histograms: Added Platform.TPM.DictionaryAttackResetStatus.
[chromium-blink-merge.git] / net / base / mime_sniffer.cc
blob0d1f1169907bd91d1f93404afeee54a7e7e197e9
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // Detecting mime types is a tricky business because we need to balance
6 // compatibility concerns with security issues. Here is a survey of how other
7 // browsers behave and then a description of how we intend to behave.
8 //
9 // HTML payload, no Content-Type header:
10 // * IE 7: Render as HTML
11 // * Firefox 2: Render as HTML
12 // * Safari 3: Render as HTML
13 // * Opera 9: Render as HTML
15 // Here the choice seems clear:
16 // => Chrome: Render as HTML
18 // HTML payload, Content-Type: "text/plain":
19 // * IE 7: Render as HTML
20 // * Firefox 2: Render as text
21 // * Safari 3: Render as text (Note: Safari will Render as HTML if the URL
22 // has an HTML extension)
23 // * Opera 9: Render as text
25 // Here we choose to follow the majority (and break some compatibility with IE).
26 // Many folks dislike IE's behavior here.
27 // => Chrome: Render as text
28 // We generalize this as follows. If the Content-Type header is text/plain
29 // we won't detect dangerous mime types (those that can execute script).
31 // HTML payload, Content-Type: "application/octet-stream":
32 // * IE 7: Render as HTML
33 // * Firefox 2: Download as application/octet-stream
34 // * Safari 3: Render as HTML
35 // * Opera 9: Render as HTML
37 // We follow Firefox.
38 // => Chrome: Download as application/octet-stream
39 // One factor in this decision is that IIS 4 and 5 will send
40 // application/octet-stream for .xhtml files (because they don't recognize
41 // the extension). We did some experiments and it looks like this doesn't occur
42 // very often on the web. We choose the more secure option.
44 // GIF payload, no Content-Type header:
45 // * IE 7: Render as GIF
46 // * Firefox 2: Render as GIF
47 // * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
48 // URL has an GIF extension)
49 // * Opera 9: Render as GIF
51 // The choice is clear.
52 // => Chrome: Render as GIF
53 // Once we decide to render HTML without a Content-Type header, there isn't much
54 // reason not to render GIFs.
56 // GIF payload, Content-Type: "text/plain":
57 // * IE 7: Render as GIF
58 // * Firefox 2: Download as application/octet-stream (Note: Firefox will
59 // Download as GIF if the URL has an GIF extension)
60 // * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
61 // URL has an GIF extension)
62 // * Opera 9: Render as GIF
64 // Displaying as text/plain makes little sense as the content will look like
65 // gibberish. Here, we could change our minds and download.
66 // => Chrome: Render as GIF
68 // GIF payload, Content-Type: "application/octet-stream":
69 // * IE 7: Render as GIF
70 // * Firefox 2: Download as application/octet-stream (Note: Firefox will
71 // Download as GIF if the URL has an GIF extension)
72 // * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
73 // URL has an GIF extension)
74 // * Opera 9: Render as GIF
76 // We used to render as GIF here, but the problem is that some sites want to
77 // trigger downloads by sending application/octet-stream (even though they
78 // should be sending Content-Disposition: attachment). Although it is safe
79 // to render as GIF from a security perspective, we actually get better
80 // compatibility if we don't sniff from application/octet stream at all.
81 // => Chrome: Download as application/octet-stream
83 // XHTML payload, Content-Type: "text/xml":
84 // * IE 7: Render as XML
85 // * Firefox 2: Render as HTML
86 // * Safari 3: Render as HTML
87 // * Opera 9: Render as HTML
88 // The layout tests rely on us rendering this as HTML.
89 // But we're conservative in XHTML detection, as this runs afoul of the
90 // "don't detect dangerous mime types" rule.
92 // Note that our definition of HTML payload is much stricter than IE's
93 // definition and roughly the same as Firefox's definition.
95 #include <string>
97 #include "net/base/mime_sniffer.h"
99 #include "base/basictypes.h"
100 #include "base/logging.h"
101 #include "base/metrics/histogram.h"
102 #include "base/strings/string_util.h"
103 #include "net/base/mime_util.h"
104 #include "url/gurl.h"
106 namespace net {
108 // The number of content bytes we need to use all our magic numbers. Feel free
109 // to increase this number if you add a longer magic number.
