Cast: Stop logging kVideoFrameSentToEncoder and rename a couple events.
[chromium-blink-merge.git] / third_party / libwebp / enc / picture.c
blob011690d065df9afd238eef18b20889eadc566e7b
1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // WebPPicture utils: colorspace conversion, crop, ...
12 // Author: Skal (pascal.massimino@gmail.com)
14 #include <assert.h>
15 #include <stdlib.h>
16 #include <math.h>
18 #include "./vp8enci.h"
19 #include "../utils/alpha_processing.h"
20 #include "../utils/random.h"
21 #include "../utils/rescaler.h"
22 #include "../utils/utils.h"
23 #include "../dsp/dsp.h"
24 #include "../dsp/yuv.h"
26 // Uncomment to disable gamma-compression during RGB->U/V averaging
27 #define USE_GAMMA_COMPRESSION
29 #define HALVE(x) (((x) + 1) >> 1)
30 #define IS_YUV_CSP(csp, YUV_CSP) (((csp) & WEBP_CSP_UV_MASK) == (YUV_CSP))
32 static const union {
33 uint32_t argb;
34 uint8_t bytes[4];
35 } test_endian = { 0xff000000u };
36 #define ALPHA_IS_LAST (test_endian.bytes[3] == 0xff)
38 static WEBP_INLINE uint32_t MakeARGB32(int r, int g, int b) {
39 return (0xff000000u | (r << 16) | (g << 8) | b);
42 //------------------------------------------------------------------------------
43 // WebPPicture
44 //------------------------------------------------------------------------------
46 int WebPPictureAlloc(WebPPicture* picture) {
47 if (picture != NULL) {
48 const WebPEncCSP uv_csp = picture->colorspace & WEBP_CSP_UV_MASK;
49 const int has_alpha = picture->colorspace & WEBP_CSP_ALPHA_BIT;
50 const int width = picture->width;
51 const int height = picture->height;
53 if (!picture->use_argb) {
54 const int y_stride = width;
55 const int uv_width = HALVE(width);
56 const int uv_height = HALVE(height);
57 const int uv_stride = uv_width;
58 int uv0_stride = 0;
59 int a_width, a_stride;
60 uint64_t y_size, uv_size, uv0_size, a_size, total_size;
61 uint8_t* mem;
63 // U/V
64 switch (uv_csp) {
65 case WEBP_YUV420:
66 break;
67 #ifdef WEBP_EXPERIMENTAL_FEATURES
68 case WEBP_YUV400: // for now, we'll just reset the U/V samples
69 break;
70 case WEBP_YUV422:
71 uv0_stride = uv_width;
72 break;
73 case WEBP_YUV444:
74 uv0_stride = width;
75 break;
76 #endif
77 default:
78 return 0;
80 uv0_size = height * uv0_stride;
82 // alpha
83 a_width = has_alpha ? width : 0;
84 a_stride = a_width;
85 y_size = (uint64_t)y_stride * height;
86 uv_size = (uint64_t)uv_stride * uv_height;
87 a_size = (uint64_t)a_stride * height;
89 total_size = y_size + a_size + 2 * uv_size + 2 * uv0_size;
91 // Security and validation checks
92 if (width <= 0 || height <= 0 || // luma/alpha param error
93 uv_width < 0 || uv_height < 0) { // u/v param error
94 return 0;
96 // Clear previous buffer and allocate a new one.
97 WebPPictureFree(picture); // erase previous buffer
98 mem = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*mem));
99 if (mem == NULL) return 0;
101 // From now on, we're in the clear, we can no longer fail...
102 picture->memory_ = (void*)mem;
103 picture->y_stride = y_stride;
104 picture->uv_stride = uv_stride;
105 picture->a_stride = a_stride;
106 picture->uv0_stride = uv0_stride;
107 // TODO(skal): we could align the y/u/v planes and adjust stride.
108 picture->y = mem;
109 mem += y_size;
111 picture->u = mem;
112 mem += uv_size;
113 picture->v = mem;
114 mem += uv_size;
116 if (a_size) {
117 picture->a = mem;
118 mem += a_size;
120 if (uv0_size) {
121 picture->u0 = mem;
122 mem += uv0_size;
123 picture->v0 = mem;
124 mem += uv0_size;
126 (void)mem; // makes the static analyzer happy
127 } else {
128 void* memory;
129 const uint64_t argb_size = (uint64_t)width * height;
130 if (width <= 0 || height <= 0) {
131 return 0;
133 // Clear previous buffer and allocate a new one.
134 WebPPictureFree(picture); // erase previous buffer
135 memory = WebPSafeMalloc(argb_size, sizeof(*picture->argb));
136 if (memory == NULL) return 0;
138 // TODO(skal): align plane to cache line?
139 picture->memory_argb_ = memory;
140 picture->argb = (uint32_t*)memory;
141 picture->argb_stride = width;
144 return 1;
147 // Remove reference to the ARGB buffer (doesn't free anything).
148 static void PictureResetARGB(WebPPicture* const picture) {
149 picture->memory_argb_ = NULL;
150 picture->argb = NULL;
151 picture->argb_stride = 0;
154 // Remove reference to the YUVA buffer (doesn't free anything).
155 static void PictureResetYUVA(WebPPicture* const picture) {
156 picture->memory_ = NULL;
157 picture->y = picture->u = picture->v = picture->a = NULL;
158 picture->u0 = picture->v0 = NULL;
159 picture->y_stride = picture->uv_stride = 0;
160 picture->a_stride = 0;
161 picture->uv0_stride = 0;
164 // Grab the 'specs' (writer, *opaque, width, height...) from 'src' and copy them
165 // into 'dst'. Mark 'dst' as not owning any memory.
166 static void WebPPictureGrabSpecs(const WebPPicture* const src,
167 WebPPicture* const dst) {
168 assert(src != NULL && dst != NULL);
169 *dst = *src;
170 PictureResetYUVA(dst);
171 PictureResetARGB(dst);
174 // Allocate a new argb buffer, discarding any existing one and preserving
175 // the other YUV(A) buffer.
176 static int PictureAllocARGB(WebPPicture* const picture) {
177 WebPPicture tmp;
178 free(picture->memory_argb_);
179 PictureResetARGB(picture);
180 picture->use_argb = 1;
181 WebPPictureGrabSpecs(picture, &tmp);
182 if (!WebPPictureAlloc(&tmp)) {
183 return WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
185 picture->memory_argb_ = tmp.memory_argb_;
186 picture->argb = tmp.argb;
187 picture->argb_stride = tmp.argb_stride;
188 return 1;
191 // Release memory owned by 'picture' (both YUV and ARGB buffers).
