Supervised users: Re-check ManagementPolicy when ProfileIsSupervised changes.
[chromium-blink-merge.git] / sandbox / linux / bpf_dsl / policy_compiler.cc
blobd4d5280184745465c1e1608d4a44b1a844b4b352
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "sandbox/linux/bpf_dsl/policy_compiler.h"
7 #include <errno.h>
8 #include <sys/syscall.h>
10 #include <limits>
12 #include "base/logging.h"
13 #include "base/macros.h"
14 #include "sandbox/linux/bpf_dsl/bpf_dsl.h"
15 #include "sandbox/linux/bpf_dsl/bpf_dsl_impl.h"
16 #include "sandbox/linux/bpf_dsl/codegen.h"
17 #include "sandbox/linux/bpf_dsl/dump_bpf.h"
18 #include "sandbox/linux/bpf_dsl/policy.h"
19 #include "sandbox/linux/bpf_dsl/seccomp_macros.h"
20 #include "sandbox/linux/bpf_dsl/syscall_set.h"
21 #include "sandbox/linux/bpf_dsl/verifier.h"
22 #include "sandbox/linux/seccomp-bpf/errorcode.h"
23 #include "sandbox/linux/system_headers/linux_filter.h"
24 #include "sandbox/linux/system_headers/linux_seccomp.h"
26 namespace sandbox {
27 namespace bpf_dsl {
29 namespace {
31 #if defined(__i386__) || defined(__x86_64__)
32 const bool kIsIntel = true;
33 #else
34 const bool kIsIntel = false;
35 #endif
36 #if defined(__x86_64__) && defined(__ILP32__)
37 const bool kIsX32 = true;
38 #else
39 const bool kIsX32 = false;
40 #endif
42 const int kSyscallsRequiredForUnsafeTraps[] = {
43 __NR_rt_sigprocmask,
44 __NR_rt_sigreturn,
45 #if defined(__NR_sigprocmask)
46 __NR_sigprocmask,
47 #endif
48 #if defined(__NR_sigreturn)
49 __NR_sigreturn,
50 #endif
53 bool HasExactlyOneBit(uint64_t x) {
54 // Common trick; e.g., see http://stackoverflow.com/a/108329.
55 return x != 0 && (x & (x - 1)) == 0;
58 // A Trap() handler that returns an "errno" value. The value is encoded
59 // in the "aux" parameter.
60 intptr_t ReturnErrno(const struct arch_seccomp_data&, void* aux) {
61 // TrapFnc functions report error by following the native kernel convention
62 // of returning an exit code in the range of -1..-4096. They do not try to
63 // set errno themselves. The glibc wrapper that triggered the SIGSYS will
64 // ultimately do so for us.
65 int err = reinterpret_cast<intptr_t>(aux) & SECCOMP_RET_DATA;
66 return -err;
69 bool HasUnsafeTraps(const Policy* policy) {
70 DCHECK(policy);
71 for (uint32_t sysnum : SyscallSet::ValidOnly()) {
72 if (policy->EvaluateSyscall(sysnum)->HasUnsafeTraps()) {
73 return true;
76 return policy->InvalidSyscall()->HasUnsafeTraps();
79 } // namespace
81 struct PolicyCompiler::Range {
82 uint32_t from;
83 CodeGen::Node node;
86 PolicyCompiler::PolicyCompiler(const Policy* policy, TrapRegistry* registry)
87 : policy_(policy),
88 registry_(registry),
89 escapepc_(0),
90 conds_(),
91 gen_(),
92 has_unsafe_traps_(HasUnsafeTraps(policy_)) {
93 DCHECK(policy);
96 PolicyCompiler::~PolicyCompiler() {
99 scoped_ptr<CodeGen::Program> PolicyCompiler::Compile(bool verify) {
100 CHECK(policy_->InvalidSyscall()->IsDeny())
101 << "Policies should deny invalid system calls";
103 // If our BPF program has unsafe traps, enable support for them.
