Removed unused VideoCaptureCapability parameters.
[chromium-blink-merge.git] / media / base / yuv_convert.cc
blob893b53df147bf56f4a1b83ba1a9e5dab1683314d
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // This webpage shows layout of YV12 and other YUV formats
6 // http://www.fourcc.org/yuv.php
7 // The actual conversion is best described here
8 // http://en.wikipedia.org/wiki/YUV
9 // An article on optimizing YUV conversion using tables instead of multiplies
10 // http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
12 // YV12 is a full plane of Y and a half height, half width chroma planes
13 // YV16 is a full plane of Y and a full height, half width chroma planes
15 // ARGB pixel format is output, which on little endian is stored as BGRA.
16 // The alpha is set to 255, allowing the application to use RGBA or RGB32.
18 #include "media/base/yuv_convert.h"
20 #include "base/cpu.h"
21 #include "base/logging.h"
22 #include "base/memory/scoped_ptr.h"
23 #include "build/build_config.h"
24 #include "media/base/simd/convert_rgb_to_yuv.h"
25 #include "media/base/simd/convert_yuv_to_rgb.h"
26 #include "media/base/simd/filter_yuv.h"
28 #if defined(ARCH_CPU_X86_FAMILY)
29 #if defined(COMPILER_MSVC)
30 #include <intrin.h>
31 #else
32 #include <mmintrin.h>
33 #endif
34 #endif
36 // Assembly functions are declared without namespace.
37 extern "C" { void EmptyRegisterState_MMX(); } // extern "C"
39 namespace media {
41 typedef void (*FilterYUVRowsProc)(uint8*, const uint8*, const uint8*, int, int);
43 typedef void (*ConvertRGBToYUVProc)(const uint8*,
44 uint8*,
45 uint8*,
46 uint8*,
47 int,
48 int,
49 int,
50 int,
51 int);
53 typedef void (*ConvertYUVToRGB32Proc)(const uint8*,
54 const uint8*,
55 const uint8*,
56 uint8*,
57 int,
58 int,
59 int,
60 int,
61 int,
62 YUVType);
64 typedef void (*ConvertYUVAToARGBProc)(const uint8*,
65 const uint8*,
66 const uint8*,
67 const uint8*,
68 uint8*,
69 int,
70 int,
71 int,
72 int,
73 int,
74 int,
75 YUVType);
77 typedef void (*ConvertYUVToRGB32RowProc)(const uint8*,
78 const uint8*,
79 const uint8*,
80 uint8*,
81 ptrdiff_t);
83 typedef void (*ConvertYUVAToARGBRowProc)(const uint8*,
84 const uint8*,
85 const uint8*,
86 const uint8*,
87 uint8*,
88 ptrdiff_t);
90 typedef void (*ScaleYUVToRGB32RowProc)(const uint8*,
91 const uint8*,
92 const uint8*,
93 uint8*,
94 ptrdiff_t,
95 ptrdiff_t);
97 static FilterYUVRowsProc g_filter_yuv_rows_proc_ = NULL;
98 static ConvertYUVToRGB32RowProc g_convert_yuv_to_rgb32_row_proc_ = NULL;
99 static ScaleYUVToRGB32RowProc g_scale_yuv_to_rgb32_row_proc_ = NULL;
100 static ScaleYUVToRGB32RowProc g_linear_scale_yuv_to_rgb32_row_proc_ = NULL;
101 static ConvertRGBToYUVProc g_convert_rgb32_to_yuv_proc_ = NULL;
102 static ConvertRGBToYUVProc g_convert_rgb24_to_yuv_proc_ = NULL;
103 static ConvertYUVToRGB32Proc g_convert_yuv_to_rgb32_proc_ = NULL;
104 static ConvertYUVAToARGBProc g_convert_yuva_to_argb_proc_ = NULL;
106 // Empty SIMD registers state after using them.