110 static const size_t kBytesRequiredForMagic = 42;
112 struct MagicNumber {
113 const char* const mime_type;
114 const char* const magic;
115 size_t magic_len;
116 bool is_string;
117 const char* const mask; // if set, must have same length as |magic|
120 #define MAGIC_NUMBER(mime_type, magic) \
121 { (mime_type), (magic), sizeof(magic)-1, false, NULL },
123 template <int MagicSize, int MaskSize>
124 class VerifySizes {
125 static_assert(MagicSize == MaskSize, "sizes must be equal");
127 public:
128 enum { SIZES = MagicSize };
131 #define verified_sizeof(magic, mask) \
132 VerifySizes<sizeof(magic), sizeof(mask)>::SIZES
134 #define MAGIC_MASK(mime_type, magic, mask) \
135 { (mime_type), (magic), verified_sizeof(magic, mask)-1, false, (mask) },
137 // Magic strings are case insensitive and must not include '\0' characters
138 #define MAGIC_STRING(mime_type, magic) \
139 { (mime_type), (magic), sizeof(magic)-1, true, NULL },
141 static const MagicNumber kMagicNumbers[] = {
142 // Source: HTML 5 specification
143 MAGIC_NUMBER("application/pdf", "%PDF-")
144 MAGIC_NUMBER("application/postscript", "%!PS-Adobe-")
145 MAGIC_NUMBER("image/gif", "GIF87a")
146 MAGIC_NUMBER("image/gif", "GIF89a")
147 MAGIC_NUMBER("image/png", "\x89" "PNG\x0D\x0A\x1A\x0A")
148 MAGIC_NUMBER("image/jpeg", "\xFF\xD8\xFF")
149 MAGIC_NUMBER("image/bmp", "BM")
150 // Source: Mozilla
151 MAGIC_NUMBER("text/plain", "#!") // Script
152 MAGIC_NUMBER("text/plain", "%!") // Script, similar to PS
153 MAGIC_NUMBER("text/plain", "From")
154 MAGIC_NUMBER("text/plain", ">From")
155 // Chrome specific
156 MAGIC_NUMBER("application/x-gzip", "\x1F\x8B\x08")
157 MAGIC_NUMBER("audio/x-pn-realaudio", "\x2E\x52\x4D\x46")
158 MAGIC_NUMBER("video/x-ms-asf",
159 "\x30\x26\xB2\x75\x8E\x66\xCF\x11\xA6\xD9\x00\xAA\x00\x62\xCE\x6C")
160 MAGIC_NUMBER("image/tiff", "I I")
161 MAGIC_NUMBER("image/tiff", "II*")
162 MAGIC_NUMBER("image/tiff", "MM\x00*")
163 MAGIC_NUMBER("audio/mpeg", "ID3")
164 MAGIC_NUMBER("image/webp", "RIFF....WEBPVP8 ")
165 MAGIC_NUMBER("video/webm", "\x1A\x45\xDF\xA3")
166 // TODO(abarth): we don't handle partial byte matches yet
167 // MAGIC_NUMBER("video/mpeg", "\x00\x00\x01\xB")
168 // MAGIC_NUMBER("audio/mpeg", "\xFF\xE")
169 // MAGIC_NUMBER("audio/mpeg", "\xFF\xF")
170 MAGIC_NUMBER("application/zip", "PK\x03\x04")
171 MAGIC_NUMBER("application/x-rar-compressed", "Rar!\x1A\x07\x00")
172 MAGIC_NUMBER("application/x-msmetafile", "\xD7\xCD\xC6\x9A")
173 MAGIC_NUMBER("application/octet-stream", "MZ") // EXE
174 // Sniffing for Flash:
176 // MAGIC_NUMBER("application/x-shockwave-flash", "CWS")
177 // MAGIC_NUMBER("application/x-shockwave-flash", "FLV")
178 // MAGIC_NUMBER("application/x-shockwave-flash", "FWS")
180 // Including these magic number for Flash is a trade off.
182 // Pros:
183 // * Flash is an important and popular file format
185 // Cons:
186 // * These patterns are fairly weak
187 // * If we mistakenly decide something is Flash, we will execute it
188 // in the origin of an unsuspecting site. This could be a security
189 // vulnerability if the site allows users to upload content.
191 // On balance, we do not include these patterns.
194 // The number of content bytes we need to use all our Microsoft Office magic
195 // numbers.