192 void WebPPictureFree(WebPPicture* picture) {
193 if (picture != NULL) {
194 free(picture->memory_);
195 free(picture->memory_argb_);
196 PictureResetYUVA(picture);
197 PictureResetARGB(picture);
201 //------------------------------------------------------------------------------
202 // Picture copying
204 // Not worth moving to dsp/enc.c (only used here).
205 static void CopyPlane(const uint8_t* src, int src_stride,
206 uint8_t* dst, int dst_stride, int width, int height) {
207 while (height-- > 0) {
208 memcpy(dst, src, width);
209 src += src_stride;
210 dst += dst_stride;
214 // Adjust top-left corner to chroma sample position.
215 static void SnapTopLeftPosition(const WebPPicture* const pic,
216 int* const left, int* const top) {
217 if (!pic->use_argb) {
218 const int is_yuv422 = IS_YUV_CSP(pic->colorspace, WEBP_YUV422);
219 if (IS_YUV_CSP(pic->colorspace, WEBP_YUV420) || is_yuv422) {
220 *left &= ~1;
221 if (!is_yuv422) *top &= ~1;
226 // Adjust top-left corner and verify that the sub-rectangle is valid.
227 static int AdjustAndCheckRectangle(const WebPPicture* const pic,
228 int* const left, int* const top,
229 int width, int height) {
230 SnapTopLeftPosition(pic, left, top);
231 if ((*left) < 0 || (*top) < 0) return 0;
232 if (width <= 0 || height <= 0) return 0;
233 if ((*left) + width > pic->width) return 0;
234 if ((*top) + height > pic->height) return 0;
235 return 1;
238 int WebPPictureCopy(const WebPPicture* src, WebPPicture* dst) {
239 if (src == NULL || dst == NULL) return 0;
240 if (src == dst) return 1;
242 WebPPictureGrabSpecs(src, dst);
243 if (!WebPPictureAlloc(dst)) return 0;
245 if (!src->use_argb) {
246 CopyPlane(src->y, src->y_stride,
247 dst->y, dst->y_stride, dst->width, dst->height);
248 CopyPlane(src->u, src->uv_stride,
249 dst->u, dst->uv_stride, HALVE(dst->width), HALVE(dst->height));
250 CopyPlane(src->v, src->uv_stride,
251 dst->v, dst->uv_stride, HALVE(dst->width), HALVE(dst->height));
252 if (dst->a != NULL) {
253 CopyPlane(src->a, src->a_stride,
254 dst->a, dst->a_stride, dst->width, dst->height);
256 #ifdef WEBP_EXPERIMENTAL_FEATURES
257 if (dst->u0 != NULL) {
258 int uv0_width = src->width;
259 if (IS_YUV_CSP(dst->colorspace, WEBP_YUV422)) {
260 uv0_width = HALVE(uv0_width);
262 CopyPlane(src->u0, src->uv0_stride,
263 dst->u0, dst->uv0_stride, uv0_width, dst->height);
264 CopyPlane(src->v0, src->uv0_stride,
265 dst->v0, dst->uv0_stride, uv0_width, dst->height);
267 #endif
268 } else {
269 CopyPlane((const uint8_t*)src->argb, 4 * src->argb_stride,
270 (uint8_t*)dst->argb, 4 * dst->argb_stride,
271 4 * dst->width, dst->height);
273 return 1;
276 int WebPPictureIsView(const WebPPicture* picture) {
277 if (picture == NULL) return 0;
278 if (picture->use_argb) {
279 return (picture->memory_argb_ == NULL);
281 return (picture->memory_ == NULL);
284 int WebPPictureView(const WebPPicture* src,
285 int left, int top, int width, int height,
286 WebPPicture* dst) {
287 if (src == NULL || dst == NULL) return 0;
289 // verify rectangle position.
290 if (!AdjustAndCheckRectangle(src, &left, &top, width, height)) return 0;
292 if (src != dst) { // beware of aliasing! We don't want to leak 'memory_'.
293 WebPPictureGrabSpecs(src, dst);
295 dst->width = width;
296 dst->height = height;
297 if (!src->use_argb) {
298 dst->y = src->y + top * src->y_stride + left;
299 dst->u = src->u + (top >> 1) * src->uv_stride + (left >> 1);
300 dst->v = src->v + (top >> 1) * src->uv_stride + (left >> 1);
301 dst->y_stride = src->y_stride;
302 dst->uv_stride = src->uv_stride;
303 if (src->a != NULL) {
304 dst->a = src->a + top * src->a_stride + left;
305 dst->a_stride = src->a_stride;
307 #ifdef WEBP_EXPERIMENTAL_FEATURES
308 if (src->u0 != NULL) {
309 const int left_pos =
310 IS_YUV_CSP(dst->colorspace, WEBP_YUV422) ? (left >> 1) : left;
311 dst->u0 = src->u0 + top * src->uv0_stride + left_pos;
312 dst->v0 = src->v0 + top * src->uv0_stride + left_pos;
313 dst->uv0_stride = src->uv0_stride;
315 #endif
316 } else {
317 dst->argb = src->argb + top * src->argb_stride + left;
318 dst->argb_stride = src->argb_stride;
320 return 1;
323 //------------------------------------------------------------------------------
324 // Picture cropping
326 int WebPPictureCrop(WebPPicture* pic,
327 int left, int top, int width, int height) {
328 WebPPicture tmp;
330 if (pic == NULL) return 0;
331 if (!AdjustAndCheckRectangle(pic, &left, &top, width, height)) return 0;
333 WebPPictureGrabSpecs(pic, &tmp);
334 tmp.width = width;
335 tmp.height = height;
336 if (!WebPPictureAlloc(&tmp)) return 0;
338 if (!pic->use_argb) {
339 const int y_offset = top * pic->y_stride + left;
340 const int uv_offset = (top / 2) * pic->uv_stride + left / 2;
341 CopyPlane(pic->y + y_offset, pic->y_stride,
342 tmp.y, tmp.y_stride, width, height);
343 CopyPlane(pic->u + uv_offset, pic->uv_stride,
344 tmp.u, tmp.uv_stride, HALVE(width), HALVE(height));