107 void EmptyRegisterStateStub() {}
108 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
109 void EmptyRegisterStateIntrinsic() { _mm_empty(); }
110 #endif
111 typedef void (*EmptyRegisterStateProc)();
112 static EmptyRegisterStateProc g_empty_register_state_proc_ = NULL;
114 void InitializeCPUSpecificYUVConversions() {
115 CHECK(!g_filter_yuv_rows_proc_);
116 CHECK(!g_convert_yuv_to_rgb32_row_proc_);
117 CHECK(!g_scale_yuv_to_rgb32_row_proc_);
118 CHECK(!g_linear_scale_yuv_to_rgb32_row_proc_);
119 CHECK(!g_convert_rgb32_to_yuv_proc_);
120 CHECK(!g_convert_rgb24_to_yuv_proc_);
121 CHECK(!g_convert_yuv_to_rgb32_proc_);
122 CHECK(!g_convert_yuva_to_argb_proc_);
123 CHECK(!g_empty_register_state_proc_);
125 g_filter_yuv_rows_proc_ = FilterYUVRows_C;
126 g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_C;
127 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_C;
128 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_C;
129 g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_C;
130 g_convert_rgb24_to_yuv_proc_ = ConvertRGB24ToYUV_C;
131 g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_C;
132 g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_C;
133 g_empty_register_state_proc_ = EmptyRegisterStateStub;
135 #if defined(ARCH_CPU_X86_FAMILY)
136 base::CPU cpu;
137 if (cpu.has_mmx()) {
138 g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_MMX;
139 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_MMX;
140 g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_MMX;
141 g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_MMX;
142 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX;
144 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
145 g_filter_yuv_rows_proc_ = FilterYUVRows_MMX;
146 g_empty_register_state_proc_ = EmptyRegisterStateIntrinsic;
147 #else
148 g_empty_register_state_proc_ = EmptyRegisterState_MMX;
149 #endif
152 if (cpu.has_sse()) {
153 g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_SSE;
154 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE;
155 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_SSE;
156 g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_SSE;
159 if (cpu.has_sse2()) {
160 g_filter_yuv_rows_proc_ = FilterYUVRows_SSE2;
161 g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_SSE2;
163 #if defined(ARCH_CPU_X86_64)
164 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE2_X64;
166 // Technically this should be in the MMX section, but MSVC will optimize out
167 // the export of LinearScaleYUVToRGB32Row_MMX, which is required by the unit
168 // tests, if that decision can be made at compile time. Since all X64 CPUs
169 // have SSE2, we can hack around this by making the selection here.
170 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX_X64;
171 #endif
174 if (cpu.has_ssse3()) {
175 g_convert_rgb24_to_yuv_proc_ = &ConvertRGB24ToYUV_SSSE3;
177 // TODO(hclam): Add ConvertRGB32ToYUV_SSSE3 when the cyan problem is solved.
178 // See: crbug.com/100462
180 #endif
183 // Empty SIMD registers state after using them.
184 void EmptyRegisterState() { g_empty_register_state_proc_(); }
186 // 16.16 fixed point arithmetic
187 const int kFractionBits = 16;
188 const int kFractionMax = 1 << kFractionBits;
189 const int kFractionMask = ((1 << kFractionBits) - 1);
191 // Scale a frame of YUV to 32 bit ARGB.
192 void ScaleYUVToRGB32(const uint8* y_buf,
193 const uint8* u_buf,
194 const uint8* v_buf,
195 uint8* rgb_buf,
196 int source_width,
197 int source_height,
198 int width,
199 int height,
200 int y_pitch,
201 int uv_pitch,
202 int rgb_pitch,
203 YUVType yuv_type,
204 Rotate view_rotate,
205 ScaleFilter filter) {
206 // Handle zero sized sources and destinations.
207 if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) ||
208 (yuv_type == YV16 && (source_width < 2 || source_height < 1)) ||
209 width == 0 || height == 0)
210 return;
212 // 4096 allows 3 buffers to fit in 12k.
213 // Helps performance on CPU with 16K L1 cache.
214 // Large enough for 3830x2160 and 30" displays which are 2560x1600.
215 const int kFilterBufferSize = 4096;
216 // Disable filtering if the screen is too big (to avoid buffer overflows).
