable() {
435 // For a general description of the index tables see:
436 // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/disk-cache-v3#TOC-Index
438 // The index is split between two tables: the main_table_ and the extra_table_.
439 // The main table can grow only by doubling its number of cells, while the
440 // extra table can grow slowly, because it only contain cells that overflow
441 // from the main table. In order to locate a given cell, part of the hash is
442 // used directly as an index into the main table; once that bucket is located,
443 // all cells with that partial hash (i.e., belonging to that bucket) are
444 // inspected, and if present, the next bucket (located on the extra table) is
445 // then located. For more information on bucket chaining see:
446 // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/disk-cache-v3#TOC-Buckets
448 // There are two cases when increasing the size:
449 // - Doubling the size of the main table
450 // - Adding more entries to the extra table
452 // For example, consider a 64k main table with 8k cells on the extra table (for
453 // a total of 72k cells). Init can be called to add another 8k cells at the end
454 // (grow to 80k cells). When the size of the extra table approaches 64k, Init
455 // can be called to double the main table (to 128k) and go back to a small extra
457 void IndexTable::Init(IndexTableInitData
* params
) {
458 bool growing
= header_
!= NULL
;
459 scoped_ptr
<IndexBucket
[]> old_extra_table
;
460 header_
= ¶ms
->index_bitmap
->header
;
462 if (params
->main_table
) {
464 // This is doubling the size of main table.
465 DCHECK_EQ(base::bits::Log2Floor(header_
->table_len
),
466 base::bits::Log2Floor(backup_header_
->table_len
) + 1);
467 int extra_size
= (header()->max_bucket
- mask_
) * kCellsPerBucket
;
468 DCHECK_GE(extra_size
, 0);
470 // Doubling the size implies deleting the extra table and moving as many
471 // cells as we can to the main table, so we first copy the old one. This
472 // is not required when just growing the extra table because we don't
473 // move any cell in that case.
474 old_extra_table
.reset(new IndexBucket
[extra_size
]);
475 memcpy(old_extra_table
.get(), extra_table_
,
476 extra_size
* sizeof(IndexBucket
));
477 memset(params
->extra_table
, 0, extra_size
* sizeof(IndexBucket
));
479 main_table_
= params
->main_table
;
482 extra_table_
= params
->extra_table
;
484 // extra_bits_ is really measured against table-size specific values.
485 const int kMaxAbsoluteExtraBits
= 12; // From smallest to largest table.
486 const int kMaxExtraBitsSmallTable
= 6; // From smallest to 64K table.
488 extra_bits_
= base::bits::Log2Floor(header_
->table_len
) -
489 base::bits::Log2Floor(kBaseTableLen
);
490 DCHECK_GE(extra_bits_
, 0);
491 DCHECK_LT(extra_bits_
, kMaxAbsoluteExtraBits
);
493 // Note that following the previous code the constants could be derived as
494 // kMaxAbsoluteExtraBits = base::bits::Log2Floor(max table len) -
495 // base::bits::Log2Floor(kBaseTableLen);
496 // = 22 - base::bits::Log2Floor(1024) = 22 - 10;
497 // kMaxExtraBitsSmallTable = base::bits::Log2Floor(max 16 bit table) - 10.
499 mask_
= ((kBaseTableLen
/ kCellsPerBucket
) << extra_bits_
) - 1;
500 small_table_
= extra_bits_
< kMaxExtraBitsSmallTable
;
502 extra_bits_
-= kMaxExtraBitsSmallTable
;
504 // table_len keeps the max number of cells stored by the index. We need a
505 // bitmap with 1 bit per cell, and that bitmap has num_words 32-bit words.
