Removed unused VideoCaptureCapability parameters.
[chromium-blink-merge.git] / media / base / sinc_resampler_unittest.cc
blob8b89a5d3808034ab4d5ad705b8f0c6fd311cde41
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // MSVC++ requires this to be set before any other includes to get M_PI.
6 #define _USE_MATH_DEFINES
8 #include <cmath>
10 #include "base/bind.h"
11 #include "base/bind_helpers.h"
12 #include "base/command_line.h"
13 #include "base/cpu.h"
14 #include "base/logging.h"
15 #include "base/strings/string_number_conversions.h"
16 #include "base/strings/stringize_macros.h"
17 #include "base/time/time.h"
18 #include "build/build_config.h"
19 #include "media/base/sinc_resampler.h"
20 #include "testing/gmock/include/gmock/gmock.h"
21 #include "testing/gtest/include/gtest/gtest.h"
23 using testing::_;
25 namespace media {
27 static const double kSampleRateRatio = 192000.0 / 44100.0;
28 static const double kKernelInterpolationFactor = 0.5;
30 // Command line switch for runtime adjustment of ConvolveBenchmark iterations.
31 static const char kConvolveIterations[] = "convolve-iterations";
33 // Helper class to ensure ChunkedResample() functions properly.
34 class MockSource {
35 public:
36 MOCK_METHOD2(ProvideInput, void(int frames, float* destination));
39 ACTION(ClearBuffer) {
40 memset(arg1, 0, arg0 * sizeof(float));
43 ACTION(FillBuffer) {
44 // Value chosen arbitrarily such that SincResampler resamples it to something
45 // easily representable on all platforms; e.g., using kSampleRateRatio this
46 // becomes 1.81219.
47 memset(arg1, 64, arg0 * sizeof(float));
50 // Test requesting multiples of ChunkSize() frames results in the proper number
51 // of callbacks.
52 TEST(SincResamplerTest, ChunkedResample) {
53 MockSource mock_source;
55 // Choose a high ratio of input to output samples which will result in quick
56 // exhaustion of SincResampler's internal buffers.
57 SincResampler resampler(
58 kSampleRateRatio, SincResampler::kDefaultRequestSize,
59 base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source)));
61 static const int kChunks = 2;
62 int max_chunk_size = resampler.ChunkSize() * kChunks;
63 scoped_ptr<float[]> resampled_destination(new float[max_chunk_size]);
65 // Verify requesting ChunkSize() frames causes a single callback.
66 EXPECT_CALL(mock_source, ProvideInput(_, _))
67 .Times(1).WillOnce(ClearBuffer());
68 resampler.Resample(resampler.ChunkSize(), resampled_destination.get());
70 // Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
71 testing::Mock::VerifyAndClear(&mock_source);
72 EXPECT_CALL(mock_source, ProvideInput(_, _))
73 .Times(kChunks).WillRepeatedly(ClearBuffer());
74 resampler.Resample(max_chunk_size, resampled_destination.get());
77 // Test flush resets the internal state properly.
78 TEST(SincResamplerTest, Flush) {
79 MockSource mock_source;
80 SincResampler resampler(
81 kSampleRateRatio, SincResampler::kDefaultRequestSize,
82 base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source)));
83 scoped_ptr<float[]> resampled_destination(new float[resampler.ChunkSize()]);
85 // Fill the resampler with junk data.
86 EXPECT_CALL(mock_source, ProvideInput(_, _))
87 .Times(1).WillOnce(FillBuffer());
88 resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
89 ASSERT_NE(resampled_destination[0], 0);
91 // Flush and request more data, which should all be zeros now.
92 resampler.Flush();
93 testing::Mock::VerifyAndClear(&mock_source);
94 EXPECT_CALL(mock_source, ProvideInput(_, _))
95 .Times(1).WillOnce(ClearBuffer());
96 resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
97 for (int i = 0; i < resampler.ChunkSize() / 2; ++i)
98 ASSERT_FLOAT_EQ(resampled_destination[i], 0);
101 // Test flush resets the internal state properly.