217 // This should never happen to regular users: they don't have monitors
218 // wider than 4096 pixels.
219 // TODO(fbarchard): Allow rotated videos to filter.
220 if (source_width > kFilterBufferSize || view_rotate)
221 filter = FILTER_NONE;
223 unsigned int y_shift = yuv_type;
224 // Diagram showing origin and direction of source sampling.
225 // ->0 4<-
226 // 7 3
228 // 6 5
229 // ->1 2<-
230 // Rotations that start at right side of image.
231 if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) ||
232 (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) {
233 y_buf += source_width - 1;
234 u_buf += source_width / 2 - 1;
235 v_buf += source_width / 2 - 1;
236 source_width = -source_width;
238 // Rotations that start at bottom of image.
239 if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) ||
240 (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) {
241 y_buf += (source_height - 1) * y_pitch;
242 u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
243 v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
244 source_height = -source_height;
247 int source_dx = source_width * kFractionMax / width;
249 if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) {
250 int tmp = height;
251 height = width;
252 width = tmp;
253 tmp = source_height;
254 source_height = source_width;
255 source_width = tmp;
256 int source_dy = source_height * kFractionMax / height;
257 source_dx = ((source_dy >> kFractionBits) * y_pitch) << kFractionBits;
258 if (view_rotate == ROTATE_90) {
259 y_pitch = -1;
260 uv_pitch = -1;
261 source_height = -source_height;
262 } else {
263 y_pitch = 1;
264 uv_pitch = 1;
268 // Need padding because FilterRows() will write 1 to 16 extra pixels
269 // after the end for SSE2 version.
270 uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16];
271 uint8* ybuf =
272 reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
273 uint8* ubuf = ybuf + kFilterBufferSize;
274 uint8* vbuf = ubuf + kFilterBufferSize;
276 // TODO(fbarchard): Fixed point math is off by 1 on negatives.
278 // We take a y-coordinate in [0,1] space in the source image space, and
279 // transform to a y-coordinate in [0,1] space in the destination image space.
280 // Note that the coordinate endpoints lie on pixel boundaries, not on pixel
281 // centers: e.g. a two-pixel-high image will have pixel centers at 0.25 and
282 // 0.75. The formula is as follows (in fixed-point arithmetic):
283 // y_dst = dst_height * ((y_src + 0.5) / src_height)
284 // dst_pixel = clamp([0, dst_height - 1], floor(y_dst - 0.5))
285 // Implement this here as an accumulator + delta, to avoid expensive math
286 // in the loop.
287 int source_y_subpixel_accum =
288 ((kFractionMax / 2) * source_height) / height - (kFractionMax / 2);
289 int source_y_subpixel_delta = ((1 << kFractionBits) * source_height) / height;
291 // TODO(fbarchard): Split this into separate function for better efficiency.
292 for (int y = 0; y < height; ++y) {
293 uint8* dest_pixel = rgb_buf + y * rgb_pitch;
294 int source_y_subpixel = source_y_subpixel_accum;
295 source_y_subpixel_accum += source_y_subpixel_delta;
296 if (source_y_subpixel < 0)
297 source_y_subpixel = 0;
298 else if (source_y_subpixel > ((source_height - 1) << kFractionBits))
299 source_y_subpixel = (source_height - 1) << kFractionBits;
301 const uint8* y_ptr = NULL;
302 const uint8* u_ptr = NULL;
303 const uint8* v_ptr = NULL;
304 // Apply vertical filtering if necessary.
305 // TODO(fbarchard): Remove memcpy when not necessary.
306 if (filter & media::FILTER_BILINEAR_V) {
307 int source_y = source_y_subpixel >> kFractionBits;
308 y_ptr = y_buf + source_y * y_pitch;
309 u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
310 v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
312 // Vertical scaler uses 16.8 fixed point.
