Cast: Stop logging kVideoFrameSentToEncoder and rename a couple events.
[chromium-blink-merge.git] / third_party / libwebp / utils / huffman_encode.c
blob9c5986738d07a2b82eeefed9f588f21e975dfcc7
1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Author: Jyrki Alakuijala (jyrki@google.com)
12 // Entropy encoding (Huffman) for webp lossless.
14 #include <assert.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include "./huffman_encode.h"
18 #include "../utils/utils.h"
19 #include "../webp/format_constants.h"
21 // -----------------------------------------------------------------------------
22 // Util function to optimize the symbol map for RLE coding
24 // Heuristics for selecting the stride ranges to collapse.
25 static int ValuesShouldBeCollapsedToStrideAverage(int a, int b) {
26 return abs(a - b) < 4;
29 // Change the population counts in a way that the consequent
30 // Huffman tree compression, especially its RLE-part, give smaller output.
31 static int OptimizeHuffmanForRle(int length, int* const counts) {
32 uint8_t* good_for_rle;
33 // 1) Let's make the Huffman code more compatible with rle encoding.
34 int i;
35 for (; length >= 0; --length) {
36 if (length == 0) {
37 return 1; // All zeros.
39 if (counts[length - 1] != 0) {
40 // Now counts[0..length - 1] does not have trailing zeros.
41 break;
44 // 2) Let's mark all population counts that already can be encoded
45 // with an rle code.
46 good_for_rle = (uint8_t*)calloc(length, 1);
47 if (good_for_rle == NULL) {
48 return 0;
51 // Let's not spoil any of the existing good rle codes.
52 // Mark any seq of 0's that is longer as 5 as a good_for_rle.
53 // Mark any seq of non-0's that is longer as 7 as a good_for_rle.
54 int symbol = counts[0];
55 int stride = 0;
56 for (i = 0; i < length + 1; ++i) {
57 if (i == length || counts[i] != symbol) {
58 if ((symbol == 0 && stride >= 5) ||
59 (symbol != 0 && stride >= 7)) {
60 int k;
61 for (k = 0; k < stride; ++k) {
62 good_for_rle[i - k - 1] = 1;
65 stride = 1;
66 if (i != length) {
67 symbol = counts[i];
69 } else {
70 ++stride;
74 // 3) Let's replace those population counts that lead to more rle codes.
76 int stride = 0;
77 int limit = counts[0];
78 int sum = 0;
79 for (i = 0; i < length + 1; ++i) {
80 if (i == length || good_for_rle[i] ||
81 (i != 0 && good_for_rle[i - 1]) ||
82 !ValuesShouldBeCollapsedToStrideAverage(counts[i], limit)) {
83 if (stride >= 4 || (stride >= 3 && sum == 0)) {
84 int k;
85 // The stride must end, collapse what we have, if we have enough (4).
86 int count = (sum + stride / 2) / stride;
87 if (count < 1) {
88 count = 1;
90 if (sum == 0) {
91 // Don't make an all zeros stride to be upgraded to ones.
92 count = 0;
94 for (k = 0; k < stride; ++k) {
95 // We don't want to change value at counts[i],
96 // that is already belonging to the next stride. Thus - 1.
97 counts[i - k - 1] = count;
100 stride = 0;
101 sum = 0;
102 if (i < length - 3) {
103 // All interesting strides have a count of at least 4,
104 // at least when non-zeros.
105 limit = (counts[i] + counts[i + 1] +
106 counts[i + 2] + counts[i + 3] + 2) / 4;
107 } else if (i < length) {
108 limit = counts[i];
109 } else {
110 limit = 0;
113 ++stride;
114 if (i != length) {
115 sum += counts[i];
116 if (stride >= 4) {
117 limit = (sum + stride / 2) / stride;
122 free(good_for_rle);
123 return 1;
126 typedef struct {
127 int total_count_;
128 int value_;
129 int pool_index_left_;
130 int pool_index_right_;
131 } HuffmanTree;
133 // A comparer function for two Huffman trees: sorts first by 'total count'
134 // (more comes first), and then by 'value' (more comes first).
135 static int CompareHuffmanTrees(const void* ptr1, const void* ptr2) {
136 const HuffmanTree* const t1 = (const HuffmanTree*)ptr1;
137 const HuffmanTree* const t2 = (const HuffmanTree*)ptr2;
138 if (t1->total_count_ > t2->total_count_) {
139 return -1;
140 } else if (t1->total_count_ < t2->total_count_) {
141 return 1;
142 } else {
143 assert(t1->value_ != t2->value_);
144 return (t1->value_ < t2->value_) ? -1 : 1;
148 static void SetBitDepths(const HuffmanTree* const tree,
149 const HuffmanTree* const pool,
150 uint8_t* const bit_depths, int level) {
151 if (tree->pool_index_left_ >= 0) {
152 SetBitDepths(&pool[tree->pool_index_left_], pool, bit_depths, level + 1);
153 SetBitDepths(&pool[tree->pool_index_right_], pool, bit_depths, level + 1);
154 } else {
155 bit_depths[tree->value_] = level;
159 // Create an optimal Huffman tree.