196 static const size_t kBytesRequiredForOfficeMagic = 8;
198 static const MagicNumber kOfficeMagicNumbers[] = {
199 MAGIC_NUMBER("CFB", "\xD0\xCF\x11\xE0\xA1\xB1\x1A\xE1")
200 MAGIC_NUMBER("OOXML", "PK\x03\x04")
203 enum OfficeDocType {
204 DOC_TYPE_WORD,
205 DOC_TYPE_EXCEL,
206 DOC_TYPE_POWERPOINT,
207 DOC_TYPE_NONE
210 struct OfficeExtensionType {
211 OfficeDocType doc_type;
212 const char* const extension;
213 size_t extension_len;
216 #define OFFICE_EXTENSION(type, extension) \
217 { (type), (extension), sizeof(extension) - 1 },
219 static const OfficeExtensionType kOfficeExtensionTypes[] = {
220 OFFICE_EXTENSION(DOC_TYPE_WORD, ".doc")
221 OFFICE_EXTENSION(DOC_TYPE_EXCEL, ".xls")
222 OFFICE_EXTENSION(DOC_TYPE_POWERPOINT, ".ppt")
223 OFFICE_EXTENSION(DOC_TYPE_WORD, ".docx")
224 OFFICE_EXTENSION(DOC_TYPE_EXCEL, ".xlsx")
225 OFFICE_EXTENSION(DOC_TYPE_POWERPOINT, ".pptx")
228 static const MagicNumber kExtraMagicNumbers[] = {
229 MAGIC_NUMBER("image/x-xbitmap", "#define")
230 MAGIC_NUMBER("image/x-icon", "\x00\x00\x01\x00")
231 MAGIC_NUMBER("image/svg+xml", "<?xml_version=")
232 MAGIC_NUMBER("audio/wav", "RIFF....WAVEfmt ")
233 MAGIC_NUMBER("video/avi", "RIFF....AVI LIST")
234 MAGIC_NUMBER("audio/ogg", "OggS")
235 MAGIC_MASK("video/mpeg", "\x00\x00\x01\xB0", "\xFF\xFF\xFF\xF0")
236 MAGIC_MASK("audio/mpeg", "\xFF\xE0", "\xFF\xE0")
237 MAGIC_NUMBER("video/3gpp", "....ftyp3g")
238 MAGIC_NUMBER("video/3gpp", "....ftypavcl")
239 MAGIC_NUMBER("video/mp4", "....ftyp")
240 MAGIC_NUMBER("video/quicktime", "....moov")
241 MAGIC_NUMBER("application/x-shockwave-flash", "CWS")
242 MAGIC_NUMBER("application/x-shockwave-flash", "FWS")
243 MAGIC_NUMBER("video/x-flv", "FLV")
244 MAGIC_NUMBER("audio/x-flac", "fLaC")
246 // RAW image types.
247 MAGIC_NUMBER("image/x-canon-cr2", "II\x2a\x00\x10\x00\x00\x00CR")
248 MAGIC_NUMBER("image/x-canon-crw", "II\x1a\x00\x00\x00HEAPCCDR")
249 MAGIC_NUMBER("image/x-minolta-mrw", "\x00MRM")
250 MAGIC_NUMBER("image/x-olympus-orf", "MMOR") // big-endian
251 MAGIC_NUMBER("image/x-olympus-orf", "IIRO") // little-endian
252 MAGIC_NUMBER("image/x-olympus-orf", "IIRS") // little-endian
253 MAGIC_NUMBER("image/x-fuji-raf", "FUJIFILMCCD-RAW ")
254 MAGIC_NUMBER("image/x-panasonic-raw",
255 "IIU\x00\x08\x00\x00\x00") // Panasonic .raw
256 MAGIC_NUMBER("image/x-panasonic-raw",
257 "IIU\x00\x18\x00\x00\x00") // Panasonic .rw2
258 MAGIC_NUMBER("image/x-phaseone-raw", "MMMMRaw")
259 MAGIC_NUMBER("image/x-x3f", "FOVb")
262 // Our HTML sniffer differs slightly from Mozilla. For example, Mozilla will
263 // decide that a document that begins "<!DOCTYPE SOAP-ENV:Envelope PUBLIC " is
264 // HTML, but we will not.
266 #define MAGIC_HTML_TAG(tag) \
267 MAGIC_STRING("text/html", "<" tag)
269 static const MagicNumber kSniffableTags[] = {
270 // XML processing directive. Although this is not an HTML mime type, we sniff
271 // for this in the HTML phase because text/xml is just as powerful as HTML and
272 // we want to leverage our white space skipping technology.
273 MAGIC_NUMBER("text/xml", "<?xml") // Mozilla
274 // DOCTYPEs
275 MAGIC_HTML_TAG("!DOCTYPE html") // HTML5 spec
276 // Sniffable tags, ordered by how often they occur in sniffable documents.
277 MAGIC_HTML_TAG("script") // HTML5 spec, Mozilla
278 MAGIC_HTML_TAG("html") // HTML5 spec, Mozilla
279 MAGIC_HTML_TAG("!--")
280 MAGIC_HTML_TAG("head") // HTML5 spec, Mozilla
281 MAGIC_HTML_TAG("iframe") // Mozilla
282 MAGIC_HTML_TAG("h1") // Mozilla
283 MAGIC_HTML_TAG("div") // Mozilla
284 MAGIC_HTML_TAG("font") // Mozilla
285 MAGIC_HTML_TAG("table") // Mozilla
286 MAGIC_HTML_TAG("a") // Mozilla
287 MAGIC_HTML_TAG("style") // Mozilla
288 MAGIC_HTML_TAG("title") // Mozilla
289 MAGIC_HTML_TAG("b") // Mozilla
290 MAGIC_HTML_TAG("body") // Mozilla
291 MAGIC_HTML_TAG("br")
292 MAGIC_HTML_TAG("p") // Mozilla
295 static base::HistogramBase* UMASnifferHistogramGet(const char* name,
296 int array_size) {
297 base::HistogramBase* counter =
298 base::LinearHistogram::FactoryGet(name, 1, array_size - 1, array_size,
299 base::HistogramBase::kUmaTargetedHistogramFlag);
300 return counter;
303 // Compare content header to a magic number where magic_entry can contain '.'