313 int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
314 if (source_y_fraction != 0) {
315 g_filter_yuv_rows_proc_(
316 ybuf, y_ptr, y_ptr + y_pitch, source_width, source_y_fraction);
317 } else {
318 memcpy(ybuf, y_ptr, source_width);
320 y_ptr = ybuf;
321 ybuf[source_width] = ybuf[source_width - 1];
323 int uv_source_width = (source_width + 1) / 2;
324 int source_uv_fraction;
326 // For formats with half-height UV planes, each even-numbered pixel row
327 // should not interpolate, since the next row to interpolate from should
328 // be a duplicate of the current row.
329 if (y_shift && (source_y & 0x1) == 0)
330 source_uv_fraction = 0;
331 else
332 source_uv_fraction = source_y_fraction;
334 if (source_uv_fraction != 0) {
335 g_filter_yuv_rows_proc_(
336 ubuf, u_ptr, u_ptr + uv_pitch, uv_source_width, source_uv_fraction);
337 g_filter_yuv_rows_proc_(
338 vbuf, v_ptr, v_ptr + uv_pitch, uv_source_width, source_uv_fraction);
339 } else {
340 memcpy(ubuf, u_ptr, uv_source_width);
341 memcpy(vbuf, v_ptr, uv_source_width);
343 u_ptr = ubuf;
344 v_ptr = vbuf;
345 ubuf[uv_source_width] = ubuf[uv_source_width - 1];
346 vbuf[uv_source_width] = vbuf[uv_source_width - 1];
347 } else {
348 // Offset by 1/2 pixel for center sampling.
349 int source_y = (source_y_subpixel + (kFractionMax / 2)) >> kFractionBits;
350 y_ptr = y_buf + source_y * y_pitch;
351 u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
352 v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
354 if (source_dx == kFractionMax) { // Not scaled
355 g_convert_yuv_to_rgb32_row_proc_(y_ptr, u_ptr, v_ptr, dest_pixel, width);
356 } else {
357 if (filter & FILTER_BILINEAR_H) {
358 g_linear_scale_yuv_to_rgb32_row_proc_(
359 y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx);
360 } else {
361 g_scale_yuv_to_rgb32_row_proc_(
362 y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx);
367 g_empty_register_state_proc_();
370 // Scale a frame of YV12 to 32 bit ARGB for a specific rectangle.
371 void ScaleYUVToRGB32WithRect(const uint8* y_buf,
372 const uint8* u_buf,
373 const uint8* v_buf,
374 uint8* rgb_buf,
375 int source_width,
376 int source_height,
377 int dest_width,
378 int dest_height,
379 int dest_rect_left,
380 int dest_rect_top,
381 int dest_rect_right,
382 int dest_rect_bottom,
383 int y_pitch,
384 int uv_pitch,
385 int rgb_pitch) {
386 // This routine doesn't currently support up-scaling.
387 CHECK_LE(dest_width, source_width);
388 CHECK_LE(dest_height, source_height);
390 // Sanity-check the destination rectangle.
391 DCHECK(dest_rect_left >= 0 && dest_rect_right <= dest_width);
392 DCHECK(dest_rect_top >= 0 && dest_rect_bottom <= dest_height);
393 DCHECK(dest_rect_right > dest_rect_left);
394 DCHECK(dest_rect_bottom > dest_rect_top);
396 // Fixed-point value of vertical and horizontal scale down factor.
397 // Values are in the format 16.16.
398 int y_step = kFractionMax * source_height / dest_height;
399 int x_step = kFractionMax * source_width / dest_width;
401 // Determine the coordinates of the rectangle in 16.16 coords.
402 // NB: Our origin is the *center* of the top/left pixel, NOT its top/left.
403 // If we're down-scaling by more than a factor of two, we start with a 50%
404 // fraction to avoid degenerating to point-sampling - we should really just
405 // fix the fraction at 50% for all pixels in that case.