161 // (data,length): population counts.
162 // tree_limit: maximum bit depth (inclusive) of the codes.
163 // bit_depths[]: how many bits are used for the symbol.
165 // Returns 0 when an error has occurred.
167 // The catch here is that the tree cannot be arbitrarily deep
169 // count_limit is the value that is to be faked as the minimum value
170 // and this minimum value is raised until the tree matches the
171 // maximum length requirement.
173 // This algorithm is not of excellent performance for very long data blocks,
174 // especially when population counts are longer than 2**tree_limit, but
175 // we are not planning to use this with extremely long blocks.
177 // See http://en.wikipedia.org/wiki/Huffman_coding
178 static int GenerateOptimalTree(const int* const histogram, int histogram_size,
179 int tree_depth_limit,
180 uint8_t* const bit_depths) {
181 int count_min;
182 HuffmanTree* tree_pool;
183 HuffmanTree* tree;
184 int tree_size_orig = 0;
185 int i;
187 for (i = 0; i < histogram_size; ++i) {
188 if (histogram[i] != 0) {
189 ++tree_size_orig;
193 if (tree_size_orig == 0) { // pretty optimal already!
194 return 1;
197 // 3 * tree_size is enough to cover all the nodes representing a
198 // population and all the inserted nodes combining two existing nodes.
199 // The tree pool needs 2 * (tree_size_orig - 1) entities, and the
200 // tree needs exactly tree_size_orig entities.
201 tree = (HuffmanTree*)WebPSafeMalloc(3ULL * tree_size_orig, sizeof(*tree));
202 if (tree == NULL) return 0;
203 tree_pool = tree + tree_size_orig;
205 // For block sizes with less than 64k symbols we never need to do a
206 // second iteration of this loop.
207 // If we actually start running inside this loop a lot, we would perhaps
208 // be better off with the Katajainen algorithm.
209 assert(tree_size_orig <= (1 << (tree_depth_limit - 1)));
210 for (count_min = 1; ; count_min *= 2) {
211 int tree_size = tree_size_orig;
212 // We need to pack the Huffman tree in tree_depth_limit bits.
213 // So, we try by faking histogram entries to be at least 'count_min'.
214 int idx = 0;
215 int j;
216 for (j = 0; j < histogram_size; ++j) {
217 if (histogram[j] != 0) {
218 const int count =
219 (histogram[j] < count_min) ? count_min : histogram[j];
220 tree[idx].total_count_ = count;
221 tree[idx].value_ = j;
222 tree[idx].pool_index_left_ = -1;
223 tree[idx].pool_index_right_ = -1;
224 ++idx;
228 // Build the Huffman tree.
229 qsort(tree, tree_size, sizeof(*tree), CompareHuffmanTrees);
231 if (tree_size > 1) { // Normal case.
232 int tree_pool_size = 0;
233 while (tree_size > 1) { // Finish when we have only one root.
234 int count;
235 tree_pool[tree_pool_size++] = tree[tree_size - 1];
236 tree_pool[tree_pool_size++] = tree[tree_size - 2];
237 count = tree_pool[tree_pool_size - 1].total_count_ +
238 tree_pool[tree_pool_size - 2].total_count_;
239 tree_size -= 2;
241 // Search for the insertion point.
242 int k;
243 for (k = 0; k < tree_size; ++k) {
244 if (tree[k].total_count_ <= count) {
245 break;
248 memmove(tree + (k + 1), tree + k, (tree_size - k) * sizeof(*tree));
249 tree[k].total_count_ = count;
250 tree[k].value_ = -1;
252 tree[k].pool_index_left_ = tree_pool_size - 1;
253 tree[k].pool_index_right_ = tree_pool_size - 2;
254 tree_size = tree_size + 1;
257 SetBitDepths(&tree[0], tree_pool, bit_depths, 0);
258 } else if (tree_size == 1) { // Trivial case: only one element.
259 bit_depths[tree[0].value_] = 1;
263 // Test if this Huffman tree satisfies our 'tree_depth_limit' criteria.