506 int num_words
= (header_
->table_len
+ 31) / 32;
508 if (old_extra_table
) {
509 // All the cells from the extra table are moving to the new tables so before
510 // creating the bitmaps, clear the part of the bitmap referring to the extra
512 int old_main_table_bit_words
= ((mask_
>> 1) + 1) * kCellsPerBucket
/ 32;
513 DCHECK_GT(num_words
, old_main_table_bit_words
);
514 memset(params
->index_bitmap
->bitmap
+ old_main_table_bit_words
, 0,
515 (num_words
- old_main_table_bit_words
) * sizeof(int32
));
518 int old_num_words
= (backup_header_
.get()->table_len
+ 31) / 32;
519 DCHECK_GT(old_num_words
, old_main_table_bit_words
);
520 memset(backup_bitmap_storage_
.get() + old_main_table_bit_words
, 0,
521 (old_num_words
- old_main_table_bit_words
) * sizeof(int32
));
523 bitmap_
.reset(new Bitmap(params
->index_bitmap
->bitmap
, header_
->table_len
,
527 int old_num_words
= (backup_header_
.get()->table_len
+ 31) / 32;
528 DCHECK_GE(num_words
, old_num_words
);
529 scoped_ptr
<uint32
[]> storage(new uint32
[num_words
]);
530 memcpy(storage
.get(), backup_bitmap_storage_
.get(),
531 old_num_words
* sizeof(int32
));
532 memset(storage
.get() + old_num_words
, 0,
533 (num_words
- old_num_words
) * sizeof(int32
));
535 backup_bitmap_storage_
.swap(storage
);
536 backup_header_
->table_len
= header_
->table_len
;
538 backup_bitmap_storage_
.reset(params
->backup_bitmap
.release());
539 backup_header_
.reset(params
->backup_header
.release());
542 num_words
= (backup_header_
->table_len
+ 31) / 32;
543 backup_bitmap_
.reset(new Bitmap(backup_bitmap_storage_
.get(),
544 backup_header_
->table_len
, num_words
));
546 MoveCells(old_extra_table
.get());
549 DCHECK(header_
->flags
& SMALL_CACHE
);
551 // All tables and backups are needed for operation.
553 DCHECK(extra_table_
);
554 DCHECK(bitmap_
.get());
557 void IndexTable::Shutdown() {
562 backup_bitmap_
.reset();
563 backup_header_
.reset();
564 backup_bitmap_storage_
.reset();
568 // The general method for locating cells is to:
569 // 1. Get the first bucket. This usually means directly indexing the table (as
570 // this method does), or iterating through all possible buckets.
571 // 2. Iterate through all the cells in that first bucket.
572 // 3. If there is a linked bucket, locate it directly in the extra table.
573 // 4. Go back to 2, as needed.
575 // One consequence of this pattern is that we never start looking at buckets in
576 // the extra table, unless we are following a link from the main table.
577 EntrySet
IndexTable::LookupEntries(uint32 hash
) {
579 int bucket_num
= static_cast<int>(hash
& mask_
);
580 IndexBucket
* bucket
= &main_table_
[bucket_num
];
582 for (int i
= 0; i
< kCellsPerBucket
; i
++) {
583 IndexCell
* current_cell
= &bucket
->cells
[i
];
584 if (!GetLocation(*current_cell
))
586 if (!SanityCheck(*current_cell
)) {
588 int cell_num
= bucket_num
* kCellsPerBucket
+ i
;
589 current_cell
->Clear();
590 bitmap_
->Set(cell_num
, false);
591 backup_bitmap_
->Set(cell_num
, false);
595 int cell_num
= bucket_num
* kCellsPerBucket
+ i
;
596 if (MisplacedHash(*current_cell
, hash
)) {
597 HandleMisplacedCell(current_cell
, cell_num
, hash
& mask_
);