345 CopyPlane(pic->v + uv_offset, pic->uv_stride,
346 tmp.v, tmp.uv_stride, HALVE(width), HALVE(height));
348 if (tmp.a != NULL) {
349 const int a_offset = top * pic->a_stride + left;
350 CopyPlane(pic->a + a_offset, pic->a_stride,
351 tmp.a, tmp.a_stride, width, height);
353 #ifdef WEBP_EXPERIMENTAL_FEATURES
354 if (tmp.u0 != NULL) {
355 int w = width;
356 int left_pos = left;
357 if (IS_YUV_CSP(tmp.colorspace, WEBP_YUV422)) {
358 w = HALVE(w);
359 left_pos = HALVE(left_pos);
361 CopyPlane(pic->u0 + top * pic->uv0_stride + left_pos, pic->uv0_stride,
362 tmp.u0, tmp.uv0_stride, w, height);
363 CopyPlane(pic->v0 + top * pic->uv0_stride + left_pos, pic->uv0_stride,
364 tmp.v0, tmp.uv0_stride, w, height);
366 #endif
367 } else {
368 const uint8_t* const src =
369 (const uint8_t*)(pic->argb + top * pic->argb_stride + left);
370 CopyPlane(src, pic->argb_stride * 4,
371 (uint8_t*)tmp.argb, tmp.argb_stride * 4,
372 width * 4, height);
374 WebPPictureFree(pic);
375 *pic = tmp;
376 return 1;
379 //------------------------------------------------------------------------------
380 // Simple picture rescaler
382 static void RescalePlane(const uint8_t* src,
383 int src_width, int src_height, int src_stride,
384 uint8_t* dst,
385 int dst_width, int dst_height, int dst_stride,
386 int32_t* const work,
387 int num_channels) {
388 WebPRescaler rescaler;
389 int y = 0;
390 WebPRescalerInit(&rescaler, src_width, src_height,
391 dst, dst_width, dst_height, dst_stride,
392 num_channels,
393 src_width, dst_width,
394 src_height, dst_height,
395 work);
396 memset(work, 0, 2 * dst_width * num_channels * sizeof(*work));
397 while (y < src_height) {
398 y += WebPRescalerImport(&rescaler, src_height - y,
399 src + y * src_stride, src_stride);
400 WebPRescalerExport(&rescaler);
404 static void AlphaMultiplyARGB(WebPPicture* const pic, int inverse) {
405 uint32_t* ptr = pic->argb;
406 int y;
407 for (y = 0; y < pic->height; ++y) {
408 WebPMultARGBRow(ptr, pic->width, inverse);
409 ptr += pic->argb_stride;
413 static void AlphaMultiplyY(WebPPicture* const pic, int inverse) {
414 const uint8_t* ptr_a = pic->a;
415 if (ptr_a != NULL) {
416 uint8_t* ptr_y = pic->y;
417 int y;
418 for (y = 0; y < pic->height; ++y) {
419 WebPMultRow(ptr_y, ptr_a, pic->width, inverse);
420 ptr_y += pic->y_stride;
421 ptr_a += pic->a_stride;
426 int WebPPictureRescale(WebPPicture* pic, int width, int height) {
427 WebPPicture tmp;
428 int prev_width, prev_height;
429 int32_t* work;
431 if (pic == NULL) return 0;
432 prev_width = pic->width;
433 prev_height = pic->height;
434 // if width is unspecified, scale original proportionally to height ratio.
435 if (width == 0) {
436 width = (prev_width * height + prev_height / 2) / prev_height;
438 // if height is unspecified, scale original proportionally to width ratio.
439 if (height == 0) {
440 height = (prev_height * width + prev_width / 2) / prev_width;
442 // Check if the overall dimensions still make sense.
443 if (width <= 0 || height <= 0) return 0;
445 WebPPictureGrabSpecs(pic, &tmp);
446 tmp.width = width;
447 tmp.height = height;
448 if (!WebPPictureAlloc(&tmp)) return 0;
450 if (!pic->use_argb) {
451 work = (int32_t*)WebPSafeMalloc(2ULL * width, sizeof(*work));
452 if (work == NULL) {
453 WebPPictureFree(&tmp);
454 return 0;
456 // If present, we need to rescale alpha first (for AlphaMultiplyY).
457 if (pic->a != NULL) {
458 RescalePlane(pic->a, prev_width, prev_height, pic->a_stride,
459 tmp.a, width, height, tmp.a_stride, work, 1);
462 // We take transparency into account on the luma plane only. That's not
463 // totally exact blending, but still is a good approximation.
464 AlphaMultiplyY(pic, 0);
465 RescalePlane(pic->y, prev_width, prev_height, pic->y_stride,
466 tmp.y, width, height, tmp.y_stride, work, 1);
467 AlphaMultiplyY(&tmp, 1);
469 RescalePlane(pic->u,
470 HALVE(prev_width), HALVE(prev_height), pic->uv_stride,
471 tmp.u,
472 HALVE(width), HALVE(height), tmp.uv_stride, work, 1);
473 RescalePlane(pic->v,
474 HALVE(prev_width), HALVE(prev_height), pic->uv_stride,
475 tmp.v,
476 HALVE(width), HALVE(height), tmp.uv_stride, work, 1);
478 #ifdef WEBP_EXPERIMENTAL_FEATURES
479 if (tmp.u0 != NULL) {
480 const int s = IS_YUV_CSP(tmp.colorspace, WEBP_YUV422) ? 2 : 1;
481 RescalePlane(
482 pic->u0, (prev_width + s / 2) / s, prev_height, pic->uv0_stride,
483 tmp.u0, (width + s / 2) / s, height, tmp.uv0_stride, work, 1);
484 RescalePlane(
485 pic->v0, (prev_width + s / 2) / s, prev_height, pic->uv0_stride,
486 tmp.v0, (width + s / 2) / s, height, tmp.uv0_stride, work, 1);
488 #endif
489 } else {
490 work = (int32_t*)WebPSafeMalloc(2ULL * width * 4, sizeof(*work));
491 if (work == NULL) {
492 WebPPictureFree(&tmp);
493 return 0;
495 // In order to correctly interpolate colors, we need to apply the alpha
496 // weighting first (black-matting), scale the RGB values, and remove
497 // the premultiplication afterward (while preserving the alpha channel).