104 if (has_unsafe_traps_) {
105 CHECK_NE(0U, escapepc_) << "UnsafeTrap() requires a valid escape PC";
107 for (int sysnum : kSyscallsRequiredForUnsafeTraps) {
108 CHECK(policy_->EvaluateSyscall(sysnum)->IsAllow())
109 << "Policies that use UnsafeTrap() must unconditionally allow all "
110 "required system calls";
113 CHECK(registry_->EnableUnsafeTraps())
114 << "We'd rather die than enable unsafe traps";
117 // Assemble the BPF filter program.
118 scoped_ptr<CodeGen::Program> program(new CodeGen::Program());
119 gen_.Compile(AssemblePolicy(), program.get());
121 // Make sure compilation resulted in a BPF program that executes
122 // correctly. Otherwise, there is an internal error in our BPF compiler.
123 // There is really nothing the caller can do until the bug is fixed.
124 if (verify) {
125 const char* err = nullptr;
126 if (!Verifier::VerifyBPF(this, *program, *policy_, &err)) {
127 DumpBPF::PrintProgram(*program);
128 LOG(FATAL) << err;
132 return program.Pass();
135 void PolicyCompiler::DangerousSetEscapePC(uint64_t escapepc) {
136 escapepc_ = escapepc;
139 CodeGen::Node PolicyCompiler::AssemblePolicy() {
140 // A compiled policy consists of three logical parts:
141 // 1. Check that the "arch" field matches the expected architecture.
142 // 2. If the policy involves unsafe traps, check if the syscall was
143 // invoked by Syscall::Call, and then allow it unconditionally.
144 // 3. Check the system call number and jump to the appropriate compiled
145 // system call policy number.
146 return CheckArch(MaybeAddEscapeHatch(DispatchSyscall()));
149 CodeGen::Node PolicyCompiler::CheckArch(CodeGen::Node passed) {
150 // If the architecture doesn't match SECCOMP_ARCH, disallow the
151 // system call.
152 return gen_.MakeInstruction(
153 BPF_LD + BPF_W + BPF_ABS, SECCOMP_ARCH_IDX,
154 gen_.MakeInstruction(
155 BPF_JMP + BPF_JEQ + BPF_K, SECCOMP_ARCH, passed,
156 CompileResult(Kill("Invalid audit architecture in BPF filter"))));
159 CodeGen::Node PolicyCompiler::MaybeAddEscapeHatch(CodeGen::Node rest) {
160 // If no unsafe traps, then simply return |rest|.
161 if (!has_unsafe_traps_) {
162 return rest;
165 // We already enabled unsafe traps in Compile, but enable them again to give
166 // the trap registry a second chance to complain before we add the backdoor.
167 CHECK(registry_->EnableUnsafeTraps());
169 // Allow system calls, if they originate from our magic return address.
170 const uint32_t lopc = static_cast<uint32_t>(escapepc_);
171 const uint32_t hipc = static_cast<uint32_t>(escapepc_ >> 32);
173 // BPF cannot do native 64-bit comparisons, so we have to compare
174 // both 32-bit halves of the instruction pointer. If they match what
175 // we expect, we return ERR_ALLOWED. If either or both don't match,
176 // we continue evalutating the rest of the sandbox policy.
178 // For simplicity, we check the full 64-bit instruction pointer even
179 // on 32-bit architectures.
180 return gen_.MakeInstruction(
181 BPF_LD + BPF_W + BPF_ABS, SECCOMP_IP_LSB_IDX,
182 gen_.MakeInstruction(
183 BPF_JMP + BPF_JEQ + BPF_K, lopc,
184 gen_.MakeInstruction(
185 BPF_LD + BPF_W + BPF_ABS, SECCOMP_IP_MSB_IDX,
186 gen_.MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, hipc,
187 CompileResult(Allow()), rest)),
188 rest));
191 CodeGen::Node PolicyCompiler::DispatchSyscall() {
192 // Evaluate all possible system calls and group their ErrorCodes into
193 // ranges of identical codes.
194 Ranges ranges;
195 FindRanges(&ranges);
197 // Compile the system call ranges to an optimized BPF jumptable
198 CodeGen::Node jumptable = AssembleJumpTable(ranges.begin(), ranges.end());
200 // Grab the system call number, so that we can check it and then
201 // execute the jump table.