598 } else if (IsHashMatch(*current_cell
, hash
)) {
599 EntryCell
entry_cell(cell_num
, hash
, *current_cell
, small_table_
);
600 CheckState(entry_cell
);
601 if (entry_cell
.GetState() != ENTRY_DELETED
) {
602 entries
.cells
.push_back(entry_cell
);
603 if (entry_cell
.GetGroup() == ENTRY_EVICTED
)
604 entries
.evicted_count
++;
608 bucket_num
= GetNextBucket(mask_
+ 1, header()->max_bucket
, extra_table_
,
610 } while (bucket_num
);
614 EntryCell
IndexTable::CreateEntryCell(uint32 hash
, Addr address
) {
615 DCHECK(IsValidAddress(address
));
616 DCHECK(address
.FileNumber() || address
.start_block());
618 int bucket_num
= static_cast<int>(hash
& mask_
);
620 IndexBucket
* bucket
= &main_table_
[bucket_num
];
621 IndexCell
* current_cell
= NULL
;
624 for (int i
= 0; i
< kCellsPerBucket
&& !found
; i
++) {
625 current_cell
= &bucket
->cells
[i
];
626 if (!GetLocation(*current_cell
)) {
627 cell_num
= bucket_num
* kCellsPerBucket
+ i
;
633 bucket_num
= GetNextBucket(mask_
+ 1, header()->max_bucket
, extra_table_
,
635 } while (bucket_num
);
638 bucket_num
= NewExtraBucket();
640 cell_num
= bucket_num
* kCellsPerBucket
;
641 bucket
->next
= cell_num
;
642 bucket
= &extra_table_
[bucket_num
- (mask_
+ 1)];
643 bucket
->hash
= hash
& mask_
;
646 // address 0 is a reserved value, and the caller interprets it as invalid.
647 address
.set_value(0);
651 EntryCell
entry_cell(cell_num
, hash
, address
, small_table_
);
652 if (address
.file_type() == BLOCK_EVICTED
)
653 entry_cell
.SetGroup(ENTRY_EVICTED
);
655 entry_cell
.SetGroup(ENTRY_NO_USE
);
659 bitmap_
->Set(cell_num
, true);
660 backup_bitmap_
->Set(cell_num
, true);
661 header()->used_cells
++;
668 EntryCell
IndexTable::FindEntryCell(uint32 hash
, Addr address
) {
669 return FindEntryCellImpl(hash
, address
, false);
672 int IndexTable::CalculateTimestamp(Time time
) {
673 TimeDelta delta
= time
- Time::FromInternalValue(header_
->base_time
);
674 return std::max(delta
.InMinutes(), 0);
677 base::Time
IndexTable::TimeFromTimestamp(int timestamp
) {
678 return Time::FromInternalValue(header_
->base_time
) +
679 TimeDelta::FromMinutes(timestamp
);
682 void IndexTable::SetSate(uint32 hash
, Addr address
, EntryState state
) {
683 EntryCell cell
= FindEntryCellImpl(hash
, address
, state
== ENTRY_FREE
);
684 if (!cell
.IsValid()) {
689 EntryState old_state
= cell
.GetState();
692 DCHECK_EQ(old_state
, ENTRY_DELETED
);
695 DCHECK_EQ(old_state
, ENTRY_FREE
);
698 DCHECK_EQ(old_state
, ENTRY_USED
);
701 DCHECK_EQ(old_state
, ENTRY_OPEN
);
704 DCHECK(old_state
== ENTRY_NEW
|| old_state
== ENTRY_OPEN
||
705 old_state
== ENTRY_MODIFIED
);
708 DCHECK(old_state
== ENTRY_NEW
|| old_state
== ENTRY_OPEN
||
709 old_state
== ENTRY_MODIFIED
);
716 if (state
== ENTRY_DELETED
) {
717 bitmap_
->Set(cell
.cell_num(), false);
718 backup_bitmap_
->Set(cell
.cell_num(), false);
719 } else if (state
== ENTRY_FREE
) {
722 header()->used_cells
--;
725 cell
.SetState(state
);
730 void IndexTable::UpdateTime(uint32 hash
, Addr address
, base::Time current
) {
731 EntryCell cell
= FindEntryCell(hash
, address
);
735 int minutes
= CalculateTimestamp(current
);
737 // Keep about 3 months of headroom.