498 AlphaMultiplyARGB(pic, 0);
499 RescalePlane((const uint8_t*)pic->argb, prev_width, prev_height,
500 pic->argb_stride * 4,
501 (uint8_t*)tmp.argb, width, height,
502 tmp.argb_stride * 4,
503 work, 4);
504 AlphaMultiplyARGB(&tmp, 1);
506 WebPPictureFree(pic);
507 free(work);
508 *pic = tmp;
509 return 1;
512 //------------------------------------------------------------------------------
513 // WebPMemoryWriter: Write-to-memory
515 void WebPMemoryWriterInit(WebPMemoryWriter* writer) {
516 writer->mem = NULL;
517 writer->size = 0;
518 writer->max_size = 0;
521 int WebPMemoryWrite(const uint8_t* data, size_t data_size,
522 const WebPPicture* picture) {
523 WebPMemoryWriter* const w = (WebPMemoryWriter*)picture->custom_ptr;
524 uint64_t next_size;
525 if (w == NULL) {
526 return 1;
528 next_size = (uint64_t)w->size + data_size;
529 if (next_size > w->max_size) {
530 uint8_t* new_mem;
531 uint64_t next_max_size = 2ULL * w->max_size;
532 if (next_max_size < next_size) next_max_size = next_size;
533 if (next_max_size < 8192ULL) next_max_size = 8192ULL;
534 new_mem = (uint8_t*)WebPSafeMalloc(next_max_size, 1);
535 if (new_mem == NULL) {
536 return 0;
538 if (w->size > 0) {
539 memcpy(new_mem, w->mem, w->size);
541 free(w->mem);
542 w->mem = new_mem;
543 // down-cast is ok, thanks to WebPSafeMalloc
544 w->max_size = (size_t)next_max_size;
546 if (data_size > 0) {
547 memcpy(w->mem + w->size, data, data_size);
548 w->size += data_size;
550 return 1;
553 //------------------------------------------------------------------------------
554 // Detection of non-trivial transparency
556 // Returns true if alpha[] has non-0xff values.
557 static int CheckNonOpaque(const uint8_t* alpha, int width, int height,
558 int x_step, int y_step) {
559 if (alpha == NULL) return 0;
560 while (height-- > 0) {
561 int x;
562 for (x = 0; x < width * x_step; x += x_step) {
563 if (alpha[x] != 0xff) return 1; // TODO(skal): check 4/8 bytes at a time.
565 alpha += y_step;
567 return 0;
570 // Checking for the presence of non-opaque alpha.
571 int WebPPictureHasTransparency(const WebPPicture* picture) {
572 if (picture == NULL) return 0;
573 if (!picture->use_argb) {
574 return CheckNonOpaque(picture->a, picture->width, picture->height,
575 1, picture->a_stride);
576 } else {
577 int x, y;
578 const uint32_t* argb = picture->argb;
579 if (argb == NULL) return 0;
580 for (y = 0; y < picture->height; ++y) {
581 for (x = 0; x < picture->width; ++x) {
582 if (argb[x] < 0xff000000u) return 1; // test any alpha values != 0xff
584 argb += picture->argb_stride;
587 return 0;
590 //------------------------------------------------------------------------------
591 // RGB -> YUV conversion
593 static int RGBToY(int r, int g, int b, VP8Random* const rg) {
594 return VP8RGBToY(r, g, b, VP8RandomBits(rg, YUV_FIX));
597 static int RGBToU(int r, int g, int b, VP8Random* const rg) {
598 return VP8RGBToU(r, g, b, VP8RandomBits(rg, YUV_FIX + 2));
601 static int RGBToV(int r, int g, int b, VP8Random* const rg) {
602 return VP8RGBToV(r, g, b, VP8RandomBits(rg, YUV_FIX + 2));
605 //------------------------------------------------------------------------------
607 #if defined(USE_GAMMA_COMPRESSION)
609 // gamma-compensates loss of resolution during chroma subsampling
610 #define kGamma 0.80
611 #define kGammaFix 12 // fixed-point precision for linear values
612 #define kGammaScale ((1 << kGammaFix) - 1)
613 #define kGammaTabFix 7 // fixed-point fractional bits precision
614 #define kGammaTabScale (1 << kGammaTabFix)
615 #define kGammaTabRounder (kGammaTabScale >> 1)
616 #define kGammaTabSize (1 << (kGammaFix - kGammaTabFix))
618 static int kLinearToGammaTab[kGammaTabSize + 1];
619 static uint16_t kGammaToLinearTab[256];
620 static int kGammaTablesOk = 0;
622 static void InitGammaTables(void) {
623 if (!kGammaTablesOk) {
624 int v;
625 const double scale = 1. / kGammaScale;
626 for (v = 0; v <= 255; ++v) {
627 kGammaToLinearTab[v] =
628 (uint16_t)(pow(v / 255., kGamma) * kGammaScale + .5);
630 for (v = 0; v <= kGammaTabSize; ++v) {
631 const double x = scale * (v << kGammaTabFix);
632 kLinearToGammaTab[v] = (int)(pow(x, 1. / kGamma) * 255. + .5);
634 kGammaTablesOk = 1;
638 static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) {
639 return kGammaToLinearTab[v];
642 // Convert a linear value 'v' to YUV_FIX+2 fixed-point precision
643 // U/V value, suitable for RGBToU/V calls.
