1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // MSVC++ requires this to be set before any other includes to get M_PI.
6 #define _USE_MATH_DEFINES
10 #include "base/bind.h"
11 #include "base/bind_helpers.h"
12 #include "base/command_line.h"
14 #include "base/logging.h"
15 #include "base/strings/string_number_conversions.h"
16 #include "base/strings/stringize_macros.h"
17 #include "base/time/time.h"
18 #include "build/build_config.h"
19 #include "media/base/sinc_resampler.h"
20 #include "testing/gmock/include/gmock/gmock.h"
21 #include "testing/gtest/include/gtest/gtest.h"
27 static const double kSampleRateRatio
= 192000.0 / 44100.0;
28 static const double kKernelInterpolationFactor
= 0.5;
30 // Command line switch for runtime adjustment of ConvolveBenchmark iterations.
31 static const char kConvolveIterations
[] = "convolve-iterations";
33 // Helper class to ensure ChunkedResample() functions properly.
36 MOCK_METHOD2(ProvideInput
, void(int frames
, float* destination
));
40 memset(arg1
, 0, arg0
* sizeof(float));
44 // Value chosen arbitrarily such that SincResampler resamples it to something
45 // easily representable on all platforms; e.g., using kSampleRateRatio this
47 memset(arg1
, 64, arg0
* sizeof(float));
50 // Test requesting multiples of ChunkSize() frames results in the proper number
52 TEST(SincResamplerTest
, ChunkedResample
) {
53 MockSource mock_source
;
55 // Choose a high ratio of input to output samples which will result in quick
56 // exhaustion of SincResampler's internal buffers.
57 SincResampler
resampler(
58 kSampleRateRatio
, SincResampler::kDefaultRequestSize
,
59 base::Bind(&MockSource::ProvideInput
, base::Unretained(&mock_source
)));
61 static const int kChunks
= 2;
62 int max_chunk_size
= resampler
.ChunkSize() * kChunks
;
63 scoped_ptr
<float[]> resampled_destination(new float[max_chunk_size
]);
65 // Verify requesting ChunkSize() frames causes a single callback.
66 EXPECT_CALL(mock_source
, ProvideInput(_
, _
))
67 .Times(1).WillOnce(ClearBuffer());
68 resampler
.Resample(resampler
.ChunkSize(), resampled_destination
.get());
70 // Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
71 testing::Mock::VerifyAndClear(&mock_source
);
72 EXPECT_CALL(mock_source
, ProvideInput(_
, _
))
73 .Times(kChunks
).WillRepeatedly(ClearBuffer());
74 resampler
.Resample(max_chunk_size
, resampled_destination
.get());
77 // Test flush resets the internal state properly.
78 TEST(SincResamplerTest
, Flush
) {
79 MockSource mock_source
;
80 SincResampler
resampler(
81 kSampleRateRatio
, SincResampler::kDefaultRequestSize
,
82 base::Bind(&MockSource::ProvideInput
, base::Unretained(&mock_source
)));
83 scoped_ptr
<float[]> resampled_destination(new float[resampler
.ChunkSize()]);
85 // Fill the resampler with junk data.
86 EXPECT_CALL(mock_source
, ProvideInput(_
, _
))
87 .Times(1).WillOnce(FillBuffer());
88 resampler
.Resample(resampler
.ChunkSize() / 2, resampled_destination
.get());
89 ASSERT_NE(resampled_destination
[0], 0);
91 // Flush and request more data, which should all be zeros now.
93 testing::Mock::VerifyAndClear(&mock_source
);
94 EXPECT_CALL(mock_source
, ProvideInput(_
, _
))
95 .Times(1).WillOnce(ClearBuffer());
96 resampler
.Resample(resampler
.ChunkSize() / 2, resampled_destination
.get());
97 for (int i
= 0; i
< resampler
.ChunkSize() / 2; ++i
)
98 ASSERT_FLOAT_EQ(resampled_destination
[i
], 0);
101 // Test flush resets the internal state properly.
