3 # The author disclaims copyright to this source code. In place of
4 # a legal notice, here is a blessing:
6 # May you do good and not evil.
7 # May you find forgiveness for yourself and forgive others.
8 # May you share freely, never taking more than you give.
10 #***********************************************************************
11 # This file implements regression tests for SQLite library. The
12 # focus of this file is testing the operation of the library in
13 # "PRAGMA journal_mode=WAL" mode.
16 set testdir [file dirname $argv0]
17 source $testdir/tester.tcl
18 source $testdir/lock_common.tcl
19 source $testdir/malloc_common.tcl
20 source $testdir/wal_common.tcl
24 ifcapable !wal {finish_test ; return }
28 file delete -force test.db test.db-wal test.db-wal-summary
29 sqlite3_wal db test.db
35 return [string range [string repeat "${::blobcnt}x" $nByte] 1 $nByte]
38 proc sqlite3_wal {args} {
40 [lindex $args 0] eval { PRAGMA auto_vacuum = 0 }
41 [lindex $args 0] eval { PRAGMA page_size = 1024 }
42 [lindex $args 0] eval { PRAGMA journal_mode = wal }
43 [lindex $args 0] eval { PRAGMA synchronous = normal }
44 [lindex $args 0] function blob blob
47 proc log_deleted {logfile} {
48 return [expr [file exists $logfile]==0]
52 # These are 'warm-body' tests used while developing the WAL code. They
53 # serve to prove that a few really simple cases work:
55 # wal-1.*: Read and write the database.
56 # wal-2.*: Test MVCC with one reader, one writer.
57 # wal-3.*: Test transaction rollback.
58 # wal-4.*: Test savepoint/statement rollback.
59 # wal-5.*: Test the temp database.
60 # wal-6.*: Test creating databases with different page sizes.
65 execsql { PRAGMA auto_vacuum = 0 }
66 execsql { PRAGMA synchronous = normal }
67 execsql { PRAGMA journal_mode = wal }
76 CREATE TABLE t1(a, b);
78 list [file exists test.db-journal] \
79 [file exists test.db-wal] \
84 list [file exists test.db-journal] [file exists test.db-wal]
87 # There are now two pages in the log.
89 } [wal_file_size 2 1024]
92 execsql { SELECT * FROM sqlite_master }
93 } {table t1 t1 2 {CREATE TABLE t1(a, b)}}
96 execsql { INSERT INTO t1 VALUES(1, 2) }
97 execsql { INSERT INTO t1 VALUES(3, 4) }
98 execsql { INSERT INTO t1 VALUES(5, 6) }
99 execsql { INSERT INTO t1 VALUES(7, 8) }
100 execsql { INSERT INTO t1 VALUES(9, 10) }
104 execsql { SELECT * FROM t1 }
105 } {1 2 3 4 5 6 7 8 9 10}
108 sqlite3_wal db2 ./test.db
109 execsql { BEGIN; SELECT * FROM t1 } db2
110 } {1 2 3 4 5 6 7 8 9 10}
113 execsql { INSERT INTO t1 VALUES(11, 12) }
114 execsql { SELECT * FROM t1 }
115 } {1 2 3 4 5 6 7 8 9 10 11 12}
118 execsql { SELECT * FROM t1 } db2
119 } {1 2 3 4 5 6 7 8 9 10}
122 execsql { INSERT INTO t1 VALUES(13, 14) }
123 execsql { SELECT * FROM t1 }
124 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
127 execsql { SELECT * FROM t1 } db2
128 } {1 2 3 4 5 6 7 8 9 10}
131 execsql { COMMIT; SELECT * FROM t1 } db2
132 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
135 execsql { BEGIN; DELETE FROM t1 }
136 execsql { SELECT * FROM t1 }
139 execsql { SELECT * FROM t1 } db2
140 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
143 execsql { SELECT * FROM t1 }
144 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
147 #-------------------------------------------------------------------------
148 # The following tests, wal-4.*, test that savepoints work with WAL
155 INSERT INTO t1 VALUES('a', 'b');
157 INSERT INTO t1 VALUES('c', 'd');
178 list [execsql { SELECT * FROM t1 }] [file size test.db-wal]
181 execsql { PRAGMA cache_size = 10 }
183 CREATE TABLE t2(a, b);
184 INSERT INTO t2 VALUES(blob(400), blob(400));
186 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 2 */
187 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 4 */
188 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 8 */
189 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 16 */
190 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 32 */
191 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 2 */
192 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 4 */
193 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 8 */
194 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 16 */
195 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 32 */
196 SELECT count(*) FROM t2;
200 execsql { ROLLBACK TO tr }
203 set logsize [file size test.db-wal]
205 INSERT INTO t1 VALUES('x', 'y');
208 expr { $logsize == [file size test.db-wal] }
211 execsql { SELECT count(*) FROM t2 }
214 file copy -force test.db test2.db
215 file copy -force test.db-wal test2.db-wal
217 execsql { SELECT count(*) FROM t2 ; SELECT count(*) FROM t1 } db2
220 execsql { PRAGMA integrity_check } db2
228 PRAGMA journal_mode = WAL;
229 CREATE TABLE t1(a, b);