644 static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) {
645 const int v = base_value << shift; // final uplifted value
646 const int tab_pos = v >> (kGammaTabFix + 2); // integer part
647 const int x = v & ((kGammaTabScale << 2) - 1); // fractional part
648 const int v0 = kLinearToGammaTab[tab_pos];
649 const int v1 = kLinearToGammaTab[tab_pos + 1];
650 const int y = v1 * x + v0 * ((kGammaTabScale << 2) - x); // interpolate
651 return (y + kGammaTabRounder) >> kGammaTabFix; // descale
654 #else
656 static void InitGammaTables(void) {}
657 static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { return v; }
658 static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) {
659 (void)shift;
660 return v;
663 #endif // USE_GAMMA_COMPRESSION
665 //------------------------------------------------------------------------------
667 #define SUM4(ptr) LinearToGamma( \
668 GammaToLinear((ptr)[0]) + \
669 GammaToLinear((ptr)[step]) + \
670 GammaToLinear((ptr)[rgb_stride]) + \
671 GammaToLinear((ptr)[rgb_stride + step]), 0) \
673 #define SUM2H(ptr) \
674 LinearToGamma(GammaToLinear((ptr)[0]) + GammaToLinear((ptr)[step]), 1)
675 #define SUM2V(ptr) \
676 LinearToGamma(GammaToLinear((ptr)[0]) + GammaToLinear((ptr)[rgb_stride]), 1)
677 #define SUM1(ptr) \
678 LinearToGamma(GammaToLinear((ptr)[0]), 2)
680 #define RGB_TO_UV(x, y, SUM) { \
681 const int src = (2 * (step * (x) + (y) * rgb_stride)); \
682 const int dst = (x) + (y) * picture->uv_stride; \
683 const int r = SUM(r_ptr + src); \
684 const int g = SUM(g_ptr + src); \
685 const int b = SUM(b_ptr + src); \
686 picture->u[dst] = RGBToU(r, g, b, &rg); \
687 picture->v[dst] = RGBToV(r, g, b, &rg); \
690 #define RGB_TO_UV0(x_in, x_out, y, SUM) { \
691 const int src = (step * (x_in) + (y) * rgb_stride); \
692 const int dst = (x_out) + (y) * picture->uv0_stride; \
693 const int r = SUM(r_ptr + src); \
694 const int g = SUM(g_ptr + src); \
695 const int b = SUM(b_ptr + src); \
696 picture->u0[dst] = RGBToU(r, g, b, &rg); \
697 picture->v0[dst] = RGBToV(r, g, b, &rg); \
700 static void MakeGray(WebPPicture* const picture) {
701 int y;
702 const int uv_width = HALVE(picture->width);
703 const int uv_height = HALVE(picture->height);
704 for (y = 0; y < uv_height; ++y) {
705 memset(picture->u + y * picture->uv_stride, 128, uv_width);
706 memset(picture->v + y * picture->uv_stride, 128, uv_width);
710 static int ImportYUVAFromRGBA(const uint8_t* const r_ptr,
711 const uint8_t* const g_ptr,
712 const uint8_t* const b_ptr,
713 const uint8_t* const a_ptr,
714 int step, // bytes per pixel
715 int rgb_stride, // bytes per scanline
716 float dithering,
717 WebPPicture* const picture) {
718 const WebPEncCSP uv_csp = picture->colorspace & WEBP_CSP_UV_MASK;
719 int x, y;
720 const int width = picture->width;
721 const int height = picture->height;
722 const int has_alpha = CheckNonOpaque(a_ptr, width, height, step, rgb_stride);
723 VP8Random rg;
725 picture->colorspace = uv_csp;
726 picture->use_argb = 0;
727 if (has_alpha) {
728 picture->colorspace |= WEBP_CSP_ALPHA_BIT;
730 if (!WebPPictureAlloc(picture)) return 0;
732 VP8InitRandom(&rg, dithering);
733 InitGammaTables();
735 // Import luma plane
736 for (y = 0; y < height; ++y) {
737 for (x = 0; x < width; ++x) {
738 const int offset = step * x + y * rgb_stride;
739 picture->y[x + y * picture->y_stride] =
740 RGBToY(r_ptr[offset], g_ptr[offset], b_ptr[offset], &rg);
744 // Downsample U/V plane
745 if (uv_csp != WEBP_YUV400) {
746 for (y = 0; y < (height >> 1); ++y) {
747 for (x = 0; x < (width >> 1); ++x) {
748 RGB_TO_UV(x, y, SUM4);
750 if (width & 1) {
751 RGB_TO_UV(x, y, SUM2V);
754 if (height & 1) {
755 for (x = 0; x < (width >> 1); ++x) {
756 RGB_TO_UV(x, y, SUM2H);
758 if (width & 1) {
759 RGB_TO_UV(x, y, SUM1);
763 #ifdef WEBP_EXPERIMENTAL_FEATURES
764 // Store original U/V samples too
765 if (uv_csp == WEBP_YUV422) {
766 for (y = 0; y < height; ++y) {
767 for (x = 0; x < (width >> 1); ++x) {
768 RGB_TO_UV0(2 * x, x, y, SUM2H);
770 if (width & 1) {
771 RGB_TO_UV0(2 * x, x, y, SUM1);
774 } else if (uv_csp == WEBP_YUV444) {
775 for (y = 0; y < height; ++y) {
776 for (x = 0; x < width; ++x) {
777 RGB_TO_UV0(x, x, y, SUM1);
781 #endif
782 } else {
783 MakeGray(picture);
786 if (has_alpha) {
787 assert(step >= 4);
788 assert(picture->a != NULL);
789 for (y = 0; y < height; ++y) {
790 for (x = 0; x < width; ++x) {
791 picture->a[x + y * picture->a_stride] =
792 a_ptr[step * x + y * rgb_stride];
796 return 1;
799 static int Import(WebPPicture* const picture,
800 const uint8_t* const rgb, int rgb_stride,
801 int step, int swap_rb, int import_alpha) {
802 const uint8_t* const r_ptr = rgb + (swap_rb ? 2 : 0);
803 const uint8_t* const g_ptr = rgb + 1;
804 const uint8_t* const b_ptr = rgb + (swap_rb ? 0 : 2);
805 const uint8_t* const a_ptr = import_alpha ? rgb + 3 : NULL;
806 const int width = picture->width;
807 const int height = picture->height;
809 if (!picture->use_argb) {
810 return ImportYUVAFromRGBA(r_ptr, g_ptr, b_ptr, a_ptr, step, rgb_stride,
811 0.f /* no dithering */, picture);
813 if (import_alpha) {
814 picture->colorspace |= WEBP_CSP_ALPHA_BIT;
815 } else {
816 picture->colorspace &= ~WEBP_CSP_ALPHA_BIT;
818 if (!WebPPictureAlloc(picture)) return 0;
820 if (!import_alpha) {
821 int x, y;
822 for (y = 0; y < height; ++y) {
823 for (x = 0; x < width; ++x) {
824 const int offset = step * x + y * rgb_stride;
825 const uint32_t argb =
826 MakeARGB32(r_ptr[offset], g_ptr[offset], b_ptr[offset]);
827 picture->argb[x + y * picture->argb_stride] = argb;
830 } else {
831 int x, y;
832 assert(step >= 4);
833 for (y = 0; y < height; ++y) {
834 for (x = 0; x < width; ++x) {
835 const int offset = step * x + y * rgb_stride;
836 const uint32_t argb = ((uint32_t)a_ptr[offset] << 24) |
837 (r_ptr[offset] << 16) |
838 (g_ptr[offset] << 8) |
839 (b_ptr[offset]);
840 picture->argb[x + y * picture->argb_stride] = argb;
844 return 1;
846 #undef SUM4
847 #undef SUM2V
848 #undef SUM2H
849 #undef SUM1
850 #undef RGB_TO_UV
852 int WebPPictureImportRGB(WebPPicture* picture,
853 const uint8_t* rgb, int rgb_stride) {
854 return Import(picture, rgb, rgb_stride, 3, 0, 0);
857 int WebPPictureImportBGR(WebPPicture* picture,
858 const uint8_t* rgb, int rgb_stride) {
859 return Import(picture, rgb, rgb_stride, 3, 1, 0);
862 int WebPPictureImportRGBA(WebPPicture* picture,
863 const uint8_t* rgba, int rgba_stride) {
864 return Import(picture, rgba, rgba_stride, 4, 0, 1);
867 int WebPPictureImportBGRA(WebPPicture* picture,
868 const uint8_t* rgba, int rgba_stride) {
869 return Import(picture, rgba, rgba_stride, 4, 1, 1);
872 int WebPPictureImportRGBX(WebPPicture* picture,
873 const uint8_t* rgba, int rgba_stride) {
874 return Import(picture, rgba, rgba_stride, 4, 0, 0);
877 int WebPPictureImportBGRX(WebPPicture* picture,
878 const uint8_t* rgba, int rgba_stride) {
879 return Import(picture, rgba, rgba_stride, 4, 1, 0);
882 //------------------------------------------------------------------------------
883 // Automatic YUV <-> ARGB conversions.