304 // for single character of anything, allowing some bytes to be skipped.
305 static bool MagicCmp(const char* magic_entry, const char* content, size_t len) {
306 while (len) {
307 if ((*magic_entry != '.') && (*magic_entry != *content))
308 return false;
309 ++magic_entry;
310 ++content;
311 --len;
313 return true;
316 // Like MagicCmp() except that it ANDs each byte with a mask before
317 // the comparison, because there are some bits we don't care about.
318 static bool MagicMaskCmp(const char* magic_entry,
319 const char* content,
320 size_t len,
321 const char* mask) {
322 while (len) {
323 if ((*magic_entry != '.') && (*magic_entry != (*mask & *content)))
324 return false;
325 ++magic_entry;
326 ++content;
327 ++mask;
328 --len;
330 return true;
333 static bool MatchMagicNumber(const char* content,
334 size_t size,
335 const MagicNumber& magic_entry,
336 std::string* result) {
337 const size_t len = magic_entry.magic_len;
339 // Keep kBytesRequiredForMagic honest.
340 DCHECK_LE(len, kBytesRequiredForMagic);
342 // To compare with magic strings, we need to compute strlen(content), but
343 // content might not actually have a null terminator. In that case, we
344 // pretend the length is content_size.
345 const char* end = static_cast<const char*>(memchr(content, '\0', size));
346 const size_t content_strlen =
347 (end != NULL) ? static_cast<size_t>(end - content) : size;
349 bool match = false;
350 if (magic_entry.is_string) {
351 if (content_strlen >= len) {
352 // String comparisons are case-insensitive
353 match = (base::strncasecmp(magic_entry.magic, content, len) == 0);
355 } else {
356 if (size >= len) {
357 if (!magic_entry.mask) {
358 match = MagicCmp(magic_entry.magic, content, len);
359 } else {
360 match = MagicMaskCmp(magic_entry.magic, content, len, magic_entry.mask);
365 if (match) {
366 result->assign(magic_entry.mime_type);
367 return true;
369 return false;
372 static bool CheckForMagicNumbers(const char* content, size_t size,
373 const MagicNumber* magic, size_t magic_len,
374 base::HistogramBase* counter,
375 std::string* result) {
376 for (size_t i = 0; i < magic_len; ++i) {
377 if (MatchMagicNumber(content, size, magic[i], result)) {
378 if (counter) counter->Add(static_cast<int>(i));
379 return true;
382 return false;
385 // Truncates |size| to |max_size| and returns true if |size| is at least
386 // |max_size|.
387 static bool TruncateSize(const size_t max_size, size_t* size) {
388 // Keep kMaxBytesToSniff honest.
389 DCHECK_LE(static_cast<int>(max_size), kMaxBytesToSniff);
391 if (*size >= max_size) {
392 *size = max_size;
393 return true;
395 return false;
398 // Returns true and sets result if the content appears to be HTML.
399 // Clears have_enough_content if more data could possibly change the result.
400 static bool SniffForHTML(const char* content,
401 size_t size,
402 bool* have_enough_content,
403 std::string* result) {
404 // For HTML, we are willing to consider up to 512 bytes. This may be overly
405 // conservative as IE only considers 256.
406 *have_enough_content &= TruncateSize(512, &size);
408 // We adopt a strategy similar to that used by Mozilla to sniff HTML tags,
409 // but with some modifications to better match the HTML5 spec.
410 const char* const end = content + size;
411 const char* pos;
412 for (pos = content; pos < end; ++pos) {
413 if (!IsAsciiWhitespace(*pos))
414 break;
416 static base::HistogramBase* counter(NULL);
417 if (!counter) {
418 counter = UMASnifferHistogramGet("mime_sniffer.kSniffableTags2",
419 arraysize(kSniffableTags));
421 // |pos| now points to first non-whitespace character (or at end).
422 return CheckForMagicNumbers(pos, end - pos,
423 kSniffableTags, arraysize(kSniffableTags),
424 counter, result);
427 // Returns true and sets result if the content matches any of kMagicNumbers.
428 // Clears have_enough_content if more data could possibly change the result.
429 static bool SniffForMagicNumbers(const char* content,
430 size_t size,
431 bool* have_enough_content,
432 std::string* result) {
433 *have_enough_content &= TruncateSize(kBytesRequiredForMagic, &size);
435 // Check our big table of Magic Numbers
436 static base::HistogramBase* counter(NULL);
437 if (!counter) {
438 counter = UMASnifferHistogramGet("mime_sniffer.kMagicNumbers2",
439 arraysize(kMagicNumbers));
441 return CheckForMagicNumbers(content, size,
442 kMagicNumbers, arraysize(kMagicNumbers),
443 counter, result);
446 // Returns true and sets result if the content matches any of
447 // kOfficeMagicNumbers, and the URL has the proper extension.
448 // Clears |have_enough_content| if more data could possibly change the result.
449 static bool SniffForOfficeDocs(const char* content,
450 size_t size,
451 const GURL& url,
452 bool* have_enough_content,
453 std::string* result) {
454 *have_enough_content &= TruncateSize(kBytesRequiredForOfficeMagic, &size);
456 // Check our table of magic numbers for Office file types.
457 std::string office_version;
458 if (!CheckForMagicNumbers(content, size,
459 kOfficeMagicNumbers, arraysize(kOfficeMagicNumbers),
460 NULL, &office_version))
461 return false;
463 OfficeDocType type = DOC_TYPE_NONE;
464 for (size_t i = 0; i < arraysize(kOfficeExtensionTypes); ++i) {
465 std::string url_path = url.path();
467 if (url_path.length() < kOfficeExtensionTypes[i].extension_len)
468 continue;
470 const char* extension =
471 &url_path[url_path.length() - kOfficeExtensionTypes[i].extension_len];
473 if (0 == base::strncasecmp(extension, kOfficeExtensionTypes[i].extension,
474 kOfficeExtensionTypes[i].extension_len)) {
475 type = kOfficeExtensionTypes[i].doc_type;
476 break;
480 if (type == DOC_TYPE_NONE)
481 return false;
483 if (office_version == "CFB") {
484 switch (type) {
485 case DOC_TYPE_WORD:
486 *result = "application/msword";
487 return true;
488 case DOC_TYPE_EXCEL:
489 *result = "application/vnd.ms-excel";
490 return true;
491 case DOC_TYPE_POWERPOINT:
492 *result = "application/vnd.ms-powerpoint";
493 return true;
494 case DOC_TYPE_NONE:
495 NOTREACHED();
496 return false;
498 } else if (office_version == "OOXML") {
499 switch (type) {
500 case DOC_TYPE_WORD:
501 *result = "application/vnd.openxmlformats-officedocument."
502 "wordprocessingml.document";
503 return true;
504 case DOC_TYPE_EXCEL:
505 *result = "application/vnd.openxmlformats-officedocument."
506 "spreadsheetml.sheet";
507 return true;
508 case DOC_TYPE_POWERPOINT:
509 *result = "application/vnd.openxmlformats-officedocument."
510 "presentationml.presentation";
511 return true;
512 case DOC_TYPE_NONE:
513 NOTREACHED();
514 return false;
518 NOTREACHED();
519 return false;
522 static bool IsOfficeType(const std::string& type_hint) {
523 return (type_hint == "application/msword" ||
524 type_hint == "application/vnd.ms-excel" ||
525 type_hint == "application/vnd.ms-powerpoint" ||
526 type_hint == "application/vnd.openxmlformats-officedocument."
527 "wordprocessingml.document" ||
528 type_hint == "application/vnd.openxmlformats-officedocument."
529 "spreadsheetml.sheet" ||
530 type_hint == "application/vnd.openxmlformats-officedocument."
531 "presentationml.presentation" ||
532 type_hint == "application/vnd.ms-excel.sheet.macroenabled.12" ||
533 type_hint == "application/vnd.ms-word.document.macroenabled.12" ||
534 type_hint == "application/vnd.ms-powerpoint.presentation."
535 "macroenabled.12" ||
536 type_hint == "application/mspowerpoint" ||
537 type_hint == "application/msexcel" ||
538 type_hint == "application/vnd.ms-word" ||
539 type_hint == "application/vnd.ms-word.document.12" ||
540 type_hint == "application/vnd.msword");
543 // This function checks for files that have a Microsoft Office MIME type
544 // set, but are not actually Office files.
546 // If this is not actually an Office file, |*result| is set to
547 // "application/octet-stream", otherwise it is not modified.
549 // Returns false if additional data is required to determine the file type, or
550 // true if there is enough data to make a decision.
551 static bool SniffForInvalidOfficeDocs(const char* content,
552 size_t size,
553 const GURL& url,
554 std::string* result) {
555 if (!TruncateSize(kBytesRequiredForOfficeMagic, &size))
556 return false;
558 // Check our table of magic numbers for Office file types. If it does not
559 // match one, the MIME type was invalid. Set it instead to a safe value.
560 std::string office_version;
561 if (!CheckForMagicNumbers(content, size,
562 kOfficeMagicNumbers, arraysize(kOfficeMagicNumbers),
563 NULL, &office_version)) {
564 *result = "application/octet-stream";
567 // We have enough information to determine if this was a Microsoft Office
568 // document or not, so sniffing is completed.
569 return true;
572 // Byte order marks
573 static const MagicNumber kMagicXML[] = {
574 // We want to be very conservative in interpreting text/xml content as
575 // XHTML -- we just want to sniff enough to make unit tests pass.
576 // So we match explicitly on this, and don't match other ways of writing
577 // it in semantically-equivalent ways.
578 MAGIC_STRING("application/xhtml+xml",
579 "<html xmlns=\"http://www.w3.org/1999/xhtml\"")
580 MAGIC_STRING("application/atom+xml", "<feed")
581 MAGIC_STRING("application/rss+xml", "<rss") // UTF-8
584 // Returns true and sets result if the content appears to contain XHTML or a
585 // feed.
586 // Clears have_enough_content if more data could possibly change the result.
588 // TODO(evanm): this is similar but more conservative than what Safari does,
589 // while HTML5 has a different recommendation -- what should we do?
590 // TODO(evanm): this is incorrect for documents whose encoding isn't a superset
591 // of ASCII -- do we care?
592 static bool SniffXML(const char* content,
593 size_t size,
594 bool* have_enough_content,
595 std::string* result) {
596 // We allow at most 300 bytes of content before we expect the opening tag.
597 *have_enough_content &= TruncateSize(300, &size);
598 const char* pos = content;
599 const char* const end = content + size;
601 // This loop iterates through tag-looking offsets in the file.
602 // We want to skip XML processing instructions (of the form "<?xml ...")
603 // and stop at the first "plain" tag, then make a decision on the mime-type
604 // based on the name (or possibly attributes) of that tag.
605 static base::HistogramBase* counter(NULL);
606 if (!counter) {
607 counter = UMASnifferHistogramGet("mime_sniffer.kMagicXML2",
608 arraysize(kMagicXML));
610 const int kMaxTagIterations = 5;
611 for (int i = 0; i < kMaxTagIterations && pos < end; ++i) {
612 pos = reinterpret_cast<const char*>(memchr(pos, '<', end - pos));
613 if (!pos)
614 return false;
616 if ((pos + sizeof("<?xml") - 1 <= end) &&
617 (base::strncasecmp(pos, "<?xml", sizeof("<?xml") - 1) == 0)) {
618 // Skip XML declarations.
619 ++pos;
620 continue;
621 } else if ((pos + sizeof("<!DOCTYPE") - 1 <= end) &&
622 (base::strncasecmp(pos, "<!DOCTYPE", sizeof("<!DOCTYPE") - 1) ==
623 0)) {
624 // Skip DOCTYPE declarations.
625 ++pos;
626 continue;
629 if (CheckForMagicNumbers(pos, end - pos,
630 kMagicXML, arraysize(kMagicXML),
631 counter, result))
632 return true;
634 // TODO(evanm): handle RSS 1.0, which is an RDF format and more difficult
635 // to identify.
637 // If we get here, we've hit an initial tag that hasn't matched one of the
638 // above tests. Abort.
639 return true;
642 // We iterated too far without finding a start tag.
643 // If we have more content to look at, we aren't going to change our mind by
644 // seeing more bytes from the network.
645 return pos < end;
648 // Byte order marks
649 static const MagicNumber kByteOrderMark[] = {
650 MAGIC_NUMBER("text/plain", "\xFE\xFF") // UTF-16BE
651 MAGIC_NUMBER("text/plain", "\xFF\xFE") // UTF-16LE
652 MAGIC_NUMBER("text/plain", "\xEF\xBB\xBF") // UTF-8
655 // Whether a given byte looks like it might be part of binary content.
656 // Source: HTML5 spec
657 static char kByteLooksBinary[] = {
658 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, // 0x00 - 0x0F
659 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, // 0x10 - 0x1F
660 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x20 - 0x2F
661 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x30 - 0x3F
662 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x40 - 0x4F
663 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x50 - 0x5F
664 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x60 - 0x6F
665 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x70 - 0x7F
666 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x80 - 0x8F
667 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x90 - 0x9F
668 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xA0 - 0xAF
669 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xB0 - 0xBF
670 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xC0 - 0xCF
671 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xD0 - 0xDF
672 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xE0 - 0xEF
673 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xF0 - 0xFF
676 // Returns true and sets result to "application/octet-stream" if the content
677 // appears to be binary data. Otherwise, returns false and sets "text/plain".
678 // Clears have_enough_content if more data could possibly change the result.
679 static bool SniffBinary(const char* content,
680 size_t size,
681 bool* have_enough_content,
682 std::string* result) {
683 // There is no concensus about exactly how to sniff for binary content.
684 // * IE 7: Don't sniff for binary looking bytes, but trust the file extension.
685 // * Firefox 3.5: Sniff first 4096 bytes for a binary looking byte.
686 // Here, we side with FF, but with a smaller buffer. This size was chosen
687 // because it is small enough to comfortably fit into a single packet (after
688 // allowing for headers) and yet large enough to account for binary formats
689 // that have a significant amount of ASCII at the beginning (crbug.com/15314).
690 const bool is_truncated = TruncateSize(kMaxBytesToSniff, &size);
692 // First, we look for a BOM.
693 static base::HistogramBase* counter(NULL);
694 if (!counter) {
695 counter = UMASnifferHistogramGet("mime_sniffer.kByteOrderMark2",
696 arraysize(kByteOrderMark));
698 std::string unused;
699 if (CheckForMagicNumbers(content, size,
700 kByteOrderMark, arraysize(kByteOrderMark),
701 counter, &unused)) {
702 // If there is BOM, we think the buffer is not binary.
703 result->assign("text/plain");
704 return false;
707 // Next we look to see if any of the bytes "look binary."