102 TEST(SincResamplerTest, DISABLED_SetRatioBench) {
103 MockSource mock_source;
104 SincResampler resampler(
105 kSampleRateRatio, SincResampler::kDefaultRequestSize,
106 base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source)));
108 base::TimeTicks start = base::TimeTicks::HighResNow();
109 for (int i = 1; i < 10000; ++i)
110 resampler.SetRatio(1.0 / i);
111 double total_time_c_ms =
112 (base::TimeTicks::HighResNow() - start).InMillisecondsF();
113 printf("SetRatio() took %.2fms.\n", total_time_c_ms);
117 // Define platform independent function name for Convolve* tests.
118 #if defined(ARCH_CPU_X86_FAMILY)
119 #define CONVOLVE_FUNC Convolve_SSE
120 #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
121 #define CONVOLVE_FUNC Convolve_NEON
122 #endif
124 // Ensure various optimized Convolve() methods return the same value. Only run
125 // this test if other optimized methods exist, otherwise the default Convolve()
126 // will be tested by the parameterized SincResampler tests below.
127 #if defined(CONVOLVE_FUNC)
128 TEST(SincResamplerTest, Convolve) {
129 #if defined(ARCH_CPU_X86_FAMILY)
130 ASSERT_TRUE(base::CPU().has_sse());
131 #endif
133 // Initialize a dummy resampler.
134 MockSource mock_source;
135 SincResampler resampler(
136 kSampleRateRatio, SincResampler::kDefaultRequestSize,
137 base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source)));
139 // The optimized Convolve methods are slightly more precise than Convolve_C(),
140 // so comparison must be done using an epsilon.
141 static const double kEpsilon = 0.00000005;
143 // Use a kernel from SincResampler as input and kernel data, this has the
144 // benefit of already being properly sized and aligned for Convolve_SSE().
145 double result = resampler.Convolve_C(
146 resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
147 resampler.kernel_storage_.get(), kKernelInterpolationFactor);
148 double result2 = resampler.CONVOLVE_FUNC(
149 resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
150 resampler.kernel_storage_.get(), kKernelInterpolationFactor);
151 EXPECT_NEAR(result2, result, kEpsilon);
153 // Test Convolve() w/ unaligned input pointer.
154 result = resampler.Convolve_C(
155 resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
156 resampler.kernel_storage_.get(), kKernelInterpolationFactor);
157 result2 = resampler.CONVOLVE_FUNC(
158 resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
159 resampler.kernel_storage_.get(), kKernelInterpolationFactor);
160 EXPECT_NEAR(result2, result, kEpsilon);
162 #endif
164 // Benchmark for the various Convolve() methods. Make sure to build with
165 // branding=Chrome so that DCHECKs are compiled out when benchmarking. Original
166 // benchmarks were run with --convolve-iterations=50000000.
167 TEST(SincResamplerTest, ConvolveBenchmark) {
168 // Initialize a dummy resampler.
169 MockSource mock_source;
170 SincResampler resampler(
171 kSampleRateRatio, SincResampler::kDefaultRequestSize,
172 base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source)));
174 // Retrieve benchmark iterations from command line.
175 int convolve_iterations = 10;
176 std::string iterations(CommandLine::ForCurrentProcess()->GetSwitchValueASCII(
177 kConvolveIterations));
178 if (!iterations.empty())
179 base::StringToInt(iterations, &convolve_iterations);
181 printf("Benchmarking %d iterations:\n", convolve_iterations);
183 // Benchmark Convolve_C().
