Supervised users: Re-check ManagementPolicy when ProfileIsSupervised changes.
[chromium-blink-merge.git] / sandbox / linux / seccomp-bpf / syscall.cc
blob3b3c8db5b86dc9ad55c8c4c4c7787418ba095feb
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "sandbox/linux/seccomp-bpf/syscall.h"
7 #include <errno.h>
8 #include <stdint.h>
10 #include "base/logging.h"
11 #include "sandbox/linux/bpf_dsl/seccomp_macros.h"
13 namespace sandbox {
15 namespace {
17 #if defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY) || \
18 defined(ARCH_CPU_MIPS_FAMILY)
19 // Number that's not currently used by any Linux kernel ABIs.
20 const int kInvalidSyscallNumber = 0x351d3;
21 #else
22 #error Unrecognized architecture
23 #endif
25 asm(// We need to be able to tell the kernel exactly where we made a
26 // system call. The C++ compiler likes to sometimes clone or
27 // inline code, which would inadvertently end up duplicating
28 // the entry point.
29 // "gcc" can suppress code duplication with suitable function
30 // attributes, but "clang" doesn't have this ability.
31 // The "clang" developer mailing list suggested that the correct
32 // and portable solution is a file-scope assembly block.
33 // N.B. We do mark our code as a proper function so that backtraces
34 // work correctly. But we make absolutely no attempt to use the
35 // ABI's calling conventions for passing arguments. We will only
36 // ever be called from assembly code and thus can pick more
37 // suitable calling conventions.
38 #if defined(__i386__)
39 ".text\n"
40 ".align 16, 0x90\n"
41 ".type SyscallAsm, @function\n"
42 "SyscallAsm:.cfi_startproc\n"
43 // Check if "%eax" is negative. If so, do not attempt to make a
44 // system call. Instead, compute the return address that is visible
45 // to the kernel after we execute "int $0x80". This address can be
46 // used as a marker that BPF code inspects.
47 "test %eax, %eax\n"
48 "jge 1f\n"
49 // Always, make sure that our code is position-independent, or
50 // address space randomization might not work on i386. This means,
51 // we can't use "lea", but instead have to rely on "call/pop".
52 "call 0f; .cfi_adjust_cfa_offset 4\n"
53 "0:pop %eax; .cfi_adjust_cfa_offset -4\n"
54 "addl $2f-0b, %eax\n"
55 "ret\n"
56 // Save register that we don't want to clobber. On i386, we need to
57 // save relatively aggressively, as there are a couple or registers
58 // that are used internally (e.g. %ebx for position-independent
59 // code, and %ebp for the frame pointer), and as we need to keep at
60 // least a few registers available for the register allocator.
61 "1:push %esi; .cfi_adjust_cfa_offset 4; .cfi_rel_offset esi, 0\n"
62 "push %edi; .cfi_adjust_cfa_offset 4; .cfi_rel_offset edi, 0\n"
63 "push %ebx; .cfi_adjust_cfa_offset 4; .cfi_rel_offset ebx, 0\n"
64 "push %ebp; .cfi_adjust_cfa_offset 4; .cfi_rel_offset ebp, 0\n"
65 // Copy entries from the array holding the arguments into the
66 // correct CPU registers.
67 "movl 0(%edi), %ebx\n"
68 "movl 4(%edi), %ecx\n"
69 "movl 8(%edi), %edx\n"
70 "movl 12(%edi), %esi\n"
71 "movl 20(%edi), %ebp\n"
72 "movl 16(%edi), %edi\n"
73 // Enter the kernel.
74 "int $0x80\n"
75 // This is our "magic" return address that the BPF filter sees.
76 "2:"
77 // Restore any clobbered registers that we didn't declare to the
78 // compiler.
79 "pop %ebp; .cfi_restore ebp; .cfi_adjust_cfa_offset -4\n"
80 "pop %ebx; .cfi_restore ebx; .cfi_adjust_cfa_offset -4\n"
81 "pop %edi; .cfi_restore edi; .cfi_adjust_cfa_offset -4\n"
82 "pop %esi; .cfi_restore esi; .cfi_adjust_cfa_offset -4\n"
83 "ret\n"
84 ".cfi_endproc\n"
85 "9:.size SyscallAsm, 9b-SyscallAsm\n"
86 #elif defined(__x86_64__)
87 ".text\n"
88 ".align 16, 0x90\n"
89 ".type SyscallAsm, @function\n"
90 "SyscallAsm:.cfi_startproc\n"
91 // Check if "%rdi" is negative. If so, do not attempt to make a
92 // system call. Instead, compute the return address that is visible
93 // to the kernel after we execute "syscall". This address can be
94 // used as a marker that BPF code inspects.