202 return gen_.MakeInstruction(
203 BPF_LD + BPF_W + BPF_ABS, SECCOMP_NR_IDX, CheckSyscallNumber(jumptable));
206 CodeGen::Node PolicyCompiler::CheckSyscallNumber(CodeGen::Node passed) {
207 if (kIsIntel) {
208 // On Intel architectures, verify that system call numbers are in the
209 // expected number range.
210 CodeGen::Node invalidX32 =
211 CompileResult(Kill("Illegal mixing of system call ABIs"));
212 if (kIsX32) {
213 // The newer x32 API always sets bit 30.
214 return gen_.MakeInstruction(
215 BPF_JMP + BPF_JSET + BPF_K, 0x40000000, passed, invalidX32);
216 } else {
217 // The older i386 and x86-64 APIs clear bit 30 on all system calls.
218 return gen_.MakeInstruction(
219 BPF_JMP + BPF_JSET + BPF_K, 0x40000000, invalidX32, passed);
223 // TODO(mdempsky): Similar validation for other architectures?
224 return passed;
227 void PolicyCompiler::FindRanges(Ranges* ranges) {
228 // Please note that "struct seccomp_data" defines system calls as a signed
229 // int32_t, but BPF instructions always operate on unsigned quantities. We
230 // deal with this disparity by enumerating from MIN_SYSCALL to MAX_SYSCALL,
231 // and then verifying that the rest of the number range (both positive and
232 // negative) all return the same ErrorCode.
233 const CodeGen::Node invalid_node = CompileResult(policy_->InvalidSyscall());
234 uint32_t old_sysnum = 0;
235 CodeGen::Node old_node =
236 SyscallSet::IsValid(old_sysnum)
237 ? CompileResult(policy_->EvaluateSyscall(old_sysnum))
238 : invalid_node;
240 for (uint32_t sysnum : SyscallSet::All()) {
241 CodeGen::Node node =
242 SyscallSet::IsValid(sysnum)
243 ? CompileResult(policy_->EvaluateSyscall(static_cast<int>(sysnum)))
244 : invalid_node;
245 // N.B., here we rely on CodeGen folding (i.e., returning the same
246 // node value for) identical code sequences, otherwise our jump
247 // table will blow up in size.
248 if (node != old_node) {
249 ranges->push_back(Range{old_sysnum, old_node});
250 old_sysnum = sysnum;
251 old_node = node;
254 ranges->push_back(Range{old_sysnum, old_node});
257 CodeGen::Node PolicyCompiler::AssembleJumpTable(Ranges::const_iterator start,
258 Ranges::const_iterator stop) {
259 // We convert the list of system call ranges into jump table that performs
260 // a binary search over the ranges.
261 // As a sanity check, we need to have at least one distinct ranges for us
262 // to be able to build a jump table.
263 CHECK(start < stop) << "Invalid iterator range";
264 const auto n = stop - start;
265 if (n == 1) {
266 // If we have narrowed things down to a single range object, we can
267 // return from the BPF filter program.
268 return start->node;
271 // Pick the range object that is located at the mid point of our list.
272 // We compare our system call number against the lowest valid system call
273 // number in this range object. If our number is lower, it is outside of
274 // this range object. If it is greater or equal, it might be inside.
275 Ranges::const_iterator mid = start + n / 2;
277 // Sub-divide the list of ranges and continue recursively.
278 CodeGen::Node jf = AssembleJumpTable(start, mid);
279 CodeGen::Node jt = AssembleJumpTable(mid, stop);
280 return gen_.MakeInstruction(BPF_JMP + BPF_JGE + BPF_K, mid->from, jt, jf);
283 CodeGen::Node PolicyCompiler::CompileResult(const ResultExpr& res) {
284 return RetExpression(res->Compile(this));
287 CodeGen::Node PolicyCompiler::RetExpression(const ErrorCode& err) {
288 switch (err.error_type()) {
289 case ErrorCode::ET_COND:
290 return CondExpression(err);
291 case ErrorCode::ET_SIMPLE:
292 case ErrorCode::ET_TRAP:
293 return gen_.MakeInstruction(BPF_RET + BPF_K, err.err());
294 default:
295 LOG(FATAL)
296 << "ErrorCode is not suitable for returning from a BPF program";
297 return CodeGen::kNullNode;
301 CodeGen::Node PolicyCompiler::CondExpression(const ErrorCode& cond) {
302 // Sanity check that |cond| makes sense.