738 const int kMaxTimestamp
= (1 << 20) - 60 * 24 * 90;
739 if (minutes
> kMaxTimestamp
) {
741 // Update header->old_time and trigger a timer
742 // Rebaseline timestamps and don't update sums
743 // Start a timer (about 2 backups)
744 // fix all ckecksums and trigger another timer
745 // update header->old_time because rebaseline is done.
746 minutes
= std::min(minutes
, (1 << 20) - 1);
749 cell
.SetTimestamp(minutes
);
753 void IndexTable::Save(EntryCell
* cell
) {
758 void IndexTable::GetOldest(IndexIterator
* no_use
,
759 IndexIterator
* low_use
,
760 IndexIterator
* high_use
) {
761 no_use
->forward
= true;
762 low_use
->forward
= true;
763 high_use
->forward
= true;
764 InitIterator(no_use
);
765 InitIterator(low_use
);
766 InitIterator(high_use
);
768 WalkTables(-1, no_use
, low_use
, high_use
);
771 bool IndexTable::GetNextCells(IndexIterator
* iterator
) {
772 int current_time
= iterator
->timestamp
;
773 InitIterator(iterator
);
775 WalkTables(current_time
, iterator
, iterator
, iterator
);
776 return !iterator
->cells
.empty();
779 void IndexTable::OnBackupTimer() {
783 int num_words
= (header_
->table_len
+ 31) / 32;
784 int num_bytes
= num_words
* 4 + static_cast<int>(sizeof(*header_
));
785 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(num_bytes
));
786 memcpy(buffer
->data(), header_
, sizeof(*header_
));
787 memcpy(buffer
->data() + sizeof(*header_
), backup_bitmap_storage_
.get(),
789 backend_
->SaveIndex(buffer
, num_bytes
);
793 // -----------------------------------------------------------------------
795 EntryCell
IndexTable::FindEntryCellImpl(uint32 hash
, Addr address
,
796 bool allow_deleted
) {
797 int bucket_num
= static_cast<int>(hash
& mask_
);
798 IndexBucket
* bucket
= &main_table_
[bucket_num
];
800 for (int i
= 0; i
< kCellsPerBucket
; i
++) {
801 IndexCell
* current_cell
= &bucket
->cells
[i
];
802 if (!GetLocation(*current_cell
))
804 DCHECK(SanityCheck(*current_cell
));
805 if (IsHashMatch(*current_cell
, hash
)) {
807 int cell_num
= bucket_num
* kCellsPerBucket
+ i
;
808 EntryCell
entry_cell(cell_num
, hash
, *current_cell
, small_table_
);
809 if (entry_cell
.GetAddress() != address
)
812 if (!allow_deleted
&& entry_cell
.GetState() == ENTRY_DELETED
)
818 bucket_num
= GetNextBucket(mask_
+ 1, header()->max_bucket
, extra_table_
,
820 } while (bucket_num
);
824 void IndexTable::CheckState(const EntryCell
& cell
) {
825 int current_state
= cell
.GetState();
826 if (current_state
!= ENTRY_FIXING
) {
827 bool present
= ((current_state
& 3) != 0); // Look at the last two bits.
828 if (present
!= bitmap_
->Get(cell
.cell_num()) ||
829 present
!= backup_bitmap_
->Get(cell
.cell_num())) {
830 // There's a mismatch.
831 if (current_state
== ENTRY_DELETED
) {
832 // We were in the process of deleting this entry. Finish now.
