1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "media/base/simd/convert_yuv_to_rgb.h"
6 #include "media/base/simd/yuv_to_rgb_table.h"
10 #define packuswb(x) ((x) < 0 ? 0 : ((x) > 255 ? 255 : (x)))
11 #define paddsw(x, y) (((x) + (y)) < -32768 ? -32768 : \
12 (((x) + (y)) > 32767 ? 32767 : ((x) + (y))))
14 // On Android, pixel layout is RGBA (see skia/include/core/SkColorPriv.h);
15 // however, other Chrome platforms use BGRA (see skia/config/SkUserConfig.h).
16 // Ideally, android should not use the functions here due to performance issue
17 // (http://crbug.com/249980).
18 #if defined(OS_ANDROID)
19 #define SK_R32_SHIFT 0
20 #define SK_G32_SHIFT 8
21 #define SK_B32_SHIFT 16
22 #define SK_A32_SHIFT 24
28 #define SK_B32_SHIFT 0
29 #define SK_G32_SHIFT 8
30 #define SK_R32_SHIFT 16
31 #define SK_A32_SHIFT 24
38 static inline void ConvertYUVToRGB32_C(uint8 y
,
42 int b
= kCoefficientsRgbY
[256+u
][B_INDEX
];
43 int g
= kCoefficientsRgbY
[256+u
][G_INDEX
];
44 int r
= kCoefficientsRgbY
[256+u
][R_INDEX
];
45 int a
= kCoefficientsRgbY
[256+u
][A_INDEX
];
47 b
= paddsw(b
, kCoefficientsRgbY
[512+v
][B_INDEX
]);
48 g
= paddsw(g
, kCoefficientsRgbY
[512+v
][G_INDEX
]);
49 r
= paddsw(r
, kCoefficientsRgbY
[512+v
][R_INDEX
]);
50 a
= paddsw(a
, kCoefficientsRgbY
[512+v
][A_INDEX
]);
52 b
= paddsw(b
, kCoefficientsRgbY
[y
][B_INDEX
]);
53 g
= paddsw(g
, kCoefficientsRgbY
[y
][G_INDEX
]);
54 r
= paddsw(r
, kCoefficientsRgbY
[y
][R_INDEX
]);
55 a
= paddsw(a
, kCoefficientsRgbY
[y
][A_INDEX
]);
62 *reinterpret_cast<uint32
*>(rgb_buf
) = (packuswb(b
) << SK_B32_SHIFT
) |
63 (packuswb(g
) << SK_G32_SHIFT
) |
64 (packuswb(r
) << SK_R32_SHIFT
) |
65 (packuswb(a
) << SK_A32_SHIFT
);
68 static inline void ConvertYUVAToARGB_C(uint8 y
,
73 int b
= kCoefficientsRgbY
[256+u
][0];
74 int g
= kCoefficientsRgbY
[256+u
][1];
75 int r
= kCoefficientsRgbY
[256+u
][2];
77 b
= paddsw(b
, kCoefficientsRgbY
[512+v
][0]);
78 g
= paddsw(g
, kCoefficientsRgbY
[512+v
][1]);
79 r
= paddsw(r
, kCoefficientsRgbY
[512+v
][2]);
81 b
= paddsw(b
, kCoefficientsRgbY
[y
][0]);
82 g
= paddsw(g
, kCoefficientsRgbY
[y
][1]);
83 r
= paddsw(r
, kCoefficientsRgbY
[y
][2]);
89 b
= packuswb(b
) * a
>> 8;
90 g
= packuswb(g
) * a
>> 8;
91 r
= packuswb(r
) * a
>> 8;
93 *reinterpret_cast<uint32
*>(rgb_buf
) = (b
<< SK_B32_SHIFT
) |
99 void ConvertYUVToRGB32Row_C(const uint8
* y_buf
,
104 for (int x
= 0; x
< width
; x
+= 2) {
105 uint8 u
= u_buf
[x
>> 1];
106 uint8 v
= v_buf
[x
>> 1];
108 ConvertYUVToRGB32_C(y0
, u
, v
, rgb_buf
);
109 if ((x
+ 1) < width
) {
110 uint8 y1
= y_buf
[x
+ 1];
111 ConvertYUVToRGB32_C(y1
, u
, v
, rgb_buf
+ 4);
113 rgb_buf
+= 8; // Advance 2 pixels.