102 TEST(SincResamplerTest
, DISABLED_SetRatioBench
) {
103 MockSource mock_source
;
104 SincResampler
resampler(
105 kSampleRateRatio
, SincResampler::kDefaultRequestSize
,
106 base::Bind(&MockSource::ProvideInput
, base::Unretained(&mock_source
)));
108 base::TimeTicks start
= base::TimeTicks::HighResNow();
109 for (int i
= 1; i
< 10000; ++i
)
110 resampler
.SetRatio(1.0 / i
);
111 double total_time_c_ms
=
112 (base::TimeTicks::HighResNow() - start
).InMillisecondsF();
113 printf("SetRatio() took %.2fms.\n", total_time_c_ms
);
117 // Define platform independent function name for Convolve* tests.
118 #if defined(ARCH_CPU_X86_FAMILY)
119 #define CONVOLVE_FUNC Convolve_SSE
120 #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
121 #define CONVOLVE_FUNC Convolve_NEON
124 // Ensure various optimized Convolve() methods return the same value. Only run
125 // this test if other optimized methods exist, otherwise the default Convolve()
126 // will be tested by the parameterized SincResampler tests below.
127 #if defined(CONVOLVE_FUNC)
128 TEST(SincResamplerTest
, Convolve
) {
129 #if defined(ARCH_CPU_X86_FAMILY)
130 ASSERT_TRUE(base::CPU().has_sse());
133 // Initialize a dummy resampler.
134 MockSource mock_source
;
135 SincResampler
resampler(
136 kSampleRateRatio
, SincResampler::kDefaultRequestSize
,
137 base::Bind(&MockSource::ProvideInput
, base::Unretained(&mock_source
)));
139 // The optimized Convolve methods are slightly more precise than Convolve_C(),
140 // so comparison must be done using an epsilon.
141 static const double kEpsilon
= 0.00000005;
143 // Use a kernel from SincResampler as input and kernel data, this has the
144 // benefit of already being properly sized and aligned for Convolve_SSE().
145 double result
= resampler
.Convolve_C(
146 resampler
.kernel_storage_
.get(), resampler
.kernel_storage_
.get(),
147 resampler
.kernel_storage_
.get(), kKernelInterpolationFactor
);
148 double result2
= resampler
.CONVOLVE_FUNC(
149 resampler
.kernel_storage_
.get(), resampler
.kernel_storage_
.get(),
150 resampler
.kernel_storage_
.get(), kKernelInterpolationFactor
);
151 EXPECT_NEAR(result2
, result
, kEpsilon
);
153 // Test Convolve() w/ unaligned input pointer.
154 result
= resampler
.Convolve_C(
155 resampler
.kernel_storage_
.get() + 1, resampler
.kernel_storage_
.get(),
156 resampler
.kernel_storage_
.get(), kKernelInterpolationFactor
);
157 result2
= resampler
.CONVOLVE_FUNC(
158 resampler
.kernel_storage_
.get() + 1, resampler
.kernel_storage_
.get(),
159 resampler
.kernel_storage_
.get(), kKernelInterpolationFactor
);
160 EXPECT_NEAR(result2
, result
, kEpsilon
);
164 // Benchmark for the various Convolve() methods. Make sure to build with
165 // branding=Chrome so that DCHECKs are compiled out when benchmarking. Original
166 // benchmarks were run with --convolve-iterations=50000000.
167 TEST(SincResamplerTest
, ConvolveBenchmark
) {
168 // Initialize a dummy resampler.
169 MockSource mock_source
;
170 SincResampler
resampler(
171 kSampleRateRatio
, SincResampler::kDefaultRequestSize
,
172 base::Bind(&MockSource::ProvideInput
, base::Unretained(&mock_source
)));
174 // Retrieve benchmark iterations from command line.
175 int convolve_iterations
= 10;
176 std::string
iterations(CommandLine::ForCurrentProcess()->GetSwitchValueASCII(
177 kConvolveIterations
));
178 if (!iterations
.empty())
179 base::StringToInt(iterations
, &convolve_iterations
);
181 printf("Benchmarking %d iterations:\n", convolve_iterations
);
183 // Benchmark Convolve_C().