406 int source_left = dest_rect_left * x_step;
407 int source_right = (dest_rect_right - 1) * x_step;
408 if (x_step < kFractionMax * 2) {
409 source_left += ((x_step - kFractionMax) / 2);
410 source_right += ((x_step - kFractionMax) / 2);
411 } else {
412 source_left += kFractionMax / 2;
413 source_right += kFractionMax / 2;
415 int source_top = dest_rect_top * y_step;
416 if (y_step < kFractionMax * 2) {
417 source_top += ((y_step - kFractionMax) / 2);
418 } else {
419 source_top += kFractionMax / 2;
422 // Determine the parts of the Y, U and V buffers to interpolate.
423 int source_y_left = source_left >> kFractionBits;
424 int source_y_right =
425 std::min((source_right >> kFractionBits) + 2, source_width + 1);
427 int source_uv_left = source_y_left / 2;
428 int source_uv_right = std::min((source_right >> (kFractionBits + 1)) + 2,
429 (source_width + 1) / 2);
431 int source_y_width = source_y_right - source_y_left;
432 int source_uv_width = source_uv_right - source_uv_left;
434 // Determine number of pixels in each output row.
435 int dest_rect_width = dest_rect_right - dest_rect_left;
437 // Intermediate buffer for vertical interpolation.
438 // 4096 bytes allows 3 buffers to fit in 12k, which fits in a 16K L1 cache,
439 // and is bigger than most users will generally need.
440 // The buffer is 16-byte aligned and padded with 16 extra bytes; some of the
441 // FilterYUVRowProcs have alignment requirements, and the SSE version can
442 // write up to 16 bytes past the end of the buffer.
443 const int kFilterBufferSize = 4096;
444 const bool kAvoidUsingOptimizedFilter = source_width > kFilterBufferSize;
445 uint8 yuv_temp[16 + kFilterBufferSize * 3 + 16];
446 uint8* y_temp = reinterpret_cast<uint8*>(
447 reinterpret_cast<uintptr_t>(yuv_temp + 15) & ~15);
448 uint8* u_temp = y_temp + kFilterBufferSize;
449 uint8* v_temp = u_temp + kFilterBufferSize;
451 // Move to the top-left pixel of output.
452 rgb_buf += dest_rect_top * rgb_pitch;
453 rgb_buf += dest_rect_left * 4;
455 // For each destination row perform interpolation and color space
456 // conversion to produce the output.
457 for (int row = dest_rect_top; row < dest_rect_bottom; ++row) {
458 // Round the fixed-point y position to get the current row.
459 int source_row = source_top >> kFractionBits;
460 int source_uv_row = source_row / 2;
461 DCHECK(source_row < source_height);
463 // Locate the first row for each plane for interpolation.
464 const uint8* y0_ptr = y_buf + y_pitch * source_row + source_y_left;
465 const uint8* u0_ptr = u_buf + uv_pitch * source_uv_row + source_uv_left;
466 const uint8* v0_ptr = v_buf + uv_pitch * source_uv_row + source_uv_left;
467 const uint8* y1_ptr = NULL;
468 const uint8* u1_ptr = NULL;
469 const uint8* v1_ptr = NULL;
471 // Locate the second row for interpolation, being careful not to overrun.
472 if (source_row + 1 >= source_height) {
473 y1_ptr = y0_ptr;
474 } else {
475 y1_ptr = y0_ptr + y_pitch;
477 if (source_uv_row + 1 >= (source_height + 1) / 2) {
478 u1_ptr = u0_ptr;
479 v1_ptr = v0_ptr;
480 } else {
481 u1_ptr = u0_ptr + uv_pitch;
482 v1_ptr = v0_ptr + uv_pitch;
485 if (!kAvoidUsingOptimizedFilter) {
486 // Vertical scaler uses 16.8 fixed point.
487 int fraction = (source_top & kFractionMask) >> 8;
488 g_filter_yuv_rows_proc_(
489 y_temp + source_y_left, y0_ptr, y1_ptr, source_y_width, fraction);
490 g_filter_yuv_rows_proc_(
491 u_temp + source_uv_left, u0_ptr, u1_ptr, source_uv_width, fraction);
492 g_filter_yuv_rows_proc_(
493 v_temp + source_uv_left, v0_ptr, v1_ptr, source_uv_width, fraction);
495 // Perform horizontal interpolation and color space conversion.