117 void ConvertYUVAToARGBRow_C(const uint8
* y_buf
,
123 for (int x
= 0; x
< width
; x
+= 2) {
124 uint8 u
= u_buf
[x
>> 1];
125 uint8 v
= v_buf
[x
>> 1];
128 ConvertYUVAToARGB_C(y0
, u
, v
, a0
, rgba_buf
);
129 if ((x
+ 1) < width
) {
130 uint8 y1
= y_buf
[x
+ 1];
131 uint8 a1
= a_buf
[x
+ 1];
132 ConvertYUVAToARGB_C(y1
, u
, v
, a1
, rgba_buf
+ 4);
134 rgba_buf
+= 8; // Advance 2 pixels.
138 // 16.16 fixed point is used. A shift by 16 isolates the integer.
139 // A shift by 17 is used to further subsample the chrominence channels.
140 // & 0xffff isolates the fixed point fraction. >> 2 to get the upper 2 bits,
141 // for 1/65536 pixel accurate interpolation.
142 void ScaleYUVToRGB32Row_C(const uint8
* y_buf
,
147 ptrdiff_t source_dx
) {
149 for (int i
= 0; i
< width
; i
+= 2) {
150 int y
= y_buf
[x
>> 16];
151 int u
= u_buf
[(x
>> 17)];
152 int v
= v_buf
[(x
>> 17)];
153 ConvertYUVToRGB32_C(y
, u
, v
, rgb_buf
);
155 if ((i
+ 1) < width
) {
157 ConvertYUVToRGB32_C(y
, u
, v
, rgb_buf
+4);
164 void LinearScaleYUVToRGB32Row_C(const uint8
* y_buf
,
169 ptrdiff_t source_dx
) {
170 // Avoid point-sampling for down-scaling by > 2:1.
172 if (source_dx
>= 0x20000)
174 LinearScaleYUVToRGB32RowWithRange_C(y_buf
, u_buf
, v_buf
, rgb_buf
, width
,
175 source_x
, source_dx
);
178 void LinearScaleYUVToRGB32RowWithRange_C(const uint8
* y_buf
,
185 for (int i
= 0; i
< dest_width
; i
+= 2) {
186 int y0
= y_buf
[x
>> 16];
187 int y1
= y_buf
[(x
>> 16) + 1];
188 int u0
= u_buf
[(x
>> 17)];
189 int u1
= u_buf
[(x
>> 17) + 1];
190 int v0
= v_buf
[(x
>> 17)];
191 int v1
= v_buf
[(x
>> 17) + 1];
192 int y_frac
= (x
& 65535);
193 int uv_frac
= ((x
>> 1) & 65535);
194 int y
= (y_frac
* y1
+ (y_frac
^ 65535) * y0
) >> 16;
195 int u
= (uv_frac
* u1
+ (uv_frac
^ 65535) * u0
) >> 16;
196 int v
= (uv_frac
* v1
+ (uv_frac
^ 65535) * v0
) >> 16;
197 ConvertYUVToRGB32_C(y
, u
, v
, rgb_buf
);
199 if ((i
+ 1) < dest_width
) {
201 y1
= y_buf
[(x
>> 16) + 1];
202 y_frac
= (x
& 65535);
203 y
= (y_frac
* y1
+ (y_frac
^ 65535) * y0
) >> 16;
204 ConvertYUVToRGB32_C(y
, u
, v
, rgb_buf
+4);
211 void ConvertYUVToRGB32_C(const uint8
* yplane
,
221 unsigned int y_shift
= yuv_type
;
222 for (int y
= 0; y
< height
; ++y
) {
223 uint8
* rgb_row
= rgbframe
+ y
* rgbstride
;
224 const uint8
* y_ptr
= yplane
+ y
* ystride
;
225 const uint8
* u_ptr
= uplane
+ (y
>> y_shift
) * uvstride
;
226 const uint8
* v_ptr
= vplane
+ (y
>> y_shift
) * uvstride
;
228 ConvertYUVToRGB32Row_C(y_ptr
,
236 void ConvertYUVAToARGB_C(const uint8
* yplane
,
248 unsigned int y_shift
= yuv_type
;
249 for (int y
= 0; y
< height
; y
++) {
250 uint8
* rgba_row
= rgbaframe
+ y
* rgbastride
;
251 const uint8
* y_ptr
= yplane
+ y
* ystride
;
252 const uint8
* u_ptr
= uplane
+ (y
>> y_shift
) * uvstride
;
253 const uint8
* v_ptr
= vplane
+ (y
>> y_shift
) * uvstride
;
254 const uint8
* a_ptr
= aplane
+ y
* astride
;
256 ConvertYUVAToARGBRow_C(y_ptr
,