708 for (size_t i = 0; i < size; ++i) {
709 // If we a see a binary-looking byte, we think the content is binary.
710 if (kByteLooksBinary[static_cast<unsigned char>(content[i])]) {
711 result->assign("application/octet-stream");
712 return true;
716 // No evidence either way. Default to non-binary and, if truncated, clear
717 // have_enough_content because there could be a binary looking byte in the
718 // truncated data.
719 *have_enough_content &= is_truncated;
720 result->assign("text/plain");
721 return false;
724 static bool IsUnknownMimeType(const std::string& mime_type) {
725 // TODO(tc): Maybe reuse some code in net/http/http_response_headers.* here.
726 // If we do, please be careful not to alter the semantics at all.
727 static const char* const kUnknownMimeTypes[] = {
728 // Empty mime types are as unknown as they get.
730 // The unknown/unknown type is popular and uninformative
731 "unknown/unknown",
732 // The second most popular unknown mime type is application/unknown
733 "application/unknown",
734 // Firefox rejects a mime type if it is exactly */*
735 "*/*",
737 static base::HistogramBase* counter(NULL);
738 if (!counter) {
739 counter = UMASnifferHistogramGet("mime_sniffer.kUnknownMimeTypes2",
740 arraysize(kUnknownMimeTypes) + 1);
742 for (size_t i = 0; i < arraysize(kUnknownMimeTypes); ++i) {
743 if (mime_type == kUnknownMimeTypes[i]) {
744 counter->Add(i);
745 return true;
748 if (mime_type.find('/') == std::string::npos) {
749 // Firefox rejects a mime type if it does not contain a slash
750 counter->Add(arraysize(kUnknownMimeTypes));
751 return true;
753 return false;
756 // Returns true and sets result if the content appears to be a crx (Chrome
757 // extension) file.
758 // Clears have_enough_content if more data could possibly change the result.
759 static bool SniffCRX(const char* content,
760 size_t size,
761 const GURL& url,
762 const std::string& type_hint,
763 bool* have_enough_content,
764 std::string* result) {
765 static base::HistogramBase* counter(NULL);
766 if (!counter)
767 counter = UMASnifferHistogramGet("mime_sniffer.kSniffCRX", 3);
769 // Technically, the crx magic number is just Cr24, but the bytes after that
770 // are a version number which changes infrequently. Including it in the
771 // sniffing gives us less room for error. If the version number ever changes,
772 // we can just add an entry to this list.
774 // TODO(aa): If we ever have another magic number, we'll want to pass a
775 // histogram into CheckForMagicNumbers(), below, to see which one matched.
776 static const struct MagicNumber kCRXMagicNumbers[] = {
777 MAGIC_NUMBER("application/x-chrome-extension", "Cr24\x02\x00\x00\x00")
780 // Only consider files that have the extension ".crx".
781 static const char kCRXExtension[] = ".crx";
782 // Ignore null by subtracting 1.
783 static const int kExtensionLength = arraysize(kCRXExtension) - 1;
784 if (url.path().rfind(kCRXExtension, std::string::npos, kExtensionLength) ==
785 url.path().size() - kExtensionLength) {
786 counter->Add(1);
787 } else {
788 return false;
791 *have_enough_content &= TruncateSize(kBytesRequiredForMagic, &size);
792 if (CheckForMagicNumbers(content, size,
793 kCRXMagicNumbers, arraysize(kCRXMagicNumbers),
794 NULL, result)) {
795 counter->Add(2);
796 } else {
797 return false;
800 return true;
803 bool ShouldSniffMimeType(const GURL& url, const std::string& mime_type) {
804 static base::HistogramBase* should_sniff_counter(NULL);
805 if (!should_sniff_counter) {
806 should_sniff_counter =
807 UMASnifferHistogramGet("mime_sniffer.ShouldSniffMimeType2", 3);
809 bool sniffable_scheme = url.is_empty() ||
810 url.SchemeIsHTTPOrHTTPS() ||
811 url.SchemeIs("ftp") ||
812 #if defined(OS_ANDROID)
813 url.SchemeIs("content") ||
814 #endif
815 url.SchemeIsFile() ||
816 url.SchemeIsFileSystem();
817 if (!sniffable_scheme) {
818 should_sniff_counter->Add(1);
819 return false;
822 static const char* const kSniffableTypes[] = {
823 // Many web servers are misconfigured to send text/plain for many
824 // different types of content.
825 "text/plain",
826 // We want to sniff application/octet-stream for
827 // application/x-chrome-extension, but nothing else.
828 "application/octet-stream",
829 // XHTML and Atom/RSS feeds are often served as plain xml instead of
830 // their more specific mime types.
831 "text/xml",
832 "application/xml",
833 // Check for false Microsoft Office MIME types.