496 // TODO(hclam): Use the MMX version after more testing.
497 LinearScaleYUVToRGB32RowWithRange_C(y_temp,
498 u_temp,
499 v_temp,
500 rgb_buf,
501 dest_rect_width,
502 source_left,
503 x_step);
504 } else {
505 // If the frame is too large then we linear scale a single row.
506 LinearScaleYUVToRGB32RowWithRange_C(y0_ptr,
507 u0_ptr,
508 v0_ptr,
509 rgb_buf,
510 dest_rect_width,
511 source_left,
512 x_step);
515 // Advance vertically in the source and destination image.
516 source_top += y_step;
517 rgb_buf += rgb_pitch;
520 g_empty_register_state_proc_();
523 void ConvertRGB32ToYUV(const uint8* rgbframe,
524 uint8* yplane,
525 uint8* uplane,
526 uint8* vplane,
527 int width,
528 int height,
529 int rgbstride,
530 int ystride,
531 int uvstride) {
532 g_convert_rgb32_to_yuv_proc_(rgbframe,
533 yplane,
534 uplane,
535 vplane,
536 width,
537 height,
538 rgbstride,
539 ystride,
540 uvstride);
543 void ConvertRGB24ToYUV(const uint8* rgbframe,
544 uint8* yplane,
545 uint8* uplane,
546 uint8* vplane,
547 int width,
548 int height,
549 int rgbstride,
550 int ystride,
551 int uvstride) {
552 g_convert_rgb24_to_yuv_proc_(rgbframe,
553 yplane,
554 uplane,
555 vplane,
556 width,
557 height,
558 rgbstride,
559 ystride,
560 uvstride);
563 void ConvertYUY2ToYUV(const uint8* src,
564 uint8* yplane,
565 uint8* uplane,
566 uint8* vplane,
567 int width,
568 int height) {
569 for (int i = 0; i < height / 2; ++i) {
570 for (int j = 0; j < (width / 2); ++j) {
571 yplane[0] = src[0];
572 *uplane = src[1];
573 yplane[1] = src[2];
574 *vplane = src[3];
575 src += 4;
576 yplane += 2;
577 uplane++;
578 vplane++;
580 for (int j = 0; j < (width / 2); ++j) {
581 yplane[0] = src[0];
582 yplane[1] = src[2];
583 src += 4;
584 yplane += 2;
589 void ConvertNV21ToYUV(const uint8* src,
590 uint8* yplane,
591 uint8* uplane,
592 uint8* vplane,
593 int width,
594 int height) {
595 int y_plane_size = width * height;
596 memcpy(yplane, src, y_plane_size);
598 src += y_plane_size;
599 int u_plane_size = y_plane_size >> 2;
600 for (int i = 0; i < u_plane_size; ++i) {
601 *vplane++ = *src++;
602 *uplane++ = *src++;
606 void ConvertYUVToRGB32(const uint8* yplane,
607 const uint8* uplane,
608 const uint8* vplane,
609 uint8* rgbframe,
610 int width,
611 int height,
612 int ystride,
613 int uvstride,
614 int rgbstride,
615 YUVType yuv_type) {
616 g_convert_yuv_to_rgb32_proc_(yplane,
617 uplane,
618 vplane,
619 rgbframe,
620 width,
621 height,
622 ystride,
623 uvstride,
624 rgbstride,
625 yuv_type);
628 void ConvertYUVAToARGB(const uint8* yplane,
629 const uint8* uplane,
630 const uint8* vplane,
631 const uint8* aplane,
632 uint8* rgbframe,
633 int width,
634 int height,
635 int ystride,
636 int uvstride,
637 int astride,
638 int rgbstride,
639 YUVType yuv_type) {
640 g_convert_yuva_to_argb_proc_(yplane,
641 uplane,
642 vplane,
643 aplane,
644 rgbframe,
645 width,
646 height,
647 ystride,
648 uvstride,
649 astride,
650 rgbstride,
651 yuv_type);
654 } // namespace media