184 base::TimeTicks start
= base::TimeTicks::HighResNow();
185 for (int i
= 0; i
< convolve_iterations
; ++i
) {
186 resampler
.Convolve_C(
187 resampler
.kernel_storage_
.get(), resampler
.kernel_storage_
.get(),
188 resampler
.kernel_storage_
.get(), kKernelInterpolationFactor
);
190 double total_time_c_ms
=
191 (base::TimeTicks::HighResNow() - start
).InMillisecondsF();
192 printf("Convolve_C took %.2fms.\n", total_time_c_ms
);
194 #if defined(CONVOLVE_FUNC)
195 #if defined(ARCH_CPU_X86_FAMILY)
196 ASSERT_TRUE(base::CPU().has_sse());
199 // Benchmark with unaligned input pointer.
200 start
= base::TimeTicks::HighResNow();
201 for (int j
= 0; j
< convolve_iterations
; ++j
) {
202 resampler
.CONVOLVE_FUNC(
203 resampler
.kernel_storage_
.get() + 1, resampler
.kernel_storage_
.get(),
204 resampler
.kernel_storage_
.get(), kKernelInterpolationFactor
);
206 double total_time_optimized_unaligned_ms
=
207 (base::TimeTicks::HighResNow() - start
).InMillisecondsF();
208 printf(STRINGIZE(CONVOLVE_FUNC
) " (unaligned) took %.2fms; which is %.2fx "
209 "faster than Convolve_C.\n", total_time_optimized_unaligned_ms
,
210 total_time_c_ms
/ total_time_optimized_unaligned_ms
);
212 // Benchmark with aligned input pointer.
213 start
= base::TimeTicks::HighResNow();
214 for (int j
= 0; j
< convolve_iterations
; ++j
) {
215 resampler
.CONVOLVE_FUNC(
216 resampler
.kernel_storage_
.get(), resampler
.kernel_storage_
.get(),
217 resampler
.kernel_storage_
.get(), kKernelInterpolationFactor
);
219 double total_time_optimized_aligned_ms
=
220 (base::TimeTicks::HighResNow() - start
).InMillisecondsF();
221 printf(STRINGIZE(CONVOLVE_FUNC
) " (aligned) took %.2fms; which is %.2fx "
222 "faster than Convolve_C and %.2fx faster than "
223 STRINGIZE(CONVOLVE_FUNC
) " (unaligned).\n",
224 total_time_optimized_aligned_ms
,
225 total_time_c_ms
/ total_time_optimized_aligned_ms
,
226 total_time_optimized_unaligned_ms
/ total_time_optimized_aligned_ms
);
232 // Fake audio source for testing the resampler. Generates a sinusoidal linear
233 // chirp (http://en.wikipedia.org/wiki/Chirp) which can be tuned to stress the
234 // resampler for the specific sample rate conversion being used.
235 class SinusoidalLinearChirpSource
{
237 SinusoidalLinearChirpSource(int sample_rate
,
239 double max_frequency
)
240 : sample_rate_(sample_rate
),
241 total_samples_(samples
),
242 max_frequency_(max_frequency
),
245 double duration
= static_cast<double>(total_samples_
) / sample_rate_
;
246 k_
= (max_frequency_
- kMinFrequency
) / duration
;
249 virtual ~SinusoidalLinearChirpSource() {}
251 void ProvideInput(int frames
, float* destination
) {
252 for (int i
= 0; i
< frames
; ++i
, ++current_index_
) {
253 // Filter out frequencies higher than Nyquist.
254 if (Frequency(current_index_
) > 0.5 * sample_rate_
) {
257 // Calculate time in seconds.
258 double t
= static_cast<double>(current_index_
) / sample_rate_
;
260 // Sinusoidal linear chirp.
261 destination
[i
] = sin(2 * M_PI
* (kMinFrequency
* t
+ (k_
/ 2) * t
* t
));
266 double Frequency(int position
) {
267 return kMinFrequency
+ position
* (max_frequency_
- kMinFrequency
)
278 double max_frequency_
;
282 DISALLOW_COPY_AND_ASSIGN(SinusoidalLinearChirpSource
);
285 typedef std::tr1::tuple
<int, int, double, double> SincResamplerTestData
;
286 class SincResamplerTest
287 : public testing::TestWithParam
<SincResamplerTestData
> {
290 : input_rate_(std::tr1::get
<0>(GetParam())),
291 output_rate_(std::tr1::get
<1>(GetParam())),
292 rms_error_(std::tr1::get
<2>(GetParam())),
293 low_freq_error_(std::tr1::get
<3>(GetParam())) {
296 virtual ~SincResamplerTest() {}
302 double low_freq_error_
;
305 // Tests resampling using a given input and output sample rate.