885 int WebPPictureYUVAToARGB(WebPPicture* picture) {
886 if (picture == NULL) return 0;
887 if (picture->y == NULL || picture->u == NULL || picture->v == NULL) {
888 return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER);
890 if ((picture->colorspace & WEBP_CSP_ALPHA_BIT) && picture->a == NULL) {
891 return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER);
893 if ((picture->colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) {
894 return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION);
896 // Allocate a new argb buffer (discarding the previous one).
897 if (!PictureAllocARGB(picture)) return 0;
899 // Convert
901 int y;
902 const int width = picture->width;
903 const int height = picture->height;
904 const int argb_stride = 4 * picture->argb_stride;
905 uint8_t* dst = (uint8_t*)picture->argb;
906 const uint8_t *cur_u = picture->u, *cur_v = picture->v, *cur_y = picture->y;
907 WebPUpsampleLinePairFunc upsample = WebPGetLinePairConverter(ALPHA_IS_LAST);
909 // First row, with replicated top samples.
910 upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width);
911 cur_y += picture->y_stride;
912 dst += argb_stride;
913 // Center rows.
914 for (y = 1; y + 1 < height; y += 2) {
915 const uint8_t* const top_u = cur_u;
916 const uint8_t* const top_v = cur_v;
917 cur_u += picture->uv_stride;
918 cur_v += picture->uv_stride;
919 upsample(cur_y, cur_y + picture->y_stride, top_u, top_v, cur_u, cur_v,
920 dst, dst + argb_stride, width);
921 cur_y += 2 * picture->y_stride;
922 dst += 2 * argb_stride;
924 // Last row (if needed), with replicated bottom samples.
925 if (height > 1 && !(height & 1)) {
926 upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width);
928 // Insert alpha values if needed, in replacement for the default 0xff ones.
929 if (picture->colorspace & WEBP_CSP_ALPHA_BIT) {
930 for (y = 0; y < height; ++y) {
931 uint32_t* const argb_dst = picture->argb + y * picture->argb_stride;
932 const uint8_t* const src = picture->a + y * picture->a_stride;
933 int x;
934 for (x = 0; x < width; ++x) {
935 argb_dst[x] = (argb_dst[x] & 0x00ffffffu) | ((uint32_t)src[x] << 24);
940 return 1;
943 int WebPPictureARGBToYUVADithered(WebPPicture* picture, WebPEncCSP colorspace,
944 float dithering) {
945 if (picture == NULL) return 0;
946 if (picture->argb == NULL) {
947 return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER);
948 } else {
949 const uint8_t* const argb = (const uint8_t*)picture->argb;
950 const uint8_t* const r = ALPHA_IS_LAST ? argb + 2 : argb + 1;
951 const uint8_t* const g = ALPHA_IS_LAST ? argb + 1 : argb + 2;
952 const uint8_t* const b = ALPHA_IS_LAST ? argb + 0 : argb + 3;
953 const uint8_t* const a = ALPHA_IS_LAST ? argb + 3 : argb + 0;
954 // We work on a tmp copy of 'picture', because ImportYUVAFromRGBA()
955 // would be calling WebPPictureFree(picture) otherwise.
956 WebPPicture tmp = *picture;
957 PictureResetARGB(&tmp); // reset ARGB buffer so that it's not free()'d.
958 tmp.use_argb = 0;
959 tmp.colorspace = colorspace & WEBP_CSP_UV_MASK;
960 if (!ImportYUVAFromRGBA(r, g, b, a, 4, 4 * picture->argb_stride, dithering,
961 &tmp)) {
962 return WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
964 // Copy back the YUV specs into 'picture'.
965 tmp.argb = picture->argb;
966 tmp.argb_stride = picture->argb_stride;
967 tmp.memory_argb_ = picture->memory_argb_;
968 *picture = tmp;
970 return 1;
973 int WebPPictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace) {
974 return WebPPictureARGBToYUVADithered(picture, colorspace, 0.f);
977 //------------------------------------------------------------------------------
978 // Helper: clean up fully transparent area to help compressibility.