833 backend_
->DeleteCell(cell
);
835 current_state
= ENTRY_FIXING
;
836 EntryCell
bad_cell(cell
);
837 bad_cell
.SetState(ENTRY_FIXING
);
843 if (current_state
== ENTRY_FIXING
)
844 backend_
->FixCell(cell
);
847 void IndexTable::Write(const EntryCell
& cell
) {
848 IndexBucket
* bucket
= NULL
;
849 int bucket_num
= cell
.cell_num() / kCellsPerBucket
;
850 if (bucket_num
< static_cast<int32
>(mask_
+ 1)) {
851 bucket
= &main_table_
[bucket_num
];
853 DCHECK_LE(bucket_num
, header()->max_bucket
);
854 bucket
= &extra_table_
[bucket_num
- (mask_
+ 1)];
857 int cell_number
= cell
.cell_num() % kCellsPerBucket
;
858 if (GetLocation(bucket
->cells
[cell_number
]) && cell
.GetLocation()) {
859 DCHECK_EQ(cell
.GetLocation(),
860 GetLocation(bucket
->cells
[cell_number
]));
862 cell
.Serialize(&bucket
->cells
[cell_number
]);
865 int IndexTable::NewExtraBucket() {
866 int safe_window
= (header()->table_len
< kNumExtraBlocks
* 2) ?
867 kNumExtraBlocks
/ 4 : kNumExtraBlocks
;
868 if (header()->table_len
- header()->max_bucket
* kCellsPerBucket
<
870 backend_
->GrowIndex();
873 if (header()->max_bucket
* kCellsPerBucket
==
874 header()->table_len
- kCellsPerBucket
) {
878 header()->max_bucket
++;
879 return header()->max_bucket
;
882 void IndexTable::WalkTables(int limit_time
,
883 IndexIterator
* no_use
,
884 IndexIterator
* low_use
,
885 IndexIterator
* high_use
) {
886 header_
->num_no_use_entries
= 0;
887 header_
->num_low_use_entries
= 0;
888 header_
->num_high_use_entries
= 0;
889 header_
->num_evicted_entries
= 0;
891 for (int i
= 0; i
< static_cast<int32
>(mask_
+ 1); i
++) {
893 IndexBucket
* bucket
= &main_table_
[i
];
895 UpdateFromBucket(bucket
, i
, limit_time
, no_use
, low_use
, high_use
);
897 bucket_num
= GetNextBucket(mask_
+ 1, header()->max_bucket
, extra_table_
,
899 } while (bucket_num
);
901 header_
->num_entries
= header_
->num_no_use_entries
+
902 header_
->num_low_use_entries
+
903 header_
->num_high_use_entries
+
904 header_
->num_evicted_entries
;
908 void IndexTable::UpdateFromBucket(IndexBucket
* bucket
, int bucket_hash
,
910 IndexIterator
* no_use
,
911 IndexIterator
* low_use
,
912 IndexIterator
* high_use
) {
913 for (int i
= 0; i
< kCellsPerBucket
; i
++) {
914 IndexCell
& current_cell
= bucket
->cells
[i
];
915 if (!GetLocation(current_cell
))
917 DCHECK(SanityCheck(current_cell
));
918 if (!IsNormalState(current_cell
))
921 EntryCell
entry_cell(0, GetFullHash(current_cell
, bucket_hash
),
922 current_cell
, small_table_
);
923 switch (GetCellGroup(current_cell
)) {
925 UpdateIterator(entry_cell
, limit_time
, no_use
);
926 header_
->num_no_use_entries
++;
929 UpdateIterator(entry_cell
, limit_time
, low_use
);
930 header_
->num_low_use_entries
++;
933 UpdateIterator(entry_cell
, limit_time
, high_use
);
934 header_
->num_high_use_entries
++;
937 header_
->num_evicted_entries
++;
945 // This code is only called from Init() so the internal state of this object is
946 // in flux (this method is performing the last steps of re-initialization). As
947 // such, random methods are not supposed to work at this point, so whatever this
948 // method calls should be relatively well controlled and it may require some
949 // degree of "stable state faking".