834 "application/msword",
835 "application/vnd.ms-excel",
836 "application/vnd.ms-powerpoint",
837 "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
838 "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
839 "application/vnd.openxmlformats-officedocument.presentationml.presentation",
840 "application/vnd.ms-excel.sheet.macroenabled.12",
841 "application/vnd.ms-word.document.macroenabled.12",
842 "application/vnd.ms-powerpoint.presentation.macroenabled.12",
843 "application/mspowerpoint",
844 "application/msexcel",
845 "application/vnd.ms-word",
846 "application/vnd.ms-word.document.12",
847 "application/vnd.msword",
849 static base::HistogramBase* counter(NULL);
850 if (!counter) {
851 counter = UMASnifferHistogramGet("mime_sniffer.kSniffableTypes2",
852 arraysize(kSniffableTypes) + 1);
854 for (size_t i = 0; i < arraysize(kSniffableTypes); ++i) {
855 if (mime_type == kSniffableTypes[i]) {
856 counter->Add(i);
857 should_sniff_counter->Add(2);
858 return true;
861 if (IsUnknownMimeType(mime_type)) {
862 // The web server didn't specify a content type or specified a mime
863 // type that we ignore.
864 counter->Add(arraysize(kSniffableTypes));
865 should_sniff_counter->Add(2);
866 return true;
868 should_sniff_counter->Add(1);
869 return false;
872 bool SniffMimeType(const char* content,
873 size_t content_size,
874 const GURL& url,
875 const std::string& type_hint,
876 std::string* result) {
877 DCHECK_LT(content_size, 1000000U); // sanity check
878 DCHECK(content);
879 DCHECK(result);
881 // By default, we assume we have enough content.
882 // Each sniff routine may unset this if it wasn't provided enough content.
883 bool have_enough_content = true;
885 // By default, we'll return the type hint.
886 // Each sniff routine may modify this if it has a better guess..
887 result->assign(type_hint);
889 // If the file has a Microsoft Office MIME type, we should only check that it
890 // is a valid Office file. Because this is the only reason we sniff files
891 // with a Microsoft Office MIME type, we can return early.
892 if (IsOfficeType(type_hint))
893 return SniffForInvalidOfficeDocs(content, content_size, url, result);
895 // Cache information about the type_hint
896 const bool hint_is_unknown_mime_type = IsUnknownMimeType(type_hint);
898 // First check for HTML
899 if (hint_is_unknown_mime_type) {
900 // We're only willing to sniff HTML if the server has not supplied a mime
901 // type, or if the type it did supply indicates that it doesn't know what
902 // the type should be.
903 if (SniffForHTML(content, content_size, &have_enough_content, result))
904 return true; // We succeeded in sniffing HTML. No more content needed.
907 // We're only willing to sniff for binary in 3 cases:
908 // 1. The server has not supplied a mime type.
909 // 2. The type it did supply indicates that it doesn't know what the type
910 // should be.
911 // 3. The type is "text/plain" which is the default on some web servers and
912 // could be indicative of a mis-configuration that we shield the user from.
913 const bool hint_is_text_plain = (type_hint == "text/plain");
914 if (hint_is_unknown_mime_type || hint_is_text_plain) {
915 if (!SniffBinary(content, content_size, &have_enough_content, result)) {
916 // If the server said the content was text/plain and it doesn't appear
917 // to be binary, then we trust it.
918 if (hint_is_text_plain) {
919 return have_enough_content;
924 // If we have plain XML, sniff XML subtypes.
925 if (type_hint == "text/xml" || type_hint == "application/xml") {
926 // We're not interested in sniffing these types for images and the like.
927 // Instead, we're looking explicitly for a feed. If we don't find one
928 // we're done and return early.
929 if (SniffXML(content, content_size, &have_enough_content, result))
930 return true;
931 return have_enough_content;
934 // CRX files (Chrome extensions) have a special sniffing algorithm. It is
935 // tighter than the others because we don't have to match legacy behavior.
936 if (SniffCRX(content, content_size, url, type_hint,
937 &have_enough_content, result))
938 return true;
940 // Check the file extension and magic numbers to see if this is an Office
941 // document. This needs to be checked before the general magic numbers
942 // because zip files and Office documents (OOXML) have the same magic number.
943 if (SniffForOfficeDocs(content, content_size, url,
944 &have_enough_content, result))
945 return true; // We've matched a magic number. No more content needed.
947 // We're not interested in sniffing for magic numbers when the type_hint
948 // is application/octet-stream. Time to bail out.
949 if (type_hint == "application/octet-stream")
950 return have_enough_content;
952 // Now we look in our large table of magic numbers to see if we can find
953 // anything that matches the content.
954 if (SniffForMagicNumbers(content, content_size,
955 &have_enough_content, result))
956 return true; // We've matched a magic number. No more content needed.
958 return have_enough_content;
961 bool SniffMimeTypeFromLocalData(const char* content,
962 size_t size,
963 std::string* result) {
964 // First check the extra table.
965 if (CheckForMagicNumbers(content, size, kExtraMagicNumbers,
966 arraysize(kExtraMagicNumbers), NULL, result))
967 return true;
968 // Finally check the original table.
969 return CheckForMagicNumbers(content, size, kMagicNumbers,
970 arraysize(kMagicNumbers), NULL, result);
973 } // namespace net