Dispose of NPOject in npobject_identity_test.cc
[chromium-blink-merge.git] / base / message_pump_win.h
blob5f17610172a13cf2b547aa56799c862860c93959
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef BASE_MESSAGE_PUMP_WIN_H_
6 #define BASE_MESSAGE_PUMP_WIN_H_
7 #pragma once
9 #include <windows.h>
11 #include <list>
13 #include "base/base_export.h"
14 #include "base/basictypes.h"
15 #include "base/message_pump.h"
16 #include "base/observer_list.h"
17 #include "base/time.h"
18 #include "base/win/scoped_handle.h"
20 namespace base {
22 // MessagePumpWin serves as the base for specialized versions of the MessagePump
23 // for Windows. It provides basic functionality like handling of observers and
24 // controlling the lifetime of the message pump.
25 class BASE_EXPORT MessagePumpWin : public MessagePump {
26 public:
27 // An Observer is an object that receives global notifications from the
28 // UI MessageLoop.
30 // NOTE: An Observer implementation should be extremely fast!
32 class BASE_EXPORT Observer {
33 public:
34 virtual ~Observer() {}
36 // This method is called before processing a message.
37 // The message may be undefined in which case msg.message is 0
38 virtual void WillProcessMessage(const MSG& msg) = 0;
40 // This method is called when control returns from processing a UI message.
41 // The message may be undefined in which case msg.message is 0
42 virtual void DidProcessMessage(const MSG& msg) = 0;
45 // Dispatcher is used during a nested invocation of Run to dispatch events.
46 // If Run is invoked with a non-NULL Dispatcher, MessageLoop does not
47 // dispatch events (or invoke TranslateMessage), rather every message is
48 // passed to Dispatcher's Dispatch method for dispatch. It is up to the
49 // Dispatcher to dispatch, or not, the event.
51 // The nested loop is exited by either posting a quit, or returning false
52 // from Dispatch.
53 class BASE_EXPORT Dispatcher {
54 public:
55 virtual ~Dispatcher() {}
56 // Dispatches the event. If true is returned processing continues as
57 // normal. If false is returned, the nested loop exits immediately.
58 virtual bool Dispatch(const MSG& msg) = 0;
61 MessagePumpWin() : have_work_(0), state_(NULL) {}
62 virtual ~MessagePumpWin() {}
64 // Add an Observer, which will start receiving notifications immediately.
65 void AddObserver(Observer* observer);
67 // Remove an Observer. It is safe to call this method while an Observer is
68 // receiving a notification callback.
69 void RemoveObserver(Observer* observer);
71 // Give a chance to code processing additional messages to notify the
72 // message loop observers that another message has been processed.
73 void WillProcessMessage(const MSG& msg);
74 void DidProcessMessage(const MSG& msg);
76 // Like MessagePump::Run, but MSG objects are routed through dispatcher.
77 void RunWithDispatcher(Delegate* delegate, Dispatcher* dispatcher);
79 // MessagePump methods:
80 virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); }
81 virtual void Quit();
83 protected:
84 struct RunState {
85 Delegate* delegate;
86 Dispatcher* dispatcher;
88 // Used to flag that the current Run() invocation should return ASAP.
89 bool should_quit;
91 // Used to count how many Run() invocations are on the stack.
92 int run_depth;
95 virtual void DoRunLoop() = 0;
96 int GetCurrentDelay() const;
98 ObserverList<Observer> observers_;
100 // The time at which delayed work should run.
101 TimeTicks delayed_work_time_;
103 // A boolean value used to indicate if there is a kMsgDoWork message pending
104 // in the Windows Message queue. There is at most one such message, and it
105 // can drive execution of tasks when a native message pump is running.
106 LONG have_work_;
108 // State for the current invocation of Run.
109 RunState* state_;
112 //-----------------------------------------------------------------------------
113 // MessagePumpForUI extends MessagePumpWin with methods that are particular to a
114 // MessageLoop instantiated with TYPE_UI.
116 // MessagePumpForUI implements a "traditional" Windows message pump. It contains
117 // a nearly infinite loop that peeks out messages, and then dispatches them.
118 // Intermixed with those peeks are callouts to DoWork for pending tasks, and
119 // DoDelayedWork for pending timers. When there are no events to be serviced,
120 // this pump goes into a wait state. In most cases, this message pump handles
121 // all processing.
123 // However, when a task, or windows event, invokes on the stack a native dialog
124 // box or such, that window typically provides a bare bones (native?) message
125 // pump. That bare-bones message pump generally supports little more than a
126 // peek of the Windows message queue, followed by a dispatch of the peeked
127 // message. MessageLoop extends that bare-bones message pump to also service
128 // Tasks, at the cost of some complexity.
130 // The basic structure of the extension (refered to as a sub-pump) is that a
131 // special message, kMsgHaveWork, is repeatedly injected into the Windows
132 // Message queue. Each time the kMsgHaveWork message is peeked, checks are
133 // made for an extended set of events, including the availability of Tasks to
134 // run.
136 // After running a task, the special message kMsgHaveWork is again posted to
137 // the Windows Message queue, ensuring a future time slice for processing a
138 // future event. To prevent flooding the Windows Message queue, care is taken
139 // to be sure that at most one kMsgHaveWork message is EVER pending in the
140 // Window's Message queue.
142 // There are a few additional complexities in this system where, when there are
143 // no Tasks to run, this otherwise infinite stream of messages which drives the
144 // sub-pump is halted. The pump is automatically re-started when Tasks are
145 // queued.
147 // A second complexity is that the presence of this stream of posted tasks may
148 // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
149 // Such paint and timer events always give priority to a posted message, such as
150 // kMsgHaveWork messages. As a result, care is taken to do some peeking in
151 // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork
152 // is peeked, and before a replacement kMsgHaveWork is posted).
154 // NOTE: Although it may seem odd that messages are used to start and stop this
155 // flow (as opposed to signaling objects, etc.), it should be understood that
156 // the native message pump will *only* respond to messages. As a result, it is
157 // an excellent choice. It is also helpful that the starter messages that are
158 // placed in the queue when new task arrive also awakens DoRunLoop.
160 class BASE_EXPORT MessagePumpForUI : public MessagePumpWin {
161 public:
162 // The application-defined code passed to the hook procedure.
163 static const int kMessageFilterCode = 0x5001;
165 MessagePumpForUI();
166 virtual ~MessagePumpForUI();
168 // MessagePump methods:
169 virtual void ScheduleWork();
170 virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
172 // Applications can call this to encourage us to process all pending WM_PAINT
173 // messages. This method will process all paint messages the Windows Message
174 // queue can provide, up to some fixed number (to avoid any infinite loops).
175 void PumpOutPendingPaintMessages();
177 private:
178 static LRESULT CALLBACK WndProcThunk(
179 HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam);
180 virtual void DoRunLoop();
181 void InitMessageWnd();
182 void WaitForWork();
183 void HandleWorkMessage();
184 void HandleTimerMessage();
185 bool ProcessNextWindowsMessage();
186 bool ProcessMessageHelper(const MSG& msg);
187 bool ProcessPumpReplacementMessage();
189 // A hidden message-only window.
190 HWND message_hwnd_;
193 //-----------------------------------------------------------------------------
194 // MessagePumpForIO extends MessagePumpWin with methods that are particular to a
195 // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
196 // deal with Windows mesagges, and instead has a Run loop based on Completion
197 // Ports so it is better suited for IO operations.
199 class BASE_EXPORT MessagePumpForIO : public MessagePumpWin {
200 public:
201 struct IOContext;
203 // Clients interested in receiving OS notifications when asynchronous IO
204 // operations complete should implement this interface and register themselves
205 // with the message pump.
207 // Typical use #1:
208 // // Use only when there are no user's buffers involved on the actual IO,
209 // // so that all the cleanup can be done by the message pump.
210 // class MyFile : public IOHandler {
211 // MyFile() {
212 // ...
213 // context_ = new IOContext;
214 // context_->handler = this;
215 // message_pump->RegisterIOHandler(file_, this);
216 // }
217 // ~MyFile() {
218 // if (pending_) {
219 // // By setting the handler to NULL, we're asking for this context
220 // // to be deleted when received, without calling back to us.
221 // context_->handler = NULL;
222 // } else {
223 // delete context_;
224 // }
225 // }
226 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
227 // DWORD error) {
228 // pending_ = false;
229 // }
230 // void DoSomeIo() {
231 // ...
232 // // The only buffer required for this operation is the overlapped
233 // // structure.