95 "test %rdi, %rdi\n"
96 "jge 1f\n"
97 // Always make sure that our code is position-independent, or the
98 // linker will throw a hissy fit on x86-64.
99 "lea 2f(%rip), %rax\n"
100 "ret\n"
101 // Now we load the registers used to pass arguments to the system
102 // call: system call number in %rax, and arguments in %rdi, %rsi,
103 // %rdx, %r10, %r8, %r9. Note: These are all caller-save registers
104 // (only %rbx, %rbp, %rsp, and %r12-%r15 are callee-save), so no
105 // need to worry here about spilling registers or CFI directives.
106 "1:movq %rdi, %rax\n"
107 "movq 0(%rsi), %rdi\n"
108 "movq 16(%rsi), %rdx\n"
109 "movq 24(%rsi), %r10\n"
110 "movq 32(%rsi), %r8\n"
111 "movq 40(%rsi), %r9\n"
112 "movq 8(%rsi), %rsi\n"
113 // Enter the kernel.
114 "syscall\n"
115 // This is our "magic" return address that the BPF filter sees.
116 "2:ret\n"
117 ".cfi_endproc\n"
118 "9:.size SyscallAsm, 9b-SyscallAsm\n"
119 #elif defined(__arm__)
120 // Throughout this file, we use the same mode (ARM vs. thumb)
121 // that the C++ compiler uses. This means, when transfering control
122 // from C++ to assembly code, we do not need to switch modes (e.g.
123 // by using the "bx" instruction). It also means that our assembly
124 // code should not be invoked directly from code that lives in
125 // other compilation units, as we don't bother implementing thumb
126 // interworking. That's OK, as we don't make any of the assembly
127 // symbols public. They are all local to this file.
128 ".text\n"
129 ".align 2\n"
130 ".type SyscallAsm, %function\n"
131 #if defined(__thumb__)
132 ".thumb_func\n"
133 #else
134 ".arm\n"
135 #endif
136 "SyscallAsm:.fnstart\n"
137 "@ args = 0, pretend = 0, frame = 8\n"
138 "@ frame_needed = 1, uses_anonymous_args = 0\n"
139 #if defined(__thumb__)
140 ".cfi_startproc\n"
141 "push {r7, lr}\n"
142 ".cfi_offset 14, -4\n"
143 ".cfi_offset 7, -8\n"
144 "mov r7, sp\n"
145 ".cfi_def_cfa_register 7\n"
146 ".cfi_def_cfa_offset 8\n"
147 #else
148 "stmfd sp!, {fp, lr}\n"
149 "add fp, sp, #4\n"
150 #endif
151 // Check if "r0" is negative. If so, do not attempt to make a
152 // system call. Instead, compute the return address that is visible
153 // to the kernel after we execute "swi 0". This address can be
154 // used as a marker that BPF code inspects.
155 "cmp r0, #0\n"
156 "bge 1f\n"
157 "adr r0, 2f\n"
158 "b 2f\n"
159 // We declared (almost) all clobbered registers to the compiler. On
160 // ARM there is no particular register pressure. So, we can go
161 // ahead and directly copy the entries from the arguments array
162 // into the appropriate CPU registers.
163 "1:ldr r5, [r6, #20]\n"
164 "ldr r4, [r6, #16]\n"
165 "ldr r3, [r6, #12]\n"
166 "ldr r2, [r6, #8]\n"
167 "ldr r1, [r6, #4]\n"
168 "mov r7, r0\n"
169 "ldr r0, [r6, #0]\n"
170 // Enter the kernel
171 "swi 0\n"
172 // Restore the frame pointer. Also restore the program counter from
173 // the link register; this makes us return to the caller.