264 int max_depth = bit_depths[0];
265 for (j = 1; j < histogram_size; ++j) {
266 if (max_depth < bit_depths[j]) {
267 max_depth = bit_depths[j];
270 if (max_depth <= tree_depth_limit) {
271 break;
275 free(tree);
276 return 1;
279 // -----------------------------------------------------------------------------
280 // Coding of the Huffman tree values
282 static HuffmanTreeToken* CodeRepeatedValues(int repetitions,
283 HuffmanTreeToken* tokens,
284 int value, int prev_value) {
285 assert(value <= MAX_ALLOWED_CODE_LENGTH);
286 if (value != prev_value) {
287 tokens->code = value;
288 tokens->extra_bits = 0;
289 ++tokens;
290 --repetitions;
292 while (repetitions >= 1) {
293 if (repetitions < 3) {
294 int i;
295 for (i = 0; i < repetitions; ++i) {
296 tokens->code = value;
297 tokens->extra_bits = 0;
298 ++tokens;
300 break;
301 } else if (repetitions < 7) {
302 tokens->code = 16;
303 tokens->extra_bits = repetitions - 3;
304 ++tokens;
305 break;
306 } else {
307 tokens->code = 16;
308 tokens->extra_bits = 3;
309 ++tokens;
310 repetitions -= 6;
313 return tokens;
316 static HuffmanTreeToken* CodeRepeatedZeros(int repetitions,
317 HuffmanTreeToken* tokens) {
318 while (repetitions >= 1) {
319 if (repetitions < 3) {
320 int i;
321 for (i = 0; i < repetitions; ++i) {
322 tokens->code = 0; // 0-value
323 tokens->extra_bits = 0;
324 ++tokens;
326 break;
327 } else if (repetitions < 11) {
328 tokens->code = 17;
329 tokens->extra_bits = repetitions - 3;
330 ++tokens;
331 break;
332 } else if (repetitions < 139) {
333 tokens->code = 18;
334 tokens->extra_bits = repetitions - 11;
335 ++tokens;
336 break;
337 } else {
338 tokens->code = 18;
339 tokens->extra_bits = 0x7f; // 138 repeated 0s
340 ++tokens;
341 repetitions -= 138;
344 return tokens;
347 int VP8LCreateCompressedHuffmanTree(const HuffmanTreeCode* const tree,
348 HuffmanTreeToken* tokens, int max_tokens) {
349 HuffmanTreeToken* const starting_token = tokens;
350 HuffmanTreeToken* const ending_token = tokens + max_tokens;
351 const int depth_size = tree->num_symbols;
352 int prev_value = 8; // 8 is the initial value for rle.
353 int i = 0;
354 assert(tokens != NULL);
355 while (i < depth_size) {
356 const int value = tree->code_lengths[i];
357 int k = i + 1;
358 int runs;
359 while (k < depth_size && tree->code_lengths[k] == value) ++k;
360 runs = k - i;
361 if (value == 0) {
362 tokens = CodeRepeatedZeros(runs, tokens);
363 } else {
364 tokens = CodeRepeatedValues(runs, tokens, value, prev_value);
365 prev_value = value;
367 i += runs;
368 assert(tokens <= ending_token);
370 (void)ending_token; // suppress 'unused variable' warning
371 return (int)(tokens - starting_token);
374 // -----------------------------------------------------------------------------
376 // Pre-reversed 4-bit values.
377 static const uint8_t kReversedBits[16] = {
378 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
379 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
382 static uint32_t ReverseBits(int num_bits, uint32_t bits) {
383 uint32_t retval = 0;
384 int i = 0;
385 while (i < num_bits) {
386 i += 4;
387 retval |= kReversedBits[bits & 0xf] << (MAX_ALLOWED_CODE_LENGTH + 1 - i);
388 bits >>= 4;
390 retval >>= (MAX_ALLOWED_CODE_LENGTH + 1 - num_bits);
391 return retval;
394 // Get the actual bit values for a tree of bit depths.
395 static void ConvertBitDepthsToSymbols(HuffmanTreeCode* const tree) {
396 // 0 bit-depth means that the symbol does not exist.
397 int i;
398 int len;
399 uint32_t next_code[MAX_ALLOWED_CODE_LENGTH + 1];
400 int depth_count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
402 assert(tree != NULL);
403 len = tree->num_symbols;
404 for (i = 0; i < len; ++i) {
405 const int code_length = tree->code_lengths[i];
406 assert(code_length <= MAX_ALLOWED_CODE_LENGTH);
407 ++depth_count[code_length];
409 depth_count[0] = 0; // ignore unused symbol
410 next_code[0] = 0;
412 uint32_t code = 0;
413 for (i = 1; i <= MAX_ALLOWED_CODE_LENGTH; ++i) {
414 code = (code + depth_count[i - 1]) << 1;
415 next_code[i] = code;
418 for (i = 0; i < len; ++i) {
419 const int code_length = tree->code_lengths[i];
420 tree->codes[i] = ReverseBits(code_length, next_code[code_length]++);
424 // -----------------------------------------------------------------------------
425 // Main entry point
427 int VP8LCreateHuffmanTree(int* const histogram, int tree_depth_limit,
428 HuffmanTreeCode* const tree) {
429 const int num_symbols = tree->num_symbols;
430 if (!OptimizeHuffmanForRle(num_symbols, histogram)) {
431 return 0;
433 if (!GenerateOptimalTree(histogram, num_symbols,
434 tree_depth_limit, tree->code_lengths)) {
435 return 0;
437 // Create the actual bit codes for the bit lengths.
438 ConvertBitDepthsToSymbols(tree);
439 return 1;