230 INSERT INTO t1 VALUES('a', 'b');
234 list [execsql { SELECT * FROM t1 }] [file size test.db-wal]
237 execsql { PRAGMA cache_size = 10 }
239 CREATE TABLE t2(a, b);
241 INSERT INTO t2 VALUES(blob(400), blob(400));
243 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 2 */
244 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 4 */
245 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 8 */
246 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 16 */
247 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 32 */
248 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 2 */
249 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 4 */
250 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 8 */
251 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 16 */
252 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 32 */
253 SELECT count(*) FROM t2;
257 execsql { ROLLBACK TO tr }
260 set logsize [file size test.db-wal]
262 INSERT INTO t1 VALUES('x', 'y');
266 expr { $logsize == [file size test.db-wal] }
269 execsql { SELECT count(*) FROM t2 ; SELECT count(*) FROM t1 }
272 file copy -force test.db test2.db
273 file copy -force test.db-wal test2.db-wal
275 execsql { SELECT count(*) FROM t2 ; SELECT count(*) FROM t1 } db2
278 execsql { PRAGMA integrity_check } db2
285 PRAGMA wal_checkpoint;
287 INSERT INTO t2 VALUES('w', 'x');
289 INSERT INTO t2 VALUES('y', 'z');
293 execsql { SELECT * FROM t2 }
300 CREATE TEMP TABLE t2(a, b);
301 INSERT INTO t2 VALUES(1, 2);
307 INSERT INTO t2 VALUES(3, 4);
319 CREATE TEMP TABLE t3(x UNIQUE);
321 INSERT INTO t2 VALUES(3, 4);
322 INSERT INTO t3 VALUES('abc');
324 catchsql { INSERT INTO t3 VALUES('abc') }
325 } {1 {column x is not unique}}
334 foreach sector {512 4096} {
335 sqlite3_simulate_device -sectorsize $sector
336 foreach pgsz {512 1024 2048 4096} {
337 file delete -force test.db test.db-wal
338 do_test wal-6.$sector.$pgsz.1 {
339 sqlite3 db test.db -vfs devsym
341 PRAGMA page_size = $pgsz;
342 PRAGMA auto_vacuum = 0;
343 PRAGMA journal_mode = wal;
346 CREATE TABLE t1(a, b);
347 INSERT INTO t1 VALUES(1, 2);
353 do_test wal-6.$sector.$pgsz.2 {
354 log_deleted test.db-wal
360 file delete -force test.db test.db-wal
361 sqlite3_wal db test.db
363 PRAGMA page_size = 1024;
364 CREATE TABLE t1(a, b);
365 INSERT INTO t1 VALUES(1, 2);
367 list [file size test.db] [file size test.db-wal]
368 } [list 1024 [wal_file_size 3 1024]]
370 execsql { PRAGMA wal_checkpoint }
371 list [file size test.db] [file size test.db-wal]
372 } [list 2048 [wal_file_size 3 1024]]
374 # Execute some transactions in auto-vacuum mode to test database file
380 file delete -force test.db test.db-wal
383 db function blob blob
385 PRAGMA auto_vacuum = 1;
386 PRAGMA journal_mode = wal;
392 PRAGMA page_size = 1024;
394 INSERT INTO t1 VALUES(blob(900));
395 INSERT INTO t1 VALUES(blob(900));
396 INSERT INTO t1 SELECT blob(900) FROM t1; /* 4 */
397 INSERT INTO t1 SELECT blob(900) FROM t1; /* 8 */
398 INSERT INTO t1 SELECT blob(900) FROM t1; /* 16 */
399 INSERT INTO t1 SELECT blob(900) FROM t1; /* 32 */
400 INSERT INTO t1 SELECT blob(900) FROM t1; /* 64 */
401 PRAGMA wal_checkpoint;
407 DELETE FROM t1 WHERE rowid<54;
408 PRAGMA wal_checkpoint;
413 # Run some "warm-body" tests to ensure that log-summary files with more
414 # than 256 entries (log summaries that contain index blocks) work Ok.
419 CREATE TABLE t1(x PRIMARY KEY);
420 INSERT INTO t1 VALUES(blob(900));
421 INSERT INTO t1 VALUES(blob(900));
422 INSERT INTO t1 SELECT blob(900) FROM t1; /* 4 */
423 INSERT INTO t1 SELECT blob(900) FROM t1; /* 8 */
424 INSERT INTO t1 SELECT blob(900) FROM t1; /* 16 */
425 INSERT INTO t1 SELECT blob(900) FROM t1; /* 32 */
426 INSERT INTO t1 SELECT blob(900) FROM t1; /* 64 */
427 INSERT INTO t1 SELECT blob(900) FROM t1; /* 128 */
428 INSERT INTO t1 SELECT blob(900) FROM t1; /* 256 */
433 sqlite3_wal db2 test.db
434 execsql {PRAGMA integrity_check } db2
438 file delete -force test2.db test2.db-wal
439 file copy test.db test2.db
440 file copy test.db-wal test2.db-wal
441 sqlite3_wal db3 test2.db
442 execsql {PRAGMA integrity_check } db3
447 execsql { PRAGMA wal_checkpoint }
449 sqlite3_wal db2 test.db
450 execsql {PRAGMA integrity_check } db2
453 foreach handle {db db2 db3} { catch { $handle close } }
456 #-------------------------------------------------------------------------
457 # The following block of tests - wal-10.* - test that the WAL locking
458 # scheme works in simple cases. This block of tests is run twice. Once
459 # using multiple connections in the address space of the current process,
460 # and once with all connections except one running in external processes.
462 do_multiclient_test tn {
464 # Initialize the database schema and contents.