184 base::TimeTicks start = base::TimeTicks::HighResNow();
185 for (int i = 0; i < convolve_iterations; ++i) {
186 resampler.Convolve_C(
187 resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
188 resampler.kernel_storage_.get(), kKernelInterpolationFactor);
190 double total_time_c_ms =
191 (base::TimeTicks::HighResNow() - start).InMillisecondsF();
192 printf("Convolve_C took %.2fms.\n", total_time_c_ms);
194 #if defined(CONVOLVE_FUNC)
195 #if defined(ARCH_CPU_X86_FAMILY)
196 ASSERT_TRUE(base::CPU().has_sse());
197 #endif
199 // Benchmark with unaligned input pointer.
200 start = base::TimeTicks::HighResNow();
201 for (int j = 0; j < convolve_iterations; ++j) {
202 resampler.CONVOLVE_FUNC(
203 resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
204 resampler.kernel_storage_.get(), kKernelInterpolationFactor);
206 double total_time_optimized_unaligned_ms =
207 (base::TimeTicks::HighResNow() - start).InMillisecondsF();
208 printf(STRINGIZE(CONVOLVE_FUNC) " (unaligned) took %.2fms; which is %.2fx "
209 "faster than Convolve_C.\n", total_time_optimized_unaligned_ms,
210 total_time_c_ms / total_time_optimized_unaligned_ms);
212 // Benchmark with aligned input pointer.
213 start = base::TimeTicks::HighResNow();
214 for (int j = 0; j < convolve_iterations; ++j) {
215 resampler.CONVOLVE_FUNC(
216 resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
217 resampler.kernel_storage_.get(), kKernelInterpolationFactor);
219 double total_time_optimized_aligned_ms =
220 (base::TimeTicks::HighResNow() - start).InMillisecondsF();
221 printf(STRINGIZE(CONVOLVE_FUNC) " (aligned) took %.2fms; which is %.2fx "
222 "faster than Convolve_C and %.2fx faster than "
223 STRINGIZE(CONVOLVE_FUNC) " (unaligned).\n",
224 total_time_optimized_aligned_ms,
225 total_time_c_ms / total_time_optimized_aligned_ms,
226 total_time_optimized_unaligned_ms / total_time_optimized_aligned_ms);
227 #endif
230 #undef CONVOLVE_FUNC
232 // Fake audio source for testing the resampler. Generates a sinusoidal linear
233 // chirp (http://en.wikipedia.org/wiki/Chirp) which can be tuned to stress the
234 // resampler for the specific sample rate conversion being used.
235 class SinusoidalLinearChirpSource {
236 public:
237 SinusoidalLinearChirpSource(int sample_rate,
238 int samples,
239 double max_frequency)
240 : sample_rate_(sample_rate),
241 total_samples_(samples),
242 max_frequency_(max_frequency),
243 current_index_(0) {
244 // Chirp rate.
245 double duration = static_cast<double>(total_samples_) / sample_rate_;
246 k_ = (max_frequency_ - kMinFrequency) / duration;
249 virtual ~SinusoidalLinearChirpSource() {}
251 void ProvideInput(int frames, float* destination) {
252 for (int i = 0; i < frames; ++i, ++current_index_) {
253 // Filter out frequencies higher than Nyquist.
254 if (Frequency(current_index_) > 0.5 * sample_rate_) {
255 destination[i] = 0;
256 } else {
257 // Calculate time in seconds.
258 double t = static_cast<double>(current_index_) / sample_rate_;
260 // Sinusoidal linear chirp.