234 // ConnectNamedPipe(file_, &context_->overlapped);
235 // pending_ = true;
236 // }
237 // bool pending_;
238 // IOContext* context_;
239 // HANDLE file_;
240 // };
242 // Typical use #2:
243 // class MyFile : public IOHandler {
244 // MyFile() {
245 // ...
246 // message_pump->RegisterIOHandler(file_, this);
247 // }
248 // // Plus some code to make sure that this destructor is not called
249 // // while there are pending IO operations.
250 // ~MyFile() {
251 // }
252 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
253 // DWORD error) {
254 // ...
255 // delete context;
256 // }
257 // void DoSomeIo() {
258 // ...
259 // IOContext* context = new IOContext;
260 // // This is not used for anything. It just prevents the context from
261 // // being considered "abandoned".
262 // context->handler = this;
263 // ReadFile(file_, buffer, num_bytes, &read, &context->overlapped);
264 // }
265 // HANDLE file_;
266 // };
268 // Typical use #3:
269 // Same as the previous example, except that in order to deal with the
270 // requirement stated for the destructor, the class calls WaitForIOCompletion
271 // from the destructor to block until all IO finishes.
272 // ~MyFile() {
273 // while(pending_)
274 // message_pump->WaitForIOCompletion(INFINITE, this);
275 // }
277 class IOHandler {
278 public:
279 virtual ~IOHandler() {}
280 // This will be called once the pending IO operation associated with
281 // |context| completes. |error| is the Win32 error code of the IO operation
282 // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
283 // on error.
284 virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
285 DWORD error) = 0;
288 // An IOObserver is an object that receives IO notifications from the
289 // MessagePump.
291 // NOTE: An IOObserver implementation should be extremely fast!
292 class IOObserver {
293 public:
294 IOObserver() {}
296 virtual void WillProcessIOEvent() = 0;
297 virtual void DidProcessIOEvent() = 0;
299 protected:
300 virtual ~IOObserver() {}
303 // The extended context that should be used as the base structure on every
304 // overlapped IO operation. |handler| must be set to the registered IOHandler
305 // for the given file when the operation is started, and it can be set to NULL
306 // before the operation completes to indicate that the handler should not be
307 // called anymore, and instead, the IOContext should be deleted when the OS
308 // notifies the completion of this operation. Please remember that any buffers
309 // involved with an IO operation should be around until the callback is
310 // received, so this technique can only be used for IO that do not involve
311 // additional buffers (other than the overlapped structure itself).
312 struct IOContext {
313 OVERLAPPED overlapped;
314 IOHandler* handler;
317 MessagePumpForIO();
318 virtual ~MessagePumpForIO() {}
320 // MessagePump methods:
321 virtual void ScheduleWork();
322 virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
324 // Register the handler to be used when asynchronous IO for the given file
325 // completes. The registration persists as long as |file_handle| is valid, so
326 // |handler| must be valid as long as there is pending IO for the given file.
327 void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
329 // Waits for the next IO completion that should be processed by |filter|, for
330 // up to |timeout| milliseconds. Return true if any IO operation completed,
331 // regardless of the involved handler, and false if the timeout expired. If
332 // the completion port received any message and the involved IO handler
333 // matches |filter|, the callback is called before returning from this code;
334 // if the handler is not the one that we are looking for, the callback will
335 // be postponed for another time, so reentrancy problems can be avoided.
336 // External use of this method should be reserved for the rare case when the
337 // caller is willing to allow pausing regular task dispatching on this thread.
338 bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
340 void AddIOObserver(IOObserver* obs);
341 void RemoveIOObserver(IOObserver* obs);
343 private:
344 struct IOItem {
345 IOHandler* handler;
346 IOContext* context;
347 DWORD bytes_transfered;
348 DWORD error;
351 virtual void DoRunLoop();
352 void WaitForWork();
353 bool MatchCompletedIOItem(IOHandler* filter, IOItem* item);
354 bool GetIOItem(DWORD timeout, IOItem* item);
355 bool ProcessInternalIOItem(const IOItem& item);
356 void WillProcessIOEvent();
357 void DidProcessIOEvent();
359 // The completion port associated with this thread.
360 win::ScopedHandle port_;
361 // This list will be empty almost always. It stores IO completions that have
362 // not been delivered yet because somebody was doing cleanup.
363 std::list<IOItem> completed_io_;
365 ObserverList<IOObserver> io_observers_;
368 } // namespace base
370 #endif // BASE_MESSAGE_PUMP_WIN_H_