466 do_test wal-10.$tn.1 {
468 PRAGMA auto_vacuum = 0;
469 PRAGMA journal_mode = wal;
470 CREATE TABLE t1(a, b);
471 INSERT INTO t1 VALUES(1, 2);
476 # Open a transaction and write to the database using [db]. Check that [db2]
477 # is still able to read the snapshot before the transaction was opened.
479 do_test wal-10.$tn.2 {
480 execsql { BEGIN; INSERT INTO t1 VALUES(3, 4); }
481 sql2 {SELECT * FROM t1}
484 # Have [db] commit the transaction. Check that [db2] is now seeing the
485 # new, updated snapshot.
487 do_test wal-10.$tn.3 {
489 sql2 {SELECT * FROM t1}
492 # Have [db2] open a read transaction. Then write to the db via [db]. Check
493 # that [db2] is still seeing the original snapshot. Then read with [db3].
494 # [db3] should see the newly committed data.
496 do_test wal-10.$tn.4 {
497 sql2 { BEGIN ; SELECT * FROM t1}
499 do_test wal-10.$tn.5 {
500 execsql { INSERT INTO t1 VALUES(5, 6); }
501 sql2 {SELECT * FROM t1}
503 do_test wal-10.$tn.6 {
504 sql3 {SELECT * FROM t1}
506 do_test wal-10.$tn.7 {
510 # Have [db2] open a write transaction. Then attempt to write to the
511 # database via [db]. This should fail (writer lock cannot be obtained).
513 # Then open a read-transaction with [db]. Commit the [db2] transaction
514 # to disk. Verify that [db] still cannot write to the database (because
515 # it is reading an old snapshot).
517 # Close the current [db] transaction. Open a new one. [db] can now write
518 # to the database (as it is not locked and [db] is reading the latest
521 do_test wal-10.$tn.7 {
522 sql2 { BEGIN; INSERT INTO t1 VALUES(7, 8) ; }
523 catchsql { INSERT INTO t1 VALUES(9, 10) }
524 } {1 {database is locked}}
525 do_test wal-10.$tn.8 {
526 execsql { BEGIN ; SELECT * FROM t1 }
528 do_test wal-10.$tn.9 {
530 catchsql { INSERT INTO t1 VALUES(9, 10) }
531 } {1 {database is locked}}
532 do_test wal-10.$tn.10 {
535 execsql { INSERT INTO t1 VALUES(9, 10) }
537 execsql { SELECT * FROM t1 }
538 } {1 2 3 4 5 6 7 8 9 10}
540 # Open a read transaction with [db2]. Check that this prevents [db] from
541 # checkpointing the database. But not from writing to it.
543 do_test wal-10.$tn.11 {
544 sql2 { BEGIN; SELECT * FROM t1 }
545 } {1 2 3 4 5 6 7 8 9 10}
546 do_test wal-10.$tn.12 {
547 catchsql { PRAGMA wal_checkpoint }
548 } {0 {0 13 13}} ;# Reader no longer block checkpoints
549 do_test wal-10.$tn.13 {
550 execsql { INSERT INTO t1 VALUES(11, 12) }
551 sql2 {SELECT * FROM t1}
552 } {1 2 3 4 5 6 7 8 9 10}
554 # Writers do not block checkpoints any more either.
556 do_test wal-10.$tn.14 {
557 catchsql { PRAGMA wal_checkpoint }
560 # The following series of test cases used to verify another blocking
561 # case in WAL - a case which no longer blocks.
563 do_test wal-10.$tn.15 {
564 sql2 { COMMIT; BEGIN; SELECT * FROM t1; }
565 } {1 2 3 4 5 6 7 8 9 10 11 12}
566 do_test wal-10.$tn.16 {
567 catchsql { PRAGMA wal_checkpoint }
569 do_test wal-10.$tn.17 {
570 execsql { PRAGMA wal_checkpoint }
572 do_test wal-10.$tn.18 {
573 sql3 { BEGIN; SELECT * FROM t1 }
574 } {1 2 3 4 5 6 7 8 9 10 11 12}
575 do_test wal-10.$tn.19 {
576 catchsql { INSERT INTO t1 VALUES(13, 14) }
578 do_test wal-10.$tn.20 {
579 execsql { SELECT * FROM t1 }
580 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
581 do_test wal-10.$tn.21 {
585 do_test wal-10.$tn.22 {
586 execsql { SELECT * FROM t1 }
587 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
589 # Another series of tests that used to demonstrate blocking behavior
590 # but which now work.
592 do_test wal-10.$tn.23 {
593 execsql { PRAGMA wal_checkpoint }
595 do_test wal-10.$tn.24 {
596 sql2 { BEGIN; SELECT * FROM t1; }
597 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
598 do_test wal-10.$tn.25 {
599 execsql { PRAGMA wal_checkpoint }
601 do_test wal-10.$tn.26 {
602 catchsql { INSERT INTO t1 VALUES(15, 16) }
604 do_test wal-10.$tn.27 {
605 sql3 { INSERT INTO t1 VALUES(17, 18) }
607 do_test wal-10.$tn.28 {
609 set ::STMT [sqlite3_prepare db3 "SELECT * FROM t1" -1 TAIL]
612 execsql { SELECT * FROM t1 }
613 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18}
614 do_test wal-10.$tn.29 {
615 execsql { INSERT INTO t1 VALUES(19, 20) }
616 catchsql { PRAGMA wal_checkpoint }
618 do_test wal-10.$tn.30 {
619 code3 { sqlite3_finalize $::STMT }
620 execsql { PRAGMA wal_checkpoint }
623 # At one point, if a reader failed to upgrade to a writer because it
624 # was reading an old snapshot, the write-locks were not being released.