950 void IndexTable::MoveCells(IndexBucket
* old_extra_table
) {
951 int max_hash
= (mask_
+ 1) / 2;
952 int max_bucket
= header()->max_bucket
;
953 header()->max_bucket
= mask_
;
954 int used_cells
= header()->used_cells
;
956 // Consider a large cache: a cell stores the upper 18 bits of the hash
957 // (h >> 14). If the table is say 8 times the original size (growing from 4x),
958 // the bit that we are interested in would be the 3rd bit of the stored value,
959 // in other words 'multiplier' >> 1.
960 uint32 new_bit
= (1 << extra_bits_
) >> 1;
962 scoped_ptr
<IndexBucket
[]> old_main_table
;
963 IndexBucket
* source_table
= main_table_
;
964 bool upgrade_format
= !extra_bits_
;
965 if (upgrade_format
) {
966 // This method should deal with migrating a small table to a big one. Given
967 // that the first thing to do is read the old table, set small_table_ for
968 // the size of the old table. Now, when moving a cell, the result cannot be
969 // placed in the old table or we will end up reading it again and attempting
970 // to move it, so we have to copy the whole table at once.
971 DCHECK(!small_table_
);
973 old_main_table
.reset(new IndexBucket
[max_hash
]);
974 memcpy(old_main_table
.get(), main_table_
, max_hash
* sizeof(IndexBucket
));
975 memset(main_table_
, 0, max_hash
* sizeof(IndexBucket
));
976 source_table
= old_main_table
.get();
979 for (int i
= 0; i
< max_hash
; i
++) {
981 IndexBucket
* bucket
= &source_table
[i
];
983 for (int j
= 0; j
< kCellsPerBucket
; j
++) {
984 IndexCell
& current_cell
= bucket
->cells
[j
];
985 if (!GetLocation(current_cell
))
987 DCHECK(SanityCheck(current_cell
));
988 if (bucket_num
== i
) {
989 if (upgrade_format
|| (GetHashValue(current_cell
) & new_bit
)) {
990 // Move this cell to the upper half of the table.
991 MoveSingleCell(¤t_cell
, bucket_num
* kCellsPerBucket
+ j
, i
,
995 // All cells on extra buckets have to move.
996 MoveSingleCell(¤t_cell
, bucket_num
* kCellsPerBucket
+ j
, i
,
1001 // There is no need to clear the old bucket->next value because if falls
1002 // within the main table so it will be fixed when attempting to follow
1004 bucket_num
= GetNextBucket(max_hash
, max_bucket
, old_extra_table
,
1006 } while (bucket_num
);
1009 DCHECK_EQ(header()->used_cells
, used_cells
);
1011 if (upgrade_format
) {
1012 small_table_
= false;
1013 header()->flags
&= ~SMALL_CACHE
;
1017 void IndexTable::MoveSingleCell(IndexCell
* current_cell
, int cell_num
,
1018 int main_table_index
, bool growing
) {
1019 uint32 hash
= GetFullHash(*current_cell
, main_table_index
);
1020 EntryCell
old_cell(cell_num
, hash
, *current_cell
, small_table_
);
1022 // This method may be called when moving entries from a small table to a
1023 // normal table. In that case, the caller (MoveCells) has to read the old
1024 // table, so it needs small_table_ set to true, but this method needs to
1025 // write to the new table so small_table_ has to be set to false, and the
1026 // value restored to true before returning.
1027 bool upgrade_format
= !extra_bits_
&& growing
;
1029 small_table_
= false;
1030 EntryCell new_cell
= CreateEntryCell(hash
, old_cell
.GetAddress());
1032 if (!new_cell
.IsValid()) {
1033 // We'll deal with this entry later.