303 CHECK(cond.argno_ >= 0 && cond.argno_ < 6) << "Invalid argument number "
304 << cond.argno_;
305 CHECK(cond.width_ == ErrorCode::TP_32BIT ||
306 cond.width_ == ErrorCode::TP_64BIT)
307 << "Invalid argument width " << cond.width_;
308 CHECK_NE(0U, cond.mask_) << "Zero mask is invalid";
309 CHECK_EQ(cond.value_, cond.value_ & cond.mask_)
310 << "Value contains masked out bits";
311 if (sizeof(void*) == 4) {
312 CHECK_EQ(ErrorCode::TP_32BIT, cond.width_)
313 << "Invalid width on 32-bit platform";
315 if (cond.width_ == ErrorCode::TP_32BIT) {
316 CHECK_EQ(0U, cond.mask_ >> 32) << "Mask exceeds argument size";
317 CHECK_EQ(0U, cond.value_ >> 32) << "Value exceeds argument size";
320 CodeGen::Node passed = RetExpression(*cond.passed_);
321 CodeGen::Node failed = RetExpression(*cond.failed_);
323 // We want to emit code to check "(arg & mask) == value" where arg, mask, and
324 // value are 64-bit values, but the BPF machine is only 32-bit. We implement
325 // this by independently testing the upper and lower 32-bits and continuing to
326 // |passed| if both evaluate true, or to |failed| if either evaluate false.
327 return CondExpressionHalf(cond,
328 UpperHalf,
329 CondExpressionHalf(cond, LowerHalf, passed, failed),
330 failed);
333 CodeGen::Node PolicyCompiler::CondExpressionHalf(const ErrorCode& cond,
334 ArgHalf half,
335 CodeGen::Node passed,
336 CodeGen::Node failed) {
337 if (cond.width_ == ErrorCode::TP_32BIT && half == UpperHalf) {
338 // Special logic for sanity checking the upper 32-bits of 32-bit system
339 // call arguments.
341 // TODO(mdempsky): Compile Unexpected64bitArgument() just per program.
342 CodeGen::Node invalid_64bit = RetExpression(Unexpected64bitArgument());
344 const uint32_t upper = SECCOMP_ARG_MSB_IDX(cond.argno_);
345 const uint32_t lower = SECCOMP_ARG_LSB_IDX(cond.argno_);
347 if (sizeof(void*) == 4) {
348 // On 32-bit platforms, the upper 32-bits should always be 0:
349 // LDW [upper]
350 // JEQ 0, passed, invalid
351 return gen_.MakeInstruction(
352 BPF_LD + BPF_W + BPF_ABS,
353 upper,
354 gen_.MakeInstruction(
355 BPF_JMP + BPF_JEQ + BPF_K, 0, passed, invalid_64bit));
358 // On 64-bit platforms, the upper 32-bits may be 0 or ~0; but we only allow
359 // ~0 if the sign bit of the lower 32-bits is set too:
360 // LDW [upper]
361 // JEQ 0, passed, (next)
362 // JEQ ~0, (next), invalid
363 // LDW [lower]
364 // JSET (1<<31), passed, invalid
366 // TODO(mdempsky): The JSET instruction could perhaps jump to passed->next
367 // instead, as the first instruction of passed should be "LDW [lower]".
368 return gen_.MakeInstruction(
369 BPF_LD + BPF_W + BPF_ABS,
370 upper,
371 gen_.MakeInstruction(
372 BPF_JMP + BPF_JEQ + BPF_K,
374 passed,
375 gen_.MakeInstruction(
376 BPF_JMP + BPF_JEQ + BPF_K,
377 std::numeric_limits<uint32_t>::max(),
378 gen_.MakeInstruction(
379 BPF_LD + BPF_W + BPF_ABS,
380 lower,
381 gen_.MakeInstruction(BPF_JMP + BPF_JSET + BPF_K,
382 1U << 31,
383 passed,
384 invalid_64bit)),
385 invalid_64bit)));
388 const uint32_t idx = (half == UpperHalf) ? SECCOMP_ARG_MSB_IDX(cond.argno_)
389 : SECCOMP_ARG_LSB_IDX(cond.argno_);
390 const uint32_t mask = (half == UpperHalf) ? cond.mask_ >> 32 : cond.mask_;
391 const uint32_t value = (half == UpperHalf) ? cond.value_ >> 32 : cond.value_;
393 // Emit a suitable instruction sequence for (arg & mask) == value.