625 # Test that this bug has been fixed.
627 do_test wal-10.$tn.31 {
629 execsql { BEGIN ; SELECT * FROM t1 }
630 sql2 { INSERT INTO t1 VALUES(21, 22) }
631 catchsql { INSERT INTO t1 VALUES(23, 24) }
632 } {1 {database is locked}}
633 do_test wal-10.$tn.32 {
634 # This statement would fail when the bug was present.
635 sql2 { INSERT INTO t1 VALUES(23, 24) }
637 do_test wal-10.$tn.33 {
638 execsql { SELECT * FROM t1 ; COMMIT }
639 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20}
640 do_test wal-10.$tn.34 {
641 execsql { SELECT * FROM t1 }
642 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24}
644 # Test that if a checkpointer cannot obtain the required locks, it
645 # releases all locks before returning a busy error.
647 do_test wal-10.$tn.35 {
650 INSERT INTO t1 VALUES('a', 'b');
651 INSERT INTO t1 VALUES('c', 'd');
658 do_test wal-10.$tn.36 {
659 catchsql { PRAGMA wal_checkpoint }
661 do_test wal-10.$tn.36 {
662 sql3 { INSERT INTO t1 VALUES('e', 'f') }
663 sql2 { SELECT * FROM t1 }
665 do_test wal-10.$tn.37 {
667 execsql { PRAGMA wal_checkpoint }
671 #-------------------------------------------------------------------------
672 # This block of tests, wal-11.*, test that nothing goes terribly wrong
673 # if frames must be written to the log file before a transaction is
674 # committed (in order to free up memory).
679 PRAGMA cache_size = 10;
680 PRAGMA page_size = 1024;
681 CREATE TABLE t1(x PRIMARY KEY);
683 list [expr [file size test.db]/1024] [expr [file size test.db-wal]/1044]
686 execsql { PRAGMA wal_checkpoint }
687 list [expr [file size test.db]/1024] [file size test.db-wal]
688 } [list 3 [wal_file_size 3 1024]]
690 execsql { INSERT INTO t1 VALUES( blob(900) ) }
691 list [expr [file size test.db]/1024] [file size test.db-wal]
692 } [list 3 [wal_file_size 4 1024]]
697 INSERT INTO t1 SELECT blob(900) FROM t1; -- 2
698 INSERT INTO t1 SELECT blob(900) FROM t1; -- 4
699 INSERT INTO t1 SELECT blob(900) FROM t1; -- 8
700 INSERT INTO t1 SELECT blob(900) FROM t1; -- 16
702 list [expr [file size test.db]/1024] [file size test.db-wal]
703 } [list 3 [wal_file_size 32 1024]]
706 SELECT count(*) FROM t1;
707 PRAGMA integrity_check;
712 list [expr [file size test.db]/1024] [file size test.db-wal]
713 } [list 3 [wal_file_size 41 1024]]
716 SELECT count(*) FROM t1;
717 PRAGMA integrity_check;
721 execsql { PRAGMA wal_checkpoint }
722 list [expr [file size test.db]/1024] [file size test.db-wal]
723 } [list 37 [wal_file_size 41 1024]]
726 list [expr [file size test.db]/1024] [log_deleted test.db-wal]
728 sqlite3_wal db test.db
731 PRAGMA cache_size = 10;
733 INSERT INTO t1 SELECT blob(900) FROM t1; -- 32
734 SELECT count(*) FROM t1;
736 list [expr [file size test.db]/1024] [file size test.db-wal]
737 } [list 37 [wal_file_size 37 1024]]
740 SELECT count(*) FROM t1;
742 SELECT count(*) FROM t1;
746 list [expr [file size test.db]/1024] [file size test.db-wal]
747 } [list 37 [wal_file_size 37 1024]]
750 INSERT INTO t1 VALUES( blob(900) );
751 SELECT count(*) FROM t1;
752 PRAGMA integrity_check;
756 list [expr [file size test.db]/1024] [file size test.db-wal]
757 } [list 37 [wal_file_size 37 1024]]
760 #-------------------------------------------------------------------------
761 # This block of tests, wal-12.*, tests the fix for a problem that
762 # could occur if a log that is a prefix of an older log is written
763 # into a reused log file.
768 PRAGMA page_size = 1024;
769 CREATE TABLE t1(x, y);
770 CREATE TABLE t2(x, y);
771 INSERT INTO t1 VALUES('A', 1);
773 list [expr [file size test.db]/1024] [file size test.db-wal]
774 } [list 1 [wal_file_size 5 1024]]
779 PRAGMA synchronous = normal;
780 UPDATE t1 SET y = 0 WHERE x = 'A';
782 list [expr [file size test.db]/1024] [expr [file size test.db-wal]/1044]
785 execsql { INSERT INTO t2 VALUES('B', 1) }
786 list [expr [file size test.db]/1024] [expr [file size test.db-wal]/1044]
789 file copy -force test.db test2.db
790 file copy -force test.db-wal test2.db-wal
791 sqlite3_wal db2 test2.db
792 execsql { SELECT * FROM t2 } db2
797 PRAGMA wal_checkpoint;
798 UPDATE t2 SET y = 2 WHERE x = 'B';
799 PRAGMA wal_checkpoint;
800 UPDATE t1 SET y = 1 WHERE x = 'A';
801 PRAGMA wal_checkpoint;
802 UPDATE t1 SET y = 0 WHERE x = 'A';
804 execsql { SELECT * FROM t2 }
807 file copy -force test.db test2.db
808 file copy -force test.db-wal test2.db-wal
809 sqlite3_wal db2 test2.db
810 execsql { SELECT * FROM t2 } db2
815 #-------------------------------------------------------------------------
816 # Test large log summaries.