1035 small_table_
= true;
1039 new_cell
.SetState(old_cell
.GetState());
1040 new_cell
.SetGroup(old_cell
.GetGroup());
1041 new_cell
.SetReuse(old_cell
.GetReuse());
1042 new_cell
.SetTimestamp(old_cell
.GetTimestamp());
1046 small_table_
= true;
1048 if (old_cell
.GetState() == ENTRY_DELETED
) {
1049 bitmap_
->Set(new_cell
.cell_num(), false);
1050 backup_bitmap_
->Set(new_cell
.cell_num(), false);
1053 if (!growing
|| cell_num
/ kCellsPerBucket
== main_table_index
) {
1054 // Only delete entries that live on the main table.
1055 if (!upgrade_format
) {
1060 if (cell_num
!= new_cell
.cell_num()) {
1061 bitmap_
->Set(old_cell
.cell_num(), false);
1062 backup_bitmap_
->Set(old_cell
.cell_num(), false);
1065 header()->used_cells
--;
1068 void IndexTable::HandleMisplacedCell(IndexCell
* current_cell
, int cell_num
,
1069 int main_table_index
) {
1070 NOTREACHED(); // No unit tests yet.
1072 // The cell may be misplaced, or a duplicate cell exists with this data.
1073 uint32 hash
= GetFullHash(*current_cell
, main_table_index
);
1074 MoveSingleCell(current_cell
, cell_num
, main_table_index
, false);
1076 // Now look for a duplicate cell.
1077 CheckBucketList(hash
& mask_
);
1080 void IndexTable::CheckBucketList(int bucket_num
) {
1081 typedef std::pair
<int, EntryGroup
> AddressAndGroup
;
1082 std::set
<AddressAndGroup
> entries
;
1083 IndexBucket
* bucket
= &main_table_
[bucket_num
];
1084 int bucket_hash
= bucket_num
;
1086 for (int i
= 0; i
< kCellsPerBucket
; i
++) {
1087 IndexCell
* current_cell
= &bucket
->cells
[i
];
1088 if (!GetLocation(*current_cell
))
1090 if (!SanityCheck(*current_cell
)) {
1092 current_cell
->Clear();
1095 int cell_num
= bucket_num
* kCellsPerBucket
+ i
;
1096 EntryCell
cell(cell_num
, GetFullHash(*current_cell
, bucket_hash
),
1097 *current_cell
, small_table_
);
1098 if (!entries
.insert(std::make_pair(cell
.GetAddress().value(),
1099 cell
.GetGroup())).second
) {
1100 current_cell
->Clear();
1106 bucket_num
= GetNextBucket(mask_
+ 1, header()->max_bucket
, extra_table_
,
1108 } while (bucket_num
);
1111 uint32
IndexTable::GetLocation(const IndexCell
& cell
) {
1113 return GetCellSmallTableLocation(cell
);
1115 return GetCellLocation(cell
);
1118 uint32
IndexTable::GetHashValue(const IndexCell
& cell
) {
1120 return GetCellSmallTableId(cell
);
1122 return GetCellId(cell
);
1125 uint32
IndexTable::GetFullHash(const IndexCell
& cell
, uint32 lower_part
) {
1126 // It is OK for the high order bits of lower_part to overlap with the stored
1127 // part of the hash.
1129 return (GetCellSmallTableId(cell
) << kSmallTableHashShift
) | lower_part
;
1131 return (GetCellId(cell
) << kHashShift
) | lower_part
;
1134 // All the bits stored in the cell should match the provided hash.
1135 bool IndexTable::IsHashMatch(const IndexCell
& cell
, uint32 hash
) {
1136 hash
= small_table_
? hash
>> kSmallTableHashShift
: hash
>> kHashShift
;
1137 return GetHashValue(cell
) == hash
;
1140 bool IndexTable::MisplacedHash(const IndexCell
& cell
, uint32 hash
) {
1144 uint32 mask
= (1 << extra_bits_
) - 1;
1145 hash
= small_table_
? hash
>> kSmallTableHashShift
: hash
>> kHashShift
;
1146 return (GetHashValue(cell
) & mask
) != (hash
& mask
);
1149 } // namespace disk_cache