261 destination[i] = sin(2 * M_PI * (kMinFrequency * t + (k_ / 2) * t * t));
266 double Frequency(int position) {
267 return kMinFrequency + position * (max_frequency_ - kMinFrequency)
268 / total_samples_;
271 private:
272 enum {
273 kMinFrequency = 5
276 double sample_rate_;
277 int total_samples_;
278 double max_frequency_;
279 double k_;
280 int current_index_;
282 DISALLOW_COPY_AND_ASSIGN(SinusoidalLinearChirpSource);
285 typedef std::tr1::tuple<int, int, double, double> SincResamplerTestData;
286 class SincResamplerTest
287 : public testing::TestWithParam<SincResamplerTestData> {
288 public:
289 SincResamplerTest()
290 : input_rate_(std::tr1::get<0>(GetParam())),
291 output_rate_(std::tr1::get<1>(GetParam())),
292 rms_error_(std::tr1::get<2>(GetParam())),
293 low_freq_error_(std::tr1::get<3>(GetParam())) {
296 virtual ~SincResamplerTest() {}
298 protected:
299 int input_rate_;
300 int output_rate_;
301 double rms_error_;
302 double low_freq_error_;
305 // Tests resampling using a given input and output sample rate.
306 TEST_P(SincResamplerTest, Resample) {
307 // Make comparisons using one second of data.
308 static const double kTestDurationSecs = 1;
309 int input_samples = kTestDurationSecs * input_rate_;
310 int output_samples = kTestDurationSecs * output_rate_;
312 // Nyquist frequency for the input sampling rate.
313 double input_nyquist_freq = 0.5 * input_rate_;
315 // Source for data to be resampled.
316 SinusoidalLinearChirpSource resampler_source(
317 input_rate_, input_samples, input_nyquist_freq);
319 const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
320 SincResampler resampler(
321 io_ratio, SincResampler::kDefaultRequestSize,
322 base::Bind(&SinusoidalLinearChirpSource::ProvideInput,
323 base::Unretained(&resampler_source)));
325 // Force an update to the sample rate ratio to ensure dyanmic sample rate
326 // changes are working correctly.
327 scoped_ptr<float[]> kernel(new float[SincResampler::kKernelStorageSize]);
328 memcpy(kernel.get(), resampler.get_kernel_for_testing(),
329 SincResampler::kKernelStorageSize);
330 resampler.SetRatio(M_PI);
331 ASSERT_NE(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
332 SincResampler::kKernelStorageSize));
333 resampler.SetRatio(io_ratio);
334 ASSERT_EQ(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
335 SincResampler::kKernelStorageSize));
337 // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
338 // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
339 scoped_ptr<float[]> resampled_destination(new float[output_samples]);
340 scoped_ptr<float[]> pure_destination(new float[output_samples]);
342 // Generate resampled signal.
343 resampler.Resample(output_samples, resampled_destination.get());
345 // Generate pure signal.
346 SinusoidalLinearChirpSource pure_source(
347 output_rate_, output_samples, input_nyquist_freq);
348 pure_source.ProvideInput(output_samples, pure_destination.get());
350 // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
351 // we refer to as low and high.
352 static const double kLowFrequencyNyquistRange = 0.7;
353 static const double kHighFrequencyNyquistRange = 0.9;
355 // Calculate Root-Mean-Square-Error and maximum error for the resampling.
356 double sum_of_squares = 0;
357 double low_freq_max_error = 0;
358 double high_freq_max_error = 0;
359 int minimum_rate = std::min(input_rate_, output_rate_);
360 double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
361 double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
362 for (int i = 0; i < output_samples; ++i) {
363 double error = fabs(resampled_destination[i] - pure_destination[i]);
365 if (pure_source.Frequency(i) < low_frequency_range) {
366 if (error > low_freq_max_error)
367 low_freq_max_error = error;
368 } else if (pure_source.Frequency(i) < high_frequency_range) {
369 if (error > high_freq_max_error)
370 high_freq_max_error = error;
372 // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
374 sum_of_squares += error * error;
377 double rms_error = sqrt(sum_of_squares / output_samples);
379 // Convert each error to dbFS.
380 #define DBFS(x) 20 * log10(x)
381 rms_error = DBFS(rms_error);
382 low_freq_max_error = DBFS(low_freq_max_error);
383 high_freq_max_error = DBFS(high_freq_max_error);
385 EXPECT_LE(rms_error, rms_error_);
386 EXPECT_LE(low_freq_max_error, low_freq_error_);
388 // All conversions currently have a high frequency error around -6 dbFS.