174 #if defined(__thumb__)
175 "2:pop {r7, pc}\n"
176 ".cfi_endproc\n"
177 #else
178 "2:ldmfd sp!, {fp, pc}\n"
179 #endif
180 ".fnend\n"
181 "9:.size SyscallAsm, 9b-SyscallAsm\n"
182 #elif defined(__mips__)
183 ".text\n"
184 ".align 4\n"
185 ".type SyscallAsm, @function\n"
186 "SyscallAsm:.ent SyscallAsm\n"
187 ".frame $sp, 40, $ra\n"
188 ".set push\n"
189 ".set noreorder\n"
190 "addiu $sp, $sp, -40\n"
191 "sw $ra, 36($sp)\n"
192 // Check if "v0" is negative. If so, do not attempt to make a
193 // system call. Instead, compute the return address that is visible
194 // to the kernel after we execute "syscall". This address can be
195 // used as a marker that BPF code inspects.
196 "bgez $v0, 1f\n"
197 " nop\n"
198 "la $v0, 2f\n"
199 "b 2f\n"
200 " nop\n"
201 // On MIPS first four arguments go to registers a0 - a3 and any
202 // argument after that goes to stack. We can go ahead and directly
203 // copy the entries from the arguments array into the appropriate
204 // CPU registers and on the stack.
205 "1:lw $a3, 28($a0)\n"
206 "lw $a2, 24($a0)\n"
207 "lw $a1, 20($a0)\n"
208 "lw $t0, 16($a0)\n"
209 "sw $a3, 28($sp)\n"
210 "sw $a2, 24($sp)\n"
211 "sw $a1, 20($sp)\n"
212 "sw $t0, 16($sp)\n"
213 "lw $a3, 12($a0)\n"
214 "lw $a2, 8($a0)\n"
215 "lw $a1, 4($a0)\n"
216 "lw $a0, 0($a0)\n"
217 // Enter the kernel
218 "syscall\n"
219 // This is our "magic" return address that the BPF filter sees.
220 // Restore the return address from the stack.
221 "2:lw $ra, 36($sp)\n"
222 "jr $ra\n"
223 " addiu $sp, $sp, 40\n"
224 ".set pop\n"
225 ".end SyscallAsm\n"
226 ".size SyscallAsm,.-SyscallAsm\n"
227 #elif defined(__aarch64__)
228 ".text\n"
229 ".align 2\n"
230 ".type SyscallAsm, %function\n"
231 "SyscallAsm:\n"
232 ".cfi_startproc\n"
233 "cmp x0, #0\n"
234 "b.ge 1f\n"
235 "adr x0,2f\n"
236 "b 2f\n"
237 "1:ldr x5, [x6, #40]\n"
238 "ldr x4, [x6, #32]\n"
239 "ldr x3, [x6, #24]\n"
240 "ldr x2, [x6, #16]\n"
241 "ldr x1, [x6, #8]\n"
242 "mov x8, x0\n"
243 "ldr x0, [x6, #0]\n"
244 // Enter the kernel
245 "svc 0\n"
246 "2:ret\n"
247 ".cfi_endproc\n"
248 ".size SyscallAsm, .-SyscallAsm\n"
249 #endif
250 ); // asm
252 #if defined(__x86_64__)
253 extern "C" {
254 intptr_t SyscallAsm(intptr_t nr, const intptr_t args[6]);
256 #endif
258 } // namespace
260 intptr_t Syscall::InvalidCall() {
261 // Explicitly pass eight zero arguments just in case.
262 return Call(kInvalidSyscallNumber, 0, 0, 0, 0, 0, 0, 0, 0);
265 intptr_t Syscall::Call(int nr,
266 intptr_t p0,
267 intptr_t p1,
268 intptr_t p2,
269 intptr_t p3,
270 intptr_t p4,
271 intptr_t p5,
272 intptr_t p6,
273 intptr_t p7) {
274 // We rely on "intptr_t" to be the exact size as a "void *". This is
275 // typically true, but just in case, we add a check. The language
276 // specification allows platforms some leeway in cases, where
277 // "sizeof(void *)" is not the same as "sizeof(void (*)())". We expect
278 // that this would only be an issue for IA64, which we are currently not
279 // planning on supporting. And it is even possible that this would work
280 // on IA64, but for lack of actual hardware, I cannot test.
281 static_assert(sizeof(void*) == sizeof(intptr_t),
282 "pointer types and intptr_t must be exactly the same size");
284 // TODO(nedeljko): Enable use of more than six parameters on architectures
285 // where that makes sense.
