Roll src/third_party/WebKit d9c6159:8139f33 (svn 201974:201975)
[chromium-blink-merge.git] / media / renderers / audio_renderer_impl.cc
blob2d9879b64b814f8fa6c91dbdec925ded880d69a9
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "media/renderers/audio_renderer_impl.h"
7 #include <math.h>
9 #include <algorithm>
11 #include "base/bind.h"
12 #include "base/callback.h"
13 #include "base/callback_helpers.h"
14 #include "base/logging.h"
15 #include "base/metrics/histogram.h"
16 #include "base/single_thread_task_runner.h"
17 #include "base/time/default_tick_clock.h"
18 #include "media/base/audio_buffer.h"
19 #include "media/base/audio_buffer_converter.h"
20 #include "media/base/audio_hardware_config.h"
21 #include "media/base/audio_splicer.h"
22 #include "media/base/bind_to_current_loop.h"
23 #include "media/base/demuxer_stream.h"
24 #include "media/base/media_log.h"
25 #include "media/base/timestamp_constants.h"
26 #include "media/filters/audio_clock.h"
27 #include "media/filters/decrypting_demuxer_stream.h"
29 namespace media {
31 namespace {
33 enum AudioRendererEvent {
34 INITIALIZED,
35 RENDER_ERROR,
36 RENDER_EVENT_MAX = RENDER_ERROR,
39 void HistogramRendererEvent(AudioRendererEvent event) {
40 UMA_HISTOGRAM_ENUMERATION(
41 "Media.AudioRendererEvents", event, RENDER_EVENT_MAX + 1);
44 } // namespace
46 AudioRendererImpl::AudioRendererImpl(
47 const scoped_refptr<base::SingleThreadTaskRunner>& task_runner,
48 media::AudioRendererSink* sink,
49 ScopedVector<AudioDecoder> decoders,
50 const AudioHardwareConfig& hardware_config,
51 const scoped_refptr<MediaLog>& media_log)
52 : task_runner_(task_runner),
53 expecting_config_changes_(false),
54 sink_(sink),
55 audio_buffer_stream_(
56 new AudioBufferStream(task_runner, decoders.Pass(), media_log)),
57 hardware_config_(hardware_config),
58 media_log_(media_log),
59 tick_clock_(new base::DefaultTickClock()),
60 playback_rate_(0.0),
61 state_(kUninitialized),
62 buffering_state_(BUFFERING_HAVE_NOTHING),
63 rendering_(false),
64 sink_playing_(false),
65 pending_read_(false),
66 received_end_of_stream_(false),
67 rendered_end_of_stream_(false),
68 weak_factory_(this) {
69 audio_buffer_stream_->set_splice_observer(base::Bind(
70 &AudioRendererImpl::OnNewSpliceBuffer, weak_factory_.GetWeakPtr()));
71 audio_buffer_stream_->set_config_change_observer(base::Bind(
72 &AudioRendererImpl::OnConfigChange, weak_factory_.GetWeakPtr()));
75 AudioRendererImpl::~AudioRendererImpl() {
76 DVLOG(1) << __FUNCTION__;
77 DCHECK(task_runner_->BelongsToCurrentThread());
79 // If Render() is in progress, this call will wait for Render() to finish.
80 // After this call, the |sink_| will not call back into |this| anymore.
81 sink_->Stop();
83 if (!init_cb_.is_null())
84 base::ResetAndReturn(&init_cb_).Run(PIPELINE_ERROR_ABORT);
87 void AudioRendererImpl::StartTicking() {
88 DVLOG(1) << __FUNCTION__;
89 DCHECK(task_runner_->BelongsToCurrentThread());
90 DCHECK(!rendering_);
91 rendering_ = true;
93 base::AutoLock auto_lock(lock_);
94 // Wait for an eventual call to SetPlaybackRate() to start rendering.