389 static const double kHighFrequencyMaxError = -6.02;
390 EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError);
393 // Almost all conversions have an RMS error of around -14 dbFS.
394 static const double kResamplingRMSError = -14.58;
396 // Thresholds chosen arbitrarily based on what each resampling reported during
397 // testing. All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
398 INSTANTIATE_TEST_CASE_P(
399 SincResamplerTest, SincResamplerTest, testing::Values(
400 // To 44.1kHz
401 std::tr1::make_tuple(8000, 44100, kResamplingRMSError, -62.73),
402 std::tr1::make_tuple(11025, 44100, kResamplingRMSError, -72.19),
403 std::tr1::make_tuple(16000, 44100, kResamplingRMSError, -62.54),
404 std::tr1::make_tuple(22050, 44100, kResamplingRMSError, -73.53),
405 std::tr1::make_tuple(32000, 44100, kResamplingRMSError, -63.32),
406 std::tr1::make_tuple(44100, 44100, kResamplingRMSError, -73.53),
407 std::tr1::make_tuple(48000, 44100, -15.01, -64.04),
408 std::tr1::make_tuple(96000, 44100, -18.49, -25.51),
409 std::tr1::make_tuple(192000, 44100, -20.50, -13.31),
411 // To 48kHz
412 std::tr1::make_tuple(8000, 48000, kResamplingRMSError, -63.43),
413 std::tr1::make_tuple(11025, 48000, kResamplingRMSError, -62.61),
414 std::tr1::make_tuple(16000, 48000, kResamplingRMSError, -63.96),
415 std::tr1::make_tuple(22050, 48000, kResamplingRMSError, -62.42),
416 std::tr1::make_tuple(32000, 48000, kResamplingRMSError, -64.04),
417 std::tr1::make_tuple(44100, 48000, kResamplingRMSError, -62.63),
418 std::tr1::make_tuple(48000, 48000, kResamplingRMSError, -73.52),
419 std::tr1::make_tuple(96000, 48000, -18.40, -28.44),
420 std::tr1::make_tuple(192000, 48000, -20.43, -14.11),
422 // To 96kHz
423 std::tr1::make_tuple(8000, 96000, kResamplingRMSError, -63.19),
424 std::tr1::make_tuple(11025, 96000, kResamplingRMSError, -62.61),
425 std::tr1::make_tuple(16000, 96000, kResamplingRMSError, -63.39),
426 std::tr1::make_tuple(22050, 96000, kResamplingRMSError, -62.42),
427 std::tr1::make_tuple(32000, 96000, kResamplingRMSError, -63.95),
428 std::tr1::make_tuple(44100, 96000, kResamplingRMSError, -62.63),
429 std::tr1::make_tuple(48000, 96000, kResamplingRMSError, -73.52),
430 std::tr1::make_tuple(96000, 96000, kResamplingRMSError, -73.52),
431 std::tr1::make_tuple(192000, 96000, kResamplingRMSError, -28.41),
433 // To 192kHz
434 std::tr1::make_tuple(8000, 192000, kResamplingRMSError, -63.10),
435 std::tr1::make_tuple(11025, 192000, kResamplingRMSError, -62.61),
436 std::tr1::make_tuple(16000, 192000, kResamplingRMSError, -63.14),
437 std::tr1::make_tuple(22050, 192000, kResamplingRMSError, -62.42),
438 std::tr1::make_tuple(32000, 192000, kResamplingRMSError, -63.38),
439 std::tr1::make_tuple(44100, 192000, kResamplingRMSError, -62.63),
440 std::tr1::make_tuple(48000, 192000, kResamplingRMSError, -73.44),
441 std::tr1::make_tuple(96000, 192000, kResamplingRMSError, -73.52),
442 std::tr1::make_tuple(192000, 192000, kResamplingRMSError, -73.52)));
444 } // namespace media