286 #if defined(__mips__)
287 const intptr_t args[8] = {p0, p1, p2, p3, p4, p5, p6, p7};
288 #else
289 DCHECK_EQ(p6, 0) << " Support for syscalls with more than six arguments not "
290 "added for this architecture";
291 DCHECK_EQ(p7, 0) << " Support for syscalls with more than six arguments not "
292 "added for this architecture";
293 const intptr_t args[6] = {p0, p1, p2, p3, p4, p5};
294 #endif // defined(__mips__)
296 // Invoke our file-scope assembly code. The constraints have been picked
297 // carefully to match what the rest of the assembly code expects in input,
298 // output, and clobbered registers.
299 #if defined(__i386__)
300 intptr_t ret = nr;
301 asm volatile(
302 "call SyscallAsm\n"
303 // N.B. These are not the calling conventions normally used by the ABI.
304 : "=a"(ret)
305 : "0"(ret), "D"(args)
306 : "cc", "esp", "memory", "ecx", "edx");
307 #elif defined(__x86_64__)
308 intptr_t ret = SyscallAsm(nr, args);
309 #elif defined(__arm__)
310 intptr_t ret;
312 register intptr_t inout __asm__("r0") = nr;
313 register const intptr_t* data __asm__("r6") = args;
314 asm volatile(
315 "bl SyscallAsm\n"
316 // N.B. These are not the calling conventions normally used by the ABI.
317 : "=r"(inout)
318 : "0"(inout), "r"(data)
319 : "cc",
320 "lr",
321 "memory",
322 "r1",
323 "r2",
324 "r3",
325 "r4",
326 "r5"
327 #if !defined(__thumb__)
328 // In thumb mode, we cannot use "r7" as a general purpose register, as
329 // it is our frame pointer. We have to manually manage and preserve
330 // it.
331 // In ARM mode, we have a dedicated frame pointer register and "r7" is
332 // thus available as a general purpose register. We don't preserve it,
333 // but instead mark it as clobbered.
335 "r7"
336 #endif // !defined(__thumb__)
338 ret = inout;
340 #elif defined(__mips__)
341 int err_status;
342 intptr_t ret = Syscall::SandboxSyscallRaw(nr, args, &err_status);
344 if (err_status) {
345 // On error, MIPS returns errno from syscall instead of -errno.
346 // The purpose of this negation is for SandboxSyscall() to behave
347 // more like it would on other architectures.
348 ret = -ret;
350 #elif defined(__aarch64__)
351 intptr_t ret;
353 register intptr_t inout __asm__("x0") = nr;
354 register const intptr_t* data __asm__("x6") = args;
355 asm volatile("bl SyscallAsm\n"
356 : "=r"(inout)
357 : "0"(inout), "r"(data)
358 : "memory", "x1", "x2", "x3", "x4", "x5", "x8", "x30");
359 ret = inout;
362 #else
363 #error "Unimplemented architecture"
364 #endif
365 return ret;
368 void Syscall::PutValueInUcontext(intptr_t ret_val, ucontext_t* ctx) {
369 #if defined(__mips__)
370 // Mips ABI states that on error a3 CPU register has non zero value and if
371 // there is no error, it should be zero.
372 if (ret_val <= -1 && ret_val >= -4095) {
373 // |ret_val| followes the Syscall::Call() convention of being -errno on
374 // errors. In order to write correct value to return register this sign
375 // needs to be changed back.
376 ret_val = -ret_val;
377 SECCOMP_PARM4(ctx) = 1;
378 } else
379 SECCOMP_PARM4(ctx) = 0;
380 #endif
381 SECCOMP_RESULT(ctx) = static_cast<greg_t>(ret_val);
384 #if defined(__mips__)
385 intptr_t Syscall::SandboxSyscallRaw(int nr,
386 const intptr_t* args,
387 intptr_t* err_ret) {
388 register intptr_t ret __asm__("v0") = nr;
389 // a3 register becomes non zero on error.
390 register intptr_t err_stat __asm__("a3") = 0;
392 register const intptr_t* data __asm__("a0") = args;
393 asm volatile(
394 "la $t9, SyscallAsm\n"
395 "jalr $t9\n"
396 " nop\n"
397 : "=r"(ret), "=r"(err_stat)
398 : "0"(ret),
399 "r"(data)
400 // a2 is in the clober list so inline assembly can not change its
401 // value.
402 : "memory", "ra", "t9", "a2");
405 // Set an error status so it can be used outside of this function
406 *err_ret = err_stat;
408 return ret;
410 #endif // defined(__mips__)
412 } // namespace sandbox