818 # In this case "large" usually means a log file that requires a wal-index
819 # mapping larger than 64KB (the default initial allocation). A 64KB wal-index
820 # is large enough for a log file that contains approximately 13100 frames.
821 # So the following tests create logs containing at least this many frames.
823 # wal-13.1.*: This test case creates a very large log file within the
824 # file-system (around 200MB). The log file does not contain
825 # any valid frames. Test that the database file can still be
826 # opened and queried, and that the invalid log file causes no
829 # wal-13.2.*: Test that a process may create a large log file and query
830 # the database (including the log file that it itself created).
832 # wal-13.3.*: Test that if a very large log file is created, and then a
833 # second connection is opened on the database file, it is possible
834 # to query the database (and the very large log) using the
837 # wal-13.4.*: Same test as wal-13.3.*. Except in this case the second
838 # connection is opened by an external process.
841 list [file exists test.db] [file exists test.db-wal]
844 set fd [open test.db-wal w]
845 seek $fd [expr 200*1024*1024]
849 execsql { SELECT * FROM t2 }
854 file exists test.db-wal
859 execsql { SELECT count(*) FROM t2 }
862 db function blob blob
863 for {set i 0} {$i < 16} {incr i} {
864 execsql { INSERT INTO t2 SELECT blob(400), blob(400) FROM t2 }
866 execsql { SELECT count(*) FROM t2 }
867 } [expr int(pow(2, 16))]
869 expr [file size test.db-wal] > [wal_file_size 33000 1024]
872 do_multiclient_test tn {
875 do_test wal-13.$tn.0 {
877 PRAGMA journal_mode = WAL;
879 INSERT INTO t1 SELECT randomblob(800);
881 sql1 { SELECT count(*) FROM t1 }
884 for {set ii 1} {$ii<16} {incr ii} {
885 do_test wal-13.$tn.$ii.a {
886 sql2 { INSERT INTO t1 SELECT randomblob(800) FROM t1 }
887 sql2 { SELECT count(*) FROM t1 }
889 do_test wal-13.$tn.$ii.b {
890 sql1 { SELECT count(*) FROM t1 }
892 do_test wal-13.$tn.$ii.c {
893 sql1 { SELECT count(*) FROM t1 }
895 do_test wal-13.$tn.$ii.d {
896 sql1 { PRAGMA integrity_check }
901 #-------------------------------------------------------------------------
902 # Check a fun corruption case has been fixed.
904 # The problem was that after performing a checkpoint using a connection
905 # that had an out-of-date pager-cache, the next time the connection was
906 # used it did not realize the cache was out-of-date and proceeded to
907 # operate with an inconsistent cache. Leading to corruption.
912 file delete -force test.db test.db-wal
917 PRAGMA journal_mode = WAL;
918 CREATE TABLE t1(a PRIMARY KEY, b);
919 INSERT INTO t1 VALUES(randomblob(10), randomblob(100));
920 INSERT INTO t1 SELECT randomblob(10), randomblob(100) FROM t1;
921 INSERT INTO t1 SELECT randomblob(10), randomblob(100) FROM t1;
922 INSERT INTO t1 SELECT randomblob(10), randomblob(100) FROM t1;
926 INSERT INTO t1 SELECT randomblob(10), randomblob(100);
927 INSERT INTO t1 SELECT randomblob(10), randomblob(100);
928 INSERT INTO t1 SELECT randomblob(10), randomblob(100);
929 INSERT INTO t1 SELECT randomblob(10), randomblob(100);
932 # After executing the "PRAGMA wal_checkpoint", connection [db] was being
933 # left with an inconsistent cache. Running the CREATE INDEX statement
934 # in this state led to database corruption.
936 PRAGMA wal_checkpoint;
937 CREATE INDEX i1 on t1(b);
940 db2 eval { PRAGMA integrity_check }
946 #-------------------------------------------------------------------------
947 # The following block of tests - wal-15.* - focus on testing the
948 # implementation of the sqlite3_wal_checkpoint() interface.
950 file delete -force test.db test.db-wal
954 PRAGMA auto_vacuum = 0;
955 PRAGMA page_size = 1024;
956 PRAGMA journal_mode = WAL;
959 CREATE TABLE t1(a, b);
960 INSERT INTO t1 VALUES(1, 2);
964 # Test that an error is returned if the database name is not recognized
967 sqlite3_wal_checkpoint db aux
974 } {unknown database: aux}
976 # Test that an error is returned if an attempt is made to checkpoint
977 # if a transaction is open on the database.
982 INSERT INTO t1 VALUES(3, 4);
984 sqlite3_wal_checkpoint db main
991 } {database table is locked}
993 # Earlier versions returned an error is returned if the db cannot be
994 # checkpointed because of locks held by another connection. Check that
995 # this is no longer the case.
1004 do_test wal-15.4.2 {
1006 sqlite3_wal_checkpoint db
1008 do_test wal-15.4.3 {
1012 # After [db2] drops its lock, [db] may checkpoint the db.
1014 do_test wal-15.4.4 {
1015 execsql { COMMIT } db2
1016 sqlite3_wal_checkpoint db
1018 do_test wal-15.4.5 {
1021 do_test wal-15.4.6 {
1028 #-------------------------------------------------------------------------
1029 # The following block of tests - wal-16.* - test that if a NULL pointer or
1030 # an empty string is passed as the second argument of the wal_checkpoint()
1031 # API, an attempt is made to checkpoint all attached databases.
1033 foreach {tn ckpt_cmd ckpt_res ckpt_main ckpt_aux} {
1034 1 {sqlite3_wal_checkpoint db} SQLITE_OK 1 1
1035 2 {sqlite3_wal_checkpoint db ""} SQLITE_OK 1 1
1036 3 {db eval "PRAGMA wal_checkpoint"} {0 10 10} 1 1
1038 4 {sqlite3_wal_checkpoint db main} SQLITE_OK 1 0
1039 5 {sqlite3_wal_checkpoint db aux} SQLITE_OK 0 1
1040 6 {sqlite3_wal_checkpoint db temp} SQLITE_OK 0 0
1041 7 {db eval "PRAGMA main.wal_checkpoint"} {0 10 10} 1 0
1042 8 {db eval "PRAGMA aux.wal_checkpoint"} {0 16 16} 0 1
1043 9 {db eval "PRAGMA temp.wal_checkpoint"} {0 -1 -1} 0 0
1045 do_test wal-16.$tn.1 {
1046 file delete -force test2.db test2.db-wal test2.db-journal
1047 file delete -force test.db test.db-wal test.db-journal
1051 ATTACH 'test2.db' AS aux;
1052 PRAGMA main.auto_vacuum = 0;
1053 PRAGMA aux.auto_vacuum = 0;
1054 PRAGMA main.journal_mode = WAL;
1055 PRAGMA aux.journal_mode = WAL;
1056 PRAGMA synchronous = NORMAL;
1060 do_test wal-16.$tn.2 {
1062 CREATE TABLE main.t1(a, b, PRIMARY KEY(a, b));
1063 CREATE TABLE aux.t2(a, b, PRIMARY KEY(a, b));
1065 INSERT INTO t2 VALUES(1, randomblob(1000));
1066 INSERT INTO t2 VALUES(2, randomblob(1000));
1067 INSERT INTO t1 SELECT * FROM t2;
1070 list [file size test.db] [file size test.db-wal]
1071 } [list [expr 1*1024] [wal_file_size 10 1024]]
1072 do_test wal-16.$tn.3 {
1073 list [file size test2.db] [file size test2.db-wal]
1074 } [list [expr 1*1024] [wal_file_size 16 1024]]
1076 do_test wal-16.$tn.4 [list eval $ckpt_cmd] $ckpt_res
1078 do_test wal-16.$tn.5 {
1079 list [file size test.db] [file size test.db-wal]
1080 } [list [expr ($ckpt_main ? 7 : 1)*1024] [wal_file_size 10 1024]]
1082 do_test wal-16.$tn.6 {
1083 list [file size test2.db] [file size test2.db-wal]
1084 } [list [expr ($ckpt_aux ? 7 : 1)*1024] [wal_file_size 16 1024]]
1089 #-------------------------------------------------------------------------
1090 # The following tests - wal-17.* - attempt to verify that the correct
1091 # number of "padding" frames are appended to the log file when a transaction
1092 # is committed in synchronous=FULL mode.
1094 # Do this by creating a database that uses 512 byte pages. Then writing
1095 # a transaction that modifies 171 pages. In synchronous=NORMAL mode, this
1096 # produces a log file of:
1098 # 32 + (24+512)*171 = 90312 bytes.
1100 # Slightly larger than 11*8192 = 90112 bytes.
1102 # Run the test using various different sector-sizes. In each case, the
1103 # WAL code should write the 90300 bytes of log file containing the
1104 # transaction, then append as may frames as are required to extend the
1105 # log file so that no part of the next transaction will be written into
1106 # a disk-sector used by transaction just committed.
1108 set old_pending_byte [sqlite3_test_control_pending_byte 0x10000000]
1110 foreach {tn sectorsize logsize} "
1111 1 128 [wal_file_size 172 512]
1112 2 256 [wal_file_size 172 512]
1113 3 512 [wal_file_size 172 512]
1114 4 1024 [wal_file_size 172 512]
1115 5 2048 [wal_file_size 172 512]
1116 6 4096 [wal_file_size 176 512]
1117 7 8192 [wal_file_size 184 512]
1119 file delete -force test.db test.db-wal test.db-journal
1120 sqlite3_simulate_device -sectorsize $sectorsize
1121 sqlite3 db test.db -vfs devsym
1123 do_test wal-17.$tn.1 {
1125 PRAGMA auto_vacuum = 0;
1126 PRAGMA page_size = 512;
1127 PRAGMA journal_mode = WAL;
1128 PRAGMA synchronous = FULL;
1134 for {set i 0} {$i<166} {incr i} {
1135 execsql { INSERT INTO t VALUES(randomblob(400)) }
1139 file size test.db-wal
1142 do_test wal-17.$tn.2 {
1146 do_test wal-17.$tn.3 {
1151 sqlite3_test_control_pending_byte $old_pending_byte
1153 #-------------------------------------------------------------------------
1154 # This test - wal-18.* - verifies a couple of specific conditions that
1155 # may be encountered while recovering a log file are handled correctly:
1157 # wal-18.1.* When the first 32-bits of a frame checksum is correct but
1158 # the second 32-bits are false, and
1160 # wal-18.2.* When the page-size field that occurs at the start of a log
1161 # file is a power of 2 greater than 16384 or smaller than 512.
1163 file delete -force test.db test.db-wal test.db-journal
1167 PRAGMA page_size = 1024;
1168 PRAGMA auto_vacuum = 0;
1169 PRAGMA journal_mode = WAL;
1170 PRAGMA synchronous = OFF;
1172 CREATE TABLE t1(a, b, UNIQUE(a, b));
1173 INSERT INTO t1 VALUES(0, 0);
1174 PRAGMA wal_checkpoint;
1176 INSERT INTO t1 VALUES(1, 2); -- frames 1 and 2
1177 INSERT INTO t1 VALUES(3, 4); -- frames 3 and 4
1178 INSERT INTO t1 VALUES(5, 6); -- frames 5 and 6
1181 file copy -force test.db testX.db
1182 file copy -force test.db-wal testX.db-wal
1184 list [file size testX.db] [file size testX.db-wal]
1185 } [list [expr 3*1024] [wal_file_size 6 1024]]
1187 unset -nocomplain nFrame result
1188 foreach {nFrame result} {
1197 do_test wal-18.1.$nFrame {
1198 file copy -force testX.db test.db
1199 file copy -force testX.db-wal test.db-wal
1201 hexio_write test.db-wal [expr 24 + $nFrame*(24+1024) + 20] 00000000
1206 PRAGMA integrity_check;
1208 } [concat $result ok]
1212 proc randomblob {pgsz} {
1213 sqlite3 rbdb :memory:
1214 set blob [rbdb one {SELECT randomblob($pgsz)}]
1219 proc logcksum {ckv1 ckv2 blob} {
1224 if {$::tcl_platform(byteOrder) eq "littleEndian"} {
1228 binary scan $blob $scanpattern values
1229 foreach {v1 v2} $values {
1230 set c1 [expr {($c1 + $v1 + $c2)&0xFFFFFFFF}]
1231 set c2 [expr {($c2 + $v2 + $c1)&0xFFFFFFFF}]
1235 file copy -force test.db testX.db
1236 foreach {tn pgsz works} {
1251 if {$::SQLITE_MAX_PAGE_SIZE < $pgsz} {
1255 for {set pg 1} {$pg <= 3} {incr pg} {
1256 file copy -force testX.db test.db
1257 file delete -force test.db-wal
1259 # Check that the database now exists and consists of three pages. And
1260 # that there is no associated wal file.
1262 do_test wal-18.2.$tn.$pg.1 { file exists test.db-wal } 0
1263 do_test wal-18.2.$tn.$pg.2 { file exists test.db } 1
1264 do_test wal-18.2.$tn.$pg.3 { file size test.db } [expr 1024*3]
1266 do_test wal-18.2.$tn.$pg.4 {
1268 # Create a wal file that contains a single frame (database page
1269 # number $pg) with the commit flag set. The frame checksum is
1270 # correct, but the contents of the database page are corrupt.
1272 # The page-size in the log file header is set to $pgsz. If the
1273 # WAL code considers $pgsz to be a valid SQLite database file page-size,
1274 # the database will be corrupt (because the garbage frame contents
1275 # will be treated as valid content). If $pgsz is invalid (too small
1276 # or too large), the db will not be corrupt as the log file will
1279 set walhdr [binary format IIIIII 931071618 3007000 $pgsz 1234 22 23]
1280 set framebody [randomblob $pgsz]
1281 set framehdr [binary format IIII $pg 5 22 23]
1284 logcksum c1 c2 $walhdr
1286 append walhdr [binary format II $c1 $c2]
1287 logcksum c1 c2 [string range $framehdr 0 7]
1288 logcksum c1 c2 $framebody
1289 set framehdr [binary format IIIIII $pg 5 22 23 $c1 $c2]
1291 set fd [open test.db-wal w]
1292 fconfigure $fd -encoding binary -translation binary
1293 puts -nonewline $fd $walhdr
1294 puts -nonewline $fd $framehdr
1295 puts -nonewline $fd $framebody
1298 file size test.db-wal
1299 } [wal_file_size 1 $pgsz]
1301 do_test wal-18.2.$tn.$pg.5 {
1303 set rc [catch { db one {PRAGMA integrity_check} } msg]
1304 expr { $rc!=0 || $msg!="ok" }
1311 #-------------------------------------------------------------------------
1312 # The following test - wal-19.* - fixes a bug that was present during
1315 # When a database connection in WAL mode is closed, it attempts an
1316 # EXCLUSIVE lock on the database file. If the lock is obtained, the
1317 # connection knows that it is the last connection to disconnect from
1318 # the database, so it runs a checkpoint operation. The bug was that
1319 # the connection was not updating its private copy of the wal-index
1320 # header before doing so, meaning that it could checkpoint an old
1324 file delete -force test.db test.db-wal test.db-journal
1328 PRAGMA journal_mode = WAL;
1329 CREATE TABLE t1(a, b);
1330 INSERT INTO t1 VALUES(1, 2);
1331 INSERT INTO t1 VALUES(3, 4);
1333 execsql { SELECT * FROM t1 } db2
1337 INSERT INTO t1 VALUES(5, 6);
1344 file exists test.db-wal
1347 # When the bug was present, the following was returning {1 2 3 4} only,
1348 # as [db2] had an out-of-date copy of the wal-index header when it was
1352 execsql { SELECT * FROM t1 }
1355 #-------------------------------------------------------------------------
1356 # This test - wal-20.* - uses two connections. One in this process and
1357 # the other in an external process. The procedure is:
1359 # 1. Using connection 1, create the database schema.