306 TEST_P(SincResamplerTest
, Resample
) {
307 // Make comparisons using one second of data.
308 static const double kTestDurationSecs
= 1;
309 int input_samples
= kTestDurationSecs
* input_rate_
;
310 int output_samples
= kTestDurationSecs
* output_rate_
;
312 // Nyquist frequency for the input sampling rate.
313 double input_nyquist_freq
= 0.5 * input_rate_
;
315 // Source for data to be resampled.
316 SinusoidalLinearChirpSource
resampler_source(
317 input_rate_
, input_samples
, input_nyquist_freq
);
319 const double io_ratio
= input_rate_
/ static_cast<double>(output_rate_
);
320 SincResampler
resampler(
321 io_ratio
, SincResampler::kDefaultRequestSize
,
322 base::Bind(&SinusoidalLinearChirpSource::ProvideInput
,
323 base::Unretained(&resampler_source
)));
325 // Force an update to the sample rate ratio to ensure dyanmic sample rate
326 // changes are working correctly.
327 scoped_ptr
<float[]> kernel(new float[SincResampler::kKernelStorageSize
]);
328 memcpy(kernel
.get(), resampler
.get_kernel_for_testing(),
329 SincResampler::kKernelStorageSize
);
330 resampler
.SetRatio(M_PI
);
331 ASSERT_NE(0, memcmp(kernel
.get(), resampler
.get_kernel_for_testing(),
332 SincResampler::kKernelStorageSize
));
333 resampler
.SetRatio(io_ratio
);
334 ASSERT_EQ(0, memcmp(kernel
.get(), resampler
.get_kernel_for_testing(),
335 SincResampler::kKernelStorageSize
));
337 // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
338 // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
339 scoped_ptr
<float[]> resampled_destination(new float[output_samples
]);
340 scoped_ptr
<float[]> pure_destination(new float[output_samples
]);
342 // Generate resampled signal.
343 resampler
.Resample(output_samples
, resampled_destination
.get());
345 // Generate pure signal.
346 SinusoidalLinearChirpSource
pure_source(
347 output_rate_
, output_samples
, input_nyquist_freq
);
348 pure_source
.ProvideInput(output_samples
, pure_destination
.get());
350 // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
351 // we refer to as low and high.
352 static const double kLowFrequencyNyquistRange
= 0.7;
353 static const double kHighFrequencyNyquistRange
= 0.9;
355 // Calculate Root-Mean-Square-Error and maximum error for the resampling.
356 double sum_of_squares
= 0;
357 double low_freq_max_error
= 0;
358 double high_freq_max_error
= 0;
359 int minimum_rate
= std::min(input_rate_
, output_rate_
);
360 double low_frequency_range
= kLowFrequencyNyquistRange
* 0.5 * minimum_rate
;
361 double high_frequency_range
= kHighFrequencyNyquistRange
* 0.5 * minimum_rate
;
362 for (int i
= 0; i
< output_samples
; ++i
) {
363 double error
= fabs(resampled_destination
[i
] - pure_destination
[i
]);
365 if (pure_source
.Frequency(i
) < low_frequency_range
) {
366 if (error
> low_freq_max_error
)
367 low_freq_max_error
= error
;
368 } else if (pure_source
.Frequency(i
) < high_frequency_range
) {
369 if (error
> high_freq_max_error
)
370 high_freq_max_error
= error
;
372 // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
374 sum_of_squares
+= error
* error
;
377 double rms_error
= sqrt(sum_of_squares
/ output_samples
);
379 // Convert each error to dbFS.