980 #define SIZE 8
981 #define SIZE2 (SIZE / 2)
982 static int is_transparent_area(const uint8_t* ptr, int stride, int size) {
983 int y, x;
984 for (y = 0; y < size; ++y) {
985 for (x = 0; x < size; ++x) {
986 if (ptr[x]) {
987 return 0;
990 ptr += stride;
992 return 1;
995 static WEBP_INLINE void flatten(uint8_t* ptr, int v, int stride, int size) {
996 int y;
997 for (y = 0; y < size; ++y) {
998 memset(ptr, v, size);
999 ptr += stride;
1003 void WebPCleanupTransparentArea(WebPPicture* pic) {
1004 int x, y, w, h;
1005 const uint8_t* a_ptr;
1006 int values[3] = { 0 };
1008 if (pic == NULL) return;
1010 a_ptr = pic->a;
1011 if (a_ptr == NULL) return; // nothing to do
1013 w = pic->width / SIZE;
1014 h = pic->height / SIZE;
1015 for (y = 0; y < h; ++y) {
1016 int need_reset = 1;
1017 for (x = 0; x < w; ++x) {
1018 const int off_a = (y * pic->a_stride + x) * SIZE;
1019 const int off_y = (y * pic->y_stride + x) * SIZE;
1020 const int off_uv = (y * pic->uv_stride + x) * SIZE2;
1021 if (is_transparent_area(a_ptr + off_a, pic->a_stride, SIZE)) {
1022 if (need_reset) {
1023 values[0] = pic->y[off_y];
1024 values[1] = pic->u[off_uv];
1025 values[2] = pic->v[off_uv];
1026 need_reset = 0;
1028 flatten(pic->y + off_y, values[0], pic->y_stride, SIZE);
1029 flatten(pic->u + off_uv, values[1], pic->uv_stride, SIZE2);
1030 flatten(pic->v + off_uv, values[2], pic->uv_stride, SIZE2);
1031 } else {
1032 need_reset = 1;
1035 // ignore the left-overs on right/bottom
1039 #undef SIZE
1040 #undef SIZE2
1042 //------------------------------------------------------------------------------
1043 // Blend color and remove transparency info
1045 #define BLEND(V0, V1, ALPHA) \
1046 ((((V0) * (255 - (ALPHA)) + (V1) * (ALPHA)) * 0x101) >> 16)
1047 #define BLEND_10BIT(V0, V1, ALPHA) \
1048 ((((V0) * (1020 - (ALPHA)) + (V1) * (ALPHA)) * 0x101) >> 18)
1050 void WebPBlendAlpha(WebPPicture* pic, uint32_t background_rgb) {
1051 const int red = (background_rgb >> 16) & 0xff;
1052 const int green = (background_rgb >> 8) & 0xff;
1053 const int blue = (background_rgb >> 0) & 0xff;
1054 VP8Random rg;
1055 int x, y;
1056 if (pic == NULL) return;
1057 VP8InitRandom(&rg, 0.f);
1058 if (!pic->use_argb) {
1059 const int uv_width = (pic->width >> 1); // omit last pixel during u/v loop
1060 const int Y0 = RGBToY(red, green, blue, &rg);
1061 // VP8RGBToU/V expects the u/v values summed over four pixels
1062 const int U0 = RGBToU(4 * red, 4 * green, 4 * blue, &rg);
1063 const int V0 = RGBToV(4 * red, 4 * green, 4 * blue, &rg);
1064 const int has_alpha = pic->colorspace & WEBP_CSP_ALPHA_BIT;
1065 if (!has_alpha || pic->a == NULL) return; // nothing to do
1066 for (y = 0; y < pic->height; ++y) {
1067 // Luma blending
1068 uint8_t* const y_ptr = pic->y + y * pic->y_stride;
1069 uint8_t* const a_ptr = pic->a + y * pic->a_stride;
1070 for (x = 0; x < pic->width; ++x) {
1071 const int alpha = a_ptr[x];
1072 if (alpha < 0xff) {
1073 y_ptr[x] = BLEND(Y0, y_ptr[x], a_ptr[x]);
1076 // Chroma blending every even line
1077 if ((y & 1) == 0) {
1078 uint8_t* const u = pic->u + (y >> 1) * pic->uv_stride;
1079 uint8_t* const v = pic->v + (y >> 1) * pic->uv_stride;
1080 uint8_t* const a_ptr2 =
1081 (y + 1 == pic->height) ? a_ptr : a_ptr + pic->a_stride;
1082 for (x = 0; x < uv_width; ++x) {
1083 // Average four alpha values into a single blending weight.
1084 // TODO(skal): might lead to visible contouring. Can we do better?
1085 const int alpha =
1086 a_ptr[2 * x + 0] + a_ptr[2 * x + 1] +
1087 a_ptr2[2 * x + 0] + a_ptr2[2 * x + 1];
1088 u[x] = BLEND_10BIT(U0, u[x], alpha);
1089 v[x] = BLEND_10BIT(V0, v[x], alpha);
1091 if (pic->width & 1) { // rightmost pixel
1092 const int alpha = 2 * (a_ptr[2 * x + 0] + a_ptr2[2 * x + 0]);
1093 u[x] = BLEND_10BIT(U0, u[x], alpha);
1094 v[x] = BLEND_10BIT(V0, v[x], alpha);
1097 memset(a_ptr, 0xff, pic->width);
1099 } else {
1100 uint32_t* argb = pic->argb;
1101 const uint32_t background = MakeARGB32(red, green, blue);
1102 for (y = 0; y < pic->height; ++y) {
1103 for (x = 0; x < pic->width; ++x) {
1104 const int alpha = (argb[x] >> 24) & 0xff;
1105 if (alpha != 0xff) {
1106 if (alpha > 0) {
1107 int r = (argb[x] >> 16) & 0xff;
1108 int g = (argb[x] >> 8) & 0xff;
1109 int b = (argb[x] >> 0) & 0xff;
1110 r = BLEND(red, r, alpha);
1111 g = BLEND(green, g, alpha);
1112 b = BLEND(blue, b, alpha);
1113 argb[x] = MakeARGB32(r, g, b);
1114 } else {
1115 argb[x] = background;
1119 argb += pic->argb_stride;
1124 #undef BLEND
1125 #undef BLEND_10BIT
1127 //------------------------------------------------------------------------------
1128 // local-min distortion
1130 // For every pixel in the *reference* picture, we search for the local best
1131 // match in the compressed image. This is not a symmetrical measure.
1133 // search radius. Shouldn't be too large.
1134 #define RADIUS 2
1136 static float AccumulateLSIM(const uint8_t* src, int src_stride,
1137 const uint8_t* ref, int ref_stride,
1138 int w, int h) {
1139 int x, y;
1140 double total_sse = 0.;
1141 for (y = 0; y < h; ++y) {
1142 const int y_0 = (y - RADIUS < 0) ? 0 : y - RADIUS;
1143 const int y_1 = (y + RADIUS + 1 >= h) ? h : y + RADIUS + 1;
1144 for (x = 0; x < w; ++x) {
1145 const int x_0 = (x - RADIUS < 0) ? 0 : x - RADIUS;
1146 const int x_1 = (x + RADIUS + 1 >= w) ? w : x + RADIUS + 1;
1147 double best_sse = 255. * 255.;
1148 const double value = (double)ref[y * ref_stride + x];
1149 int i, j;
1150 for (j = y_0; j < y_1; ++j) {
1151 const uint8_t* s = src + j * src_stride;
1152 for (i = x_0; i < x_1; ++i) {
1153 const double sse = (double)(s[i] - value) * (s[i] - value);
1154 if (sse < best_sse) best_sse = sse;
1157 total_sse += best_sse;
1160 return (float)total_sse;
1162 #undef RADIUS
1164 //------------------------------------------------------------------------------
1165 // Distortion
1167 // Max value returned in case of exact similarity.
1168 static const double kMinDistortion_dB = 99.;
1169 static float GetPSNR(const double v) {
1170 return (float)((v > 0.) ? -4.3429448 * log(v / (255 * 255.))