1361 # 2. Using connection 2 (in an external process), add so much
1362 # data to the database without checkpointing that a wal-index
1363 # larger than 64KB is required.
1365 # 3. Using connection 1, checkpoint the database. Make sure all
1366 # the data is present and the database is not corrupt.
1368 # At one point, SQLite was failing to grow the mapping of the wal-index
1369 # file in step 3 and the checkpoint was corrupting the database file.
1373 file delete -force test.db test.db-wal test.db-journal
1376 PRAGMA journal_mode = WAL;
1378 INSERT INTO t1 VALUES(randomblob(900));
1379 SELECT count(*) FROM t1;
1383 set ::buddy [launch_testfixture]
1384 testfixture $::buddy {
1386 db transaction { db eval {
1387 PRAGMA wal_autocheckpoint = 0;
1388 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 2 */
1389 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 4 */
1390 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 8 */
1391 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 16 */
1392 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 32 */
1393 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 64 */
1394 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 128 */
1395 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 256 */
1396 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 512 */
1397 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 1024 */
1398 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 2048 */
1399 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 4096 */
1400 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 8192 */
1401 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 16384 */
1407 execsql { PRAGMA wal_checkpoint }
1408 execsql { SELECT count(*) FROM t1 }
1413 execsql { SELECT count(*) FROM t1 }
1415 integrity_check wal-20.5
1421 faultsim_delete_and_reopen
1423 PRAGMA journal_mode = WAL;
1424 CREATE TABLE t1(a, b);
1425 INSERT INTO t1 VALUES(1, 2);
1426 INSERT INTO t1 VALUES(3, 4);
1427 INSERT INTO t1 VALUES(5, 6);
1428 INSERT INTO t1 VALUES(7, 8);
1429 INSERT INTO t1 VALUES(9, 10);
1430 INSERT INTO t1 VALUES(11, 12);
1435 PRAGMA cache_size = 10;
1436 PRAGMA wal_checkpoint;
1439 INSERT INTO t1 SELECT randomblob(900), randomblob(900) FROM t1;
1443 execsql { SELECT * FROM t1 }
1444 } {1 2 3 4 5 6 7 8 9 10 11 12}
1446 execsql { PRAGMA integrity_check }
1449 #-------------------------------------------------------------------------
1450 # Test reading and writing of databases with different page-sizes.
1452 foreach pgsz {512 1024 2048 4096 8192 16384 32768 65536} {
1453 do_multiclient_test tn [string map [list %PGSZ% $pgsz] {
1454 do_test wal-22.%PGSZ%.$tn.1 {
1456 PRAGMA main.page_size = %PGSZ%;
1457 PRAGMA auto_vacuum = 0;
1458 PRAGMA journal_mode = WAL;
1459 CREATE TABLE t1(x UNIQUE);
1460 INSERT INTO t1 SELECT randomblob(800);
1461 INSERT INTO t1 SELECT randomblob(800);
1462 INSERT INTO t1 SELECT randomblob(800);
1465 do_test wal-22.%PGSZ%.$tn.2 { sql2 { PRAGMA integrity_check } } {ok}
1466 do_test wal-22.%PGSZ%.$tn.3 {
1467 sql1 {PRAGMA wal_checkpoint}
1468 expr {[file size test.db] % %PGSZ%}
1473 #-------------------------------------------------------------------------
1474 # Test that when 1 or more pages are recovered from a WAL file,
1475 # sqlite3_log() is invoked to report this to the user.
1477 set walfile [file nativename [file join [pwd] test.db-wal]]
1479 file delete -force test.db
1481 faultsim_delete_and_reopen
1483 CREATE TABLE t1(a, b);
1484 PRAGMA journal_mode = WAL;
1485 INSERT INTO t1 VALUES(1, 2);
1486 INSERT INTO t1 VALUES(3, 4);
1488 faultsim_save_and_close
1491 test_sqlite3_log [list lappend ::log]
1494 execsql { SELECT * FROM t1 }
1496 do_test wal-23.2 { set ::log } {}
1501 faultsim_restore_and_reopen
1502 execsql { SELECT * FROM t1 }
1504 set nPage [expr 2+$AUTOVACUUM]
1507 } [list SQLITE_OK "Recovered $nPage frames from WAL file $walfile"]
1510 ifcapable autovacuum {
1511 # This block tests that if the size of a database is reduced by a
1512 # transaction (because of an incremental or auto-vacuum), that no
1513 # data is written to the WAL file for the truncated pages as part
1514 # of the commit. e.g. if a transaction reduces the size of a database
1515 # to N pages, data for page N+1 should not be written to the WAL file
1516 # when committing the transaction. At one point such data was being
1522 do_execsql_test 24.1 {
1523 PRAGMA auto_vacuum = 2;
1524 PRAGMA journal_mode = WAL;
1525 PRAGMA page_size = 1024;
1527 INSERT INTO t1 VALUES(randomblob(5000));
1528 INSERT INTO t1 SELECT * FROM t1;
1529 INSERT INTO t1 SELECT * FROM t1;
1530 INSERT INTO t1 SELECT * FROM t1;
1531 INSERT INTO t1 SELECT * FROM t1;
1536 PRAGMA wal_checkpoint;
1540 file exists test.db-wal
1547 PRAGMA cache_size = 200;
1548 PRAGMA incremental_vacuum;
1549 PRAGMA wal_checkpoint;
1554 file size test.db-wal