395 // For (arg & 0) == 0, just return passed.
396 if (mask == 0) {
397 CHECK_EQ(0U, value);
398 return passed;
401 // For (arg & ~0) == value, emit:
402 // LDW [idx]
403 // JEQ value, passed, failed
404 if (mask == std::numeric_limits<uint32_t>::max()) {
405 return gen_.MakeInstruction(
406 BPF_LD + BPF_W + BPF_ABS,
407 idx,
408 gen_.MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, value, passed, failed));
411 // For (arg & mask) == 0, emit:
412 // LDW [idx]
413 // JSET mask, failed, passed
414 // (Note: failed and passed are intentionally swapped.)
415 if (value == 0) {
416 return gen_.MakeInstruction(
417 BPF_LD + BPF_W + BPF_ABS,
418 idx,
419 gen_.MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, mask, failed, passed));
422 // For (arg & x) == x where x is a single-bit value, emit:
423 // LDW [idx]
424 // JSET mask, passed, failed
425 if (mask == value && HasExactlyOneBit(mask)) {
426 return gen_.MakeInstruction(
427 BPF_LD + BPF_W + BPF_ABS,
428 idx,
429 gen_.MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, mask, passed, failed));
432 // Generic fallback:
433 // LDW [idx]
434 // AND mask
435 // JEQ value, passed, failed
436 return gen_.MakeInstruction(
437 BPF_LD + BPF_W + BPF_ABS,
438 idx,
439 gen_.MakeInstruction(
440 BPF_ALU + BPF_AND + BPF_K,
441 mask,
442 gen_.MakeInstruction(
443 BPF_JMP + BPF_JEQ + BPF_K, value, passed, failed)));
446 ErrorCode PolicyCompiler::Unexpected64bitArgument() {
447 return Kill("Unexpected 64bit argument detected")->Compile(this);
450 ErrorCode PolicyCompiler::Error(int err) {
451 if (has_unsafe_traps_) {
452 // When inside an UnsafeTrap() callback, we want to allow all system calls.
453 // This means, we must conditionally disable the sandbox -- and that's not
454 // something that kernel-side BPF filters can do, as they cannot inspect
455 // any state other than the syscall arguments.
456 // But if we redirect all error handlers to user-space, then we can easily
457 // make this decision.
458 // The performance penalty for this extra round-trip to user-space is not
459 // actually that bad, as we only ever pay it for denied system calls; and a
460 // typical program has very few of these.
461 return Trap(ReturnErrno, reinterpret_cast<void*>(err), true);
464 return ErrorCode(err);
467 ErrorCode PolicyCompiler::Trap(TrapRegistry::TrapFnc fnc,
468 const void* aux,
469 bool safe) {
470 uint16_t trap_id = registry_->Add(fnc, aux, safe);
471 return ErrorCode(trap_id, fnc, aux, safe);
474 bool PolicyCompiler::IsRequiredForUnsafeTrap(int sysno) {
475 for (size_t i = 0; i < arraysize(kSyscallsRequiredForUnsafeTraps); ++i) {
476 if (sysno == kSyscallsRequiredForUnsafeTraps[i]) {
477 return true;
480 return false;
483 ErrorCode PolicyCompiler::CondMaskedEqual(int argno,
484 ErrorCode::ArgType width,
485 uint64_t mask,
486 uint64_t value,
487 const ErrorCode& passed,
488 const ErrorCode& failed) {
489 return ErrorCode(argno,
490 width,
491 mask,
492 value,
493 &*conds_.insert(passed).first,
494 &*conds_.insert(failed).first);
497 } // namespace bpf_dsl
498 } // namespace sandbox