1171 : kMinDistortion_dB);
1174 int WebPPictureDistortion(const WebPPicture* src, const WebPPicture* ref,
1175 int type, float result[5]) {
1176 DistoStats stats[5];
1177 int has_alpha;
1178 int uv_w, uv_h;
1180 if (src == NULL || ref == NULL ||
1181 src->width != ref->width || src->height != ref->height ||
1182 src->y == NULL || ref->y == NULL ||
1183 src->u == NULL || ref->u == NULL ||
1184 src->v == NULL || ref->v == NULL ||
1185 result == NULL) {
1186 return 0;
1188 // TODO(skal): provide distortion for ARGB too.
1189 if (src->use_argb == 1 || src->use_argb != ref->use_argb) {
1190 return 0;
1193 has_alpha = !!(src->colorspace & WEBP_CSP_ALPHA_BIT);
1194 if (has_alpha != !!(ref->colorspace & WEBP_CSP_ALPHA_BIT) ||
1195 (has_alpha && (src->a == NULL || ref->a == NULL))) {
1196 return 0;
1199 memset(stats, 0, sizeof(stats));
1201 uv_w = HALVE(src->width);
1202 uv_h = HALVE(src->height);
1203 if (type >= 2) {
1204 float sse[4];
1205 sse[0] = AccumulateLSIM(src->y, src->y_stride,
1206 ref->y, ref->y_stride, src->width, src->height);
1207 sse[1] = AccumulateLSIM(src->u, src->uv_stride,
1208 ref->u, ref->uv_stride, uv_w, uv_h);
1209 sse[2] = AccumulateLSIM(src->v, src->uv_stride,
1210 ref->v, ref->uv_stride, uv_w, uv_h);
1211 sse[3] = has_alpha ? AccumulateLSIM(src->a, src->a_stride,
1212 ref->a, ref->a_stride,
1213 src->width, src->height)
1214 : 0.f;
1215 result[0] = GetPSNR(sse[0] / (src->width * src->height));
1216 result[1] = GetPSNR(sse[1] / (uv_w * uv_h));
1217 result[2] = GetPSNR(sse[2] / (uv_w * uv_h));
1218 result[3] = GetPSNR(sse[3] / (src->width * src->height));
1220 double total_sse = sse[0] + sse[1] + sse[2];
1221 int total_pixels = src->width * src->height + 2 * uv_w * uv_h;
1222 if (has_alpha) {
1223 total_pixels += src->width * src->height;
1224 total_sse += sse[3];
1226 result[4] = GetPSNR(total_sse / total_pixels);
1228 } else {
1229 int c;
1230 VP8SSIMAccumulatePlane(src->y, src->y_stride,
1231 ref->y, ref->y_stride,
1232 src->width, src->height, &stats[0]);
1233 VP8SSIMAccumulatePlane(src->u, src->uv_stride,
1234 ref->u, ref->uv_stride,
1235 uv_w, uv_h, &stats[1]);
1236 VP8SSIMAccumulatePlane(src->v, src->uv_stride,
1237 ref->v, ref->uv_stride,
1238 uv_w, uv_h, &stats[2]);
1239 if (has_alpha) {
1240 VP8SSIMAccumulatePlane(src->a, src->a_stride,
1241 ref->a, ref->a_stride,
1242 src->width, src->height, &stats[3]);
1244 for (c = 0; c <= 4; ++c) {
1245 if (type == 1) {
1246 const double v = VP8SSIMGet(&stats[c]);
1247 result[c] = (float)((v < 1.) ? -10.0 * log10(1. - v)
1248 : kMinDistortion_dB);
1249 } else {
1250 const double v = VP8SSIMGetSquaredError(&stats[c]);
1251 result[c] = GetPSNR(v);
1253 // Accumulate forward
1254 if (c < 4) VP8SSIMAddStats(&stats[c], &stats[4]);
1257 return 1;
1260 //------------------------------------------------------------------------------
1261 // Simplest high-level calls:
1263 typedef int (*Importer)(WebPPicture* const, const uint8_t* const, int);
1265 static size_t Encode(const uint8_t* rgba, int width, int height, int stride,
1266 Importer import, float quality_factor, int lossless,
1267 uint8_t** output) {
1268 WebPPicture pic;
1269 WebPConfig config;
1270 WebPMemoryWriter wrt;
1271 int ok;
1273 if (!WebPConfigPreset(&config, WEBP_PRESET_DEFAULT, quality_factor) ||
1274 !WebPPictureInit(&pic)) {
1275 return 0; // shouldn't happen, except if system installation is broken
1278 config.lossless = !!lossless;
1279 pic.use_argb = !!lossless;
1280 pic.width = width;
1281 pic.height = height;
1282 pic.writer = WebPMemoryWrite;
1283 pic.custom_ptr = &wrt;
1284 WebPMemoryWriterInit(&wrt);
1286 ok = import(&pic, rgba, stride) && WebPEncode(&config, &pic);
1287 WebPPictureFree(&pic);
1288 if (!ok) {
1289 free(wrt.mem);
1290 *output = NULL;
1291 return 0;
1293 *output = wrt.mem;
1294 return wrt.size;
1297 #define ENCODE_FUNC(NAME, IMPORTER) \
1298 size_t NAME(const uint8_t* in, int w, int h, int bps, float q, \
1299 uint8_t** out) { \
1300 return Encode(in, w, h, bps, IMPORTER, q, 0, out); \
1303 ENCODE_FUNC(WebPEncodeRGB, WebPPictureImportRGB)
1304 ENCODE_FUNC(WebPEncodeBGR, WebPPictureImportBGR)
1305 ENCODE_FUNC(WebPEncodeRGBA, WebPPictureImportRGBA)
1306 ENCODE_FUNC(WebPEncodeBGRA, WebPPictureImportBGRA)
1308 #undef ENCODE_FUNC
1310 #define LOSSLESS_DEFAULT_QUALITY 70.
1311 #define LOSSLESS_ENCODE_FUNC(NAME, IMPORTER) \
1312 size_t NAME(const uint8_t* in, int w, int h, int bps, uint8_t** out) { \
1313 return Encode(in, w, h, bps, IMPORTER, LOSSLESS_DEFAULT_QUALITY, 1, out); \
1316 LOSSLESS_ENCODE_FUNC(WebPEncodeLosslessRGB, WebPPictureImportRGB)
1317 LOSSLESS_ENCODE_FUNC(WebPEncodeLosslessBGR, WebPPictureImportBGR)
1318 LOSSLESS_ENCODE_FUNC(WebPEncodeLosslessRGBA, WebPPictureImportRGBA)
1319 LOSSLESS_ENCODE_FUNC(WebPEncodeLosslessBGRA, WebPPictureImportBGRA)
1321 #undef LOSSLESS_ENCODE_FUNC
1323 //------------------------------------------------------------------------------