380 #define DBFS(x) 20 * log10(x)
381 rms_error
= DBFS(rms_error
);
382 low_freq_max_error
= DBFS(low_freq_max_error
);
383 high_freq_max_error
= DBFS(high_freq_max_error
);
385 EXPECT_LE(rms_error
, rms_error_
);
386 EXPECT_LE(low_freq_max_error
, low_freq_error_
);
388 // All conversions currently have a high frequency error around -6 dbFS.
389 static const double kHighFrequencyMaxError
= -6.02;
390 EXPECT_LE(high_freq_max_error
, kHighFrequencyMaxError
);
393 // Almost all conversions have an RMS error of around -14 dbFS.
394 static const double kResamplingRMSError
= -14.58;
396 // Thresholds chosen arbitrarily based on what each resampling reported during
397 // testing. All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
398 INSTANTIATE_TEST_CASE_P(
399 SincResamplerTest
, SincResamplerTest
, testing::Values(
401 std::tr1::make_tuple(8000, 44100, kResamplingRMSError
, -62.73),
402 std::tr1::make_tuple(11025, 44100, kResamplingRMSError
, -72.19),
403 std::tr1::make_tuple(16000, 44100, kResamplingRMSError
, -62.54),
404 std::tr1::make_tuple(22050, 44100, kResamplingRMSError
, -73.53),
405 std::tr1::make_tuple(32000, 44100, kResamplingRMSError
, -63.32),
406 std::tr1::make_tuple(44100, 44100, kResamplingRMSError
, -73.53),
407 std::tr1::make_tuple(48000, 44100, -15.01, -64.04),
408 std::tr1::make_tuple(96000, 44100, -18.49, -25.51),
409 std::tr1::make_tuple(192000, 44100, -20.50, -13.31),
412 std::tr1::make_tuple(8000, 48000, kResamplingRMSError
, -63.43),
413 std::tr1::make_tuple(11025, 48000, kResamplingRMSError
, -62.61),
414 std::tr1::make_tuple(16000, 48000, kResamplingRMSError
, -63.96),
415 std::tr1::make_tuple(22050, 48000, kResamplingRMSError
, -62.42),
416 std::tr1::make_tuple(32000, 48000, kResamplingRMSError
, -64.04),
417 std::tr1::make_tuple(44100, 48000, kResamplingRMSError
, -62.63),
418 std::tr1::make_tuple(48000, 48000, kResamplingRMSError
, -73.52),
419 std::tr1::make_tuple(96000, 48000, -18.40, -28.44),
420 std::tr1::make_tuple(192000, 48000, -20.43, -14.11),
423 std::tr1::make_tuple(8000, 96000, kResamplingRMSError
, -63.19),
424 std::tr1::make_tuple(11025, 96000, kResamplingRMSError
, -62.61),
425 std::tr1::make_tuple(16000, 96000, kResamplingRMSError
, -63.39),
426 std::tr1::make_tuple(22050, 96000, kResamplingRMSError
, -62.42),
427 std::tr1::make_tuple(32000, 96000, kResamplingRMSError
, -63.95),
428 std::tr1::make_tuple(44100, 96000, kResamplingRMSError
, -62.63),
429 std::tr1::make_tuple(48000, 96000, kResamplingRMSError
, -73.52),
430 std::tr1::make_tuple(96000, 96000, kResamplingRMSError
, -73.52),
431 std::tr1::make_tuple(192000, 96000, kResamplingRMSError
, -28.41),
434 std::tr1::make_tuple(8000, 192000, kResamplingRMSError
, -63.10),
435 std::tr1::make_tuple(11025, 192000, kResamplingRMSError
, -62.61),
436 std::tr1::make_tuple(16000, 192000, kResamplingRMSError
, -63.14),
437 std::tr1::make_tuple(22050, 192000, kResamplingRMSError
, -62.42),
438 std::tr1::make_tuple(32000, 192000, kResamplingRMSError
, -63.38),
439 std::tr1::make_tuple(44100, 192000, kResamplingRMSError
, -62.63),
440 std::tr1::make_tuple(48000, 192000, kResamplingRMSError
, -73.44),
441 std::tr1::make_tuple(96000, 192000, kResamplingRMSError
, -73.52),
442 std::tr1::make_tuple(192000, 192000, kResamplingRMSError
, -73.52)));