95 if (playback_rate_ == 0) {
96 DCHECK(!sink_playing_);
97 return;
100 StartRendering_Locked();
103 void AudioRendererImpl::StartRendering_Locked() {
104 DVLOG(1) << __FUNCTION__;
105 DCHECK(task_runner_->BelongsToCurrentThread());
106 DCHECK_EQ(state_, kPlaying);
107 DCHECK(!sink_playing_);
108 DCHECK_NE(playback_rate_, 0.0);
109 lock_.AssertAcquired();
111 sink_playing_ = true;
113 base::AutoUnlock auto_unlock(lock_);
114 sink_->Play();
117 void AudioRendererImpl::StopTicking() {
118 DVLOG(1) << __FUNCTION__;
119 DCHECK(task_runner_->BelongsToCurrentThread());
120 DCHECK(rendering_);
121 rendering_ = false;
123 base::AutoLock auto_lock(lock_);
124 // Rendering should have already been stopped with a zero playback rate.
125 if (playback_rate_ == 0) {
126 DCHECK(!sink_playing_);
127 return;
130 StopRendering_Locked();
133 void AudioRendererImpl::StopRendering_Locked() {
134 DCHECK(task_runner_->BelongsToCurrentThread());
135 DCHECK_EQ(state_, kPlaying);
136 DCHECK(sink_playing_);
137 lock_.AssertAcquired();
139 sink_playing_ = false;
141 base::AutoUnlock auto_unlock(lock_);
142 sink_->Pause();
143 stop_rendering_time_ = last_render_time_;
146 void AudioRendererImpl::SetMediaTime(base::TimeDelta time) {
147 DVLOG(1) << __FUNCTION__ << "(" << time << ")";
148 DCHECK(task_runner_->BelongsToCurrentThread());
150 base::AutoLock auto_lock(lock_);
151 DCHECK(!rendering_);
152 DCHECK_EQ(state_, kFlushed);
154 start_timestamp_ = time;
155 ended_timestamp_ = kInfiniteDuration();
156 last_render_time_ = stop_rendering_time_ = base::TimeTicks();
157 first_packet_timestamp_ = kNoTimestamp();
158 audio_clock_.reset(new AudioClock(time, audio_parameters_.sample_rate()));
161 base::TimeDelta AudioRendererImpl::CurrentMediaTime() {
162 // In practice the Render() method is called with a high enough frequency
163 // that returning only the front timestamp is good enough and also prevents
164 // returning values that go backwards in time.
165 base::TimeDelta current_media_time;
167 base::AutoLock auto_lock(lock_);
168 current_media_time = audio_clock_->front_timestamp();
171 DVLOG(2) << __FUNCTION__ << ": " << current_media_time;
172 return current_media_time;
175 bool AudioRendererImpl::GetWallClockTimes(
176 const std::vector<base::TimeDelta>& media_timestamps,
177 std::vector<base::TimeTicks>* wall_clock_times) {
178 base::AutoLock auto_lock(lock_);
179 DCHECK(wall_clock_times->empty());
181 // When playback is paused (rate is zero), assume a rate of 1.0.
182 const double playback_rate = playback_rate_ ? playback_rate_ : 1.0;
183 const bool is_time_moving = sink_playing_ && playback_rate_ &&
184 !last_render_time_.is_null() &&
185 stop_rendering_time_.is_null();
187 // Pre-compute the time until playback of the audio buffer extents, since
188 // these values are frequently used below.
189 const base::TimeDelta time_until_front =
190 audio_clock_->TimeUntilPlayback(audio_clock_->front_timestamp());
191 const base::TimeDelta time_until_back =
192 audio_clock_->TimeUntilPlayback(audio_clock_->back_timestamp());
194 if (media_timestamps.empty()) {
195 // Return the current media time as a wall clock time while accounting for
196 // frames which may be in the process of play out.
197 wall_clock_times->push_back(std::min(
198 std::max(tick_clock_->NowTicks(), last_render_time_ + time_until_front),
199 last_render_time_ + time_until_back));
200 return is_time_moving;
203 wall_clock_times->reserve(media_timestamps.size());
204 for (const auto& media_timestamp : media_timestamps) {
205 // When time was or is moving and the requested media timestamp is within
206 // range of played out audio, we can provide an exact conversion.
207 if (!last_render_time_.is_null() &&
208 media_timestamp >= audio_clock_->front_timestamp() &&
209 media_timestamp <= audio_clock_->back_timestamp()) {
210 wall_clock_times->push_back(
211 last_render_time_ + audio_clock_->TimeUntilPlayback(media_timestamp));
212 continue;
215 base::TimeDelta base_timestamp, time_until_playback;
216 if (media_timestamp < audio_clock_->front_timestamp()) {
217 base_timestamp = audio_clock_->front_timestamp();
218 time_until_playback = time_until_front;
219 } else {
220 base_timestamp = audio_clock_->back_timestamp();
221 time_until_playback = time_until_back;
224 // In practice, most calls will be estimates given the relatively small
225 // window in which clients can get the actual time.
226 wall_clock_times->push_back(last_render_time_ + time_until_playback +
227 (media_timestamp - base_timestamp) /
228 playback_rate);
231 return is_time_moving;
234 TimeSource* AudioRendererImpl::GetTimeSource() {
235 return this;
238 void AudioRendererImpl::Flush(const base::Closure& callback) {
239 DVLOG(1) << __FUNCTION__;
240 DCHECK(task_runner_->BelongsToCurrentThread());
242 base::AutoLock auto_lock(lock_);
243 DCHECK_EQ(state_, kPlaying);
244 DCHECK(flush_cb_.is_null());
246 flush_cb_ = callback;
247 ChangeState_Locked(kFlushing);
249 if (pending_read_)
250 return;
252 ChangeState_Locked(kFlushed);
253 DoFlush_Locked();
256 void AudioRendererImpl::DoFlush_Locked() {
257 DCHECK(task_runner_->BelongsToCurrentThread());
258 lock_.AssertAcquired();
260 DCHECK(!pending_read_);
261 DCHECK_EQ(state_, kFlushed);
263 audio_buffer_stream_->Reset(base::Bind(&AudioRendererImpl::ResetDecoderDone,
264 weak_factory_.GetWeakPtr()));
267 void AudioRendererImpl::ResetDecoderDone() {
268 DCHECK(task_runner_->BelongsToCurrentThread());
270 base::AutoLock auto_lock(lock_);
272 DCHECK_EQ(state_, kFlushed);
273 DCHECK(!flush_cb_.is_null());
275 received_end_of_stream_ = false;
276 rendered_end_of_stream_ = false;
278 // Flush() may have been called while underflowed/not fully buffered.
279 if (buffering_state_ != BUFFERING_HAVE_NOTHING)
280 SetBufferingState_Locked(BUFFERING_HAVE_NOTHING);
282 splicer_->Reset();
283 if (buffer_converter_)
284 buffer_converter_->Reset();
285 algorithm_->FlushBuffers();
288 // Changes in buffering state are always posted. Flush callback must only be
289 // run after buffering state has been set back to nothing.
290 task_runner_->PostTask(FROM_HERE, base::ResetAndReturn(&flush_cb_));
293 void AudioRendererImpl::StartPlaying() {
294 DVLOG(1) << __FUNCTION__;
295 DCHECK(task_runner_->BelongsToCurrentThread());
297 base::AutoLock auto_lock(lock_);
298 DCHECK(!sink_playing_);
299 DCHECK_EQ(state_, kFlushed);
300 DCHECK_EQ(buffering_state_, BUFFERING_HAVE_NOTHING);
301 DCHECK(!pending_read_) << "Pending read must complete before seeking";
303 ChangeState_Locked(kPlaying);
304 AttemptRead_Locked();
307 void AudioRendererImpl::Initialize(
308 DemuxerStream* stream,
309 const PipelineStatusCB& init_cb,
310 const SetDecryptorReadyCB& set_decryptor_ready_cb,
311 const StatisticsCB& statistics_cb,
312 const BufferingStateCB& buffering_state_cb,
313 const base::Closure& ended_cb,
314 const PipelineStatusCB& error_cb,
315 const base::Closure& waiting_for_decryption_key_cb) {
316 DVLOG(1) << __FUNCTION__;
317 DCHECK(task_runner_->BelongsToCurrentThread());
318 DCHECK(stream);
319 DCHECK_EQ(stream->type(), DemuxerStream::AUDIO);
320 DCHECK(!init_cb.is_null());
321 DCHECK(!statistics_cb.is_null());
322 DCHECK(!buffering_state_cb.is_null());
323 DCHECK(!ended_cb.is_null());
324 DCHECK(!error_cb.is_null());
325 DCHECK_EQ(kUninitialized, state_);
326 DCHECK(sink_.get());
328 state_ = kInitializing;
330 // Always post |init_cb_| because |this| could be destroyed if initialization
331 // failed.
332 init_cb_ = BindToCurrentLoop(init_cb);
334 buffering_state_cb_ = buffering_state_cb;
335 ended_cb_ = ended_cb;
336 error_cb_ = error_cb;
338 const AudioParameters& hw_params = hardware_config_.GetOutputConfig();
339 expecting_config_changes_ = stream->SupportsConfigChanges();
340 if (!expecting_config_changes_ || !hw_params.IsValid()) {
341 // The actual buffer size is controlled via the size of the AudioBus
342 // provided to Render(), so just choose something reasonable here for looks.
343 int buffer_size = stream->audio_decoder_config().samples_per_second() / 100;
344 audio_parameters_.Reset(
345 AudioParameters::AUDIO_PCM_LOW_LATENCY,
346 stream->audio_decoder_config().channel_layout(),
347 stream->audio_decoder_config().samples_per_second(),
348 stream->audio_decoder_config().bits_per_channel(),
349 buffer_size);
350 buffer_converter_.reset();
351 } else {
352 audio_parameters_.Reset(
353 hw_params.format(),
354 // Always use the source's channel layout to avoid premature downmixing
355 // (http://crbug.com/379288), platform specific issues around channel
356 // layouts (http://crbug.com/266674), and unnecessary upmixing overhead.
357 stream->audio_decoder_config().channel_layout(),
358 hw_params.sample_rate(), hw_params.bits_per_sample(),
359 hardware_config_.GetHighLatencyBufferSize());
362 audio_clock_.reset(
363 new AudioClock(base::TimeDelta(), audio_parameters_.sample_rate()));
365 audio_buffer_stream_->Initialize(
366 stream, base::Bind(&AudioRendererImpl::OnAudioBufferStreamInitialized,
367 weak_factory_.GetWeakPtr()),
368 set_decryptor_ready_cb, statistics_cb, waiting_for_decryption_key_cb);
371 void AudioRendererImpl::OnAudioBufferStreamInitialized(bool success) {
372 DVLOG(1) << __FUNCTION__ << ": " << success;
373 DCHECK(task_runner_->BelongsToCurrentThread());
375 base::AutoLock auto_lock(lock_);
377 if (!success) {
378 state_ = kUninitialized;
379 base::ResetAndReturn(&init_cb_).Run(DECODER_ERROR_NOT_SUPPORTED);
380 return;
383 if (!audio_parameters_.IsValid()) {
384 DVLOG(1) << __FUNCTION__ << ": Invalid audio parameters: "
385 << audio_parameters_.AsHumanReadableString();
386 ChangeState_Locked(kUninitialized);
387 base::ResetAndReturn(&init_cb_).Run(PIPELINE_ERROR_INITIALIZATION_FAILED);
388 return;
391 if (expecting_config_changes_)
392 buffer_converter_.reset(new AudioBufferConverter(audio_parameters_));
393 splicer_.reset(new AudioSplicer(audio_parameters_.sample_rate(), media_log_));
395 // We're all good! Continue initializing the rest of the audio renderer
396 // based on the decoder format.
397 algorithm_.reset(new AudioRendererAlgorithm());
398 algorithm_->Initialize(audio_parameters_);
400 ChangeState_Locked(kFlushed);
402 HistogramRendererEvent(INITIALIZED);
405 base::AutoUnlock auto_unlock(lock_);
406 sink_->Initialize(audio_parameters_, this);
407 sink_->Start();
409 // Some sinks play on start...
410 sink_->Pause();
413 DCHECK(!sink_playing_);
414 base::ResetAndReturn(&init_cb_).Run(PIPELINE_OK);
417 void AudioRendererImpl::SetVolume(float volume) {
418 DCHECK(task_runner_->BelongsToCurrentThread());
419 DCHECK(sink_.get());
420 sink_->SetVolume(volume);
423 void AudioRendererImpl::DecodedAudioReady(
424 AudioBufferStream::Status status,
425 const scoped_refptr<AudioBuffer>& buffer) {
426 DVLOG(2) << __FUNCTION__ << "(" << status << ")";
427 DCHECK(task_runner_->BelongsToCurrentThread());
429 base::AutoLock auto_lock(lock_);
430 DCHECK(state_ != kUninitialized);
432 CHECK(pending_read_);
433 pending_read_ = false;
435 if (status == AudioBufferStream::ABORTED ||
436 status == AudioBufferStream::DEMUXER_READ_ABORTED) {
437 HandleAbortedReadOrDecodeError(false);
438 return;
441 if (status == AudioBufferStream::DECODE_ERROR) {
442 HandleAbortedReadOrDecodeError(true);
443 return;
446 DCHECK_EQ(status, AudioBufferStream::OK);
447 DCHECK(buffer.get());
449 if (state_ == kFlushing) {
450 ChangeState_Locked(kFlushed);
451 DoFlush_Locked();
452 return;
455 if (expecting_config_changes_) {
456 DCHECK(buffer_converter_);
457 buffer_converter_->AddInput(buffer);
458 while (buffer_converter_->HasNextBuffer()) {
459 if (!splicer_->AddInput(buffer_converter_->GetNextBuffer())) {
460 HandleAbortedReadOrDecodeError(true);
461 return;
464 } else {
465 if (!splicer_->AddInput(buffer)) {
466 HandleAbortedReadOrDecodeError(true);
467 return;
471 if (!splicer_->HasNextBuffer()) {
472 AttemptRead_Locked();
473 return;
476 bool need_another_buffer = false;
477 while (splicer_->HasNextBuffer())
478 need_another_buffer = HandleSplicerBuffer_Locked(splicer_->GetNextBuffer());
480 if (!need_another_buffer && !CanRead_Locked())
481 return;
483 AttemptRead_Locked();
486 bool AudioRendererImpl::HandleSplicerBuffer_Locked(
487 const scoped_refptr<AudioBuffer>& buffer) {
488 lock_.AssertAcquired();
489 if (buffer->end_of_stream()) {
490 received_end_of_stream_ = true;
491 } else {
492 if (state_ == kPlaying) {
493 if (IsBeforeStartTime(buffer))
494 return true;
496 // Trim off any additional time before the start timestamp.
497 const base::TimeDelta trim_time = start_timestamp_ - buffer->timestamp();
498 if (trim_time > base::TimeDelta()) {
499 buffer->TrimStart(buffer->frame_count() *
500 (static_cast<double>(trim_time.InMicroseconds()) /
501 buffer->duration().InMicroseconds()));
503 // If the entire buffer was trimmed, request a new one.
504 if (!buffer->frame_count())
505 return true;
508 if (state_ != kUninitialized)
509 algorithm_->EnqueueBuffer(buffer);
512 // Store the timestamp of the first packet so we know when to start actual
513 // audio playback.
514 if (first_packet_timestamp_ == kNoTimestamp())
515 first_packet_timestamp_ = buffer->timestamp();
517 switch (state_) {
518 case kUninitialized:
519 case kInitializing:
520 case kFlushing:
521 NOTREACHED();
522 return false;
524 case kFlushed:
525 DCHECK(!pending_read_);
526 return false;
528 case kPlaying:
529 if (buffer->end_of_stream() || algorithm_->IsQueueFull()) {
530 if (buffering_state_ == BUFFERING_HAVE_NOTHING)
531 SetBufferingState_Locked(BUFFERING_HAVE_ENOUGH);
532 return false;
534 return true;
536 return false;
539 void AudioRendererImpl::AttemptRead() {
540 base::AutoLock auto_lock(lock_);
541 AttemptRead_Locked();
544 void AudioRendererImpl::AttemptRead_Locked() {
545 DCHECK(task_runner_->BelongsToCurrentThread());
546 lock_.AssertAcquired();
548 if (!CanRead_Locked())
549 return;
551 pending_read_ = true;
552 audio_buffer_stream_->Read(base::Bind(&AudioRendererImpl::DecodedAudioReady,
553 weak_factory_.GetWeakPtr()));
556 bool AudioRendererImpl::CanRead_Locked() {
557 lock_.AssertAcquired();
559 switch (state_) {
560 case kUninitialized:
561 case kInitializing:
562 case kFlushing:
563 case kFlushed:
564 return false;
566 case kPlaying:
567 break;
570 return !pending_read_ && !received_end_of_stream_ &&
571 !algorithm_->IsQueueFull();
574 void AudioRendererImpl::SetPlaybackRate(double playback_rate) {
575 DVLOG(1) << __FUNCTION__ << "(" << playback_rate << ")";
576 DCHECK(task_runner_->BelongsToCurrentThread());
577 DCHECK_GE(playback_rate, 0);
578 DCHECK(sink_.get());
580 base::AutoLock auto_lock(lock_);
582 // We have two cases here:
583 // Play: current_playback_rate == 0 && playback_rate != 0
584 // Pause: current_playback_rate != 0 && playback_rate == 0
585 double current_playback_rate = playback_rate_;
586 playback_rate_ = playback_rate;
588 if (!rendering_)
589 return;
591 if (current_playback_rate == 0 && playback_rate != 0) {
592 StartRendering_Locked();
593 return;
596 if (current_playback_rate != 0 && playback_rate == 0) {
597 StopRendering_Locked();
598 return;
602 bool AudioRendererImpl::IsBeforeStartTime(
603 const scoped_refptr<AudioBuffer>& buffer) {
604 DCHECK_EQ(state_, kPlaying);
605 return buffer.get() && !buffer->end_of_stream() &&
606 (buffer->timestamp() + buffer->duration()) < start_timestamp_;
609 int AudioRendererImpl::Render(AudioBus* audio_bus,
610 int audio_delay_milliseconds) {
611 const int requested_frames = audio_bus->frames();
612 base::TimeDelta playback_delay = base::TimeDelta::FromMilliseconds(
613 audio_delay_milliseconds);
614 const int delay_frames = static_cast<int>(playback_delay.InSecondsF() *
615 audio_parameters_.sample_rate());
616 int frames_written = 0;
618 base::AutoLock auto_lock(lock_);
619 last_render_time_ = tick_clock_->NowTicks();
621 if (!stop_rendering_time_.is_null()) {
622 audio_clock_->CompensateForSuspendedWrites(
623 last_render_time_ - stop_rendering_time_, delay_frames);
624 stop_rendering_time_ = base::TimeTicks();
627 // Ensure Stop() hasn't destroyed our |algorithm_| on the pipeline thread.
628 if (!algorithm_) {
629 audio_clock_->WroteAudio(
630 0, requested_frames, delay_frames, playback_rate_);
631 return 0;
634 if (playback_rate_ == 0) {
635 audio_clock_->WroteAudio(
636 0, requested_frames, delay_frames, playback_rate_);
637 return 0;
640 // Mute audio by returning 0 when not playing.
641 if (state_ != kPlaying) {
642 audio_clock_->WroteAudio(
643 0, requested_frames, delay_frames, playback_rate_);
644 return 0;
647 // Delay playback by writing silence if we haven't reached the first
648 // timestamp yet; this can occur if the video starts before the audio.
649 if (algorithm_->frames_buffered() > 0) {
650 DCHECK(first_packet_timestamp_ != kNoTimestamp());
651 const base::TimeDelta play_delay =
652 first_packet_timestamp_ - audio_clock_->back_timestamp();
653 if (play_delay > base::TimeDelta()) {
654 DCHECK_EQ(frames_written, 0);
655 frames_written =
656 std::min(static_cast<int>(play_delay.InSecondsF() *
657 audio_parameters_.sample_rate()),
658 requested_frames);
659 audio_bus->ZeroFramesPartial(0, frames_written);
662 // If there's any space left, actually render the audio; this is where the
663 // aural magic happens.
664 if (frames_written < requested_frames) {
665 frames_written += algorithm_->FillBuffer(
666 audio_bus, frames_written, requested_frames - frames_written,
667 playback_rate_);
671 // We use the following conditions to determine end of playback:
672 // 1) Algorithm can not fill the audio callback buffer
673 // 2) We received an end of stream buffer
674 // 3) We haven't already signalled that we've ended
675 // 4) We've played all known audio data sent to hardware
677 // We use the following conditions to determine underflow:
678 // 1) Algorithm can not fill the audio callback buffer
679 // 2) We have NOT received an end of stream buffer
680 // 3) We are in the kPlaying state
682 // Otherwise the buffer has data we can send to the device.
684 // Per the TimeSource API the media time should always increase even after
685 // we've rendered all known audio data. Doing so simplifies scenarios where
686 // we have other sources of media data that need to be scheduled after audio
687 // data has ended.
689 // That being said, we don't want to advance time when underflowed as we
690 // know more decoded frames will eventually arrive. If we did, we would
691 // throw things out of sync when said decoded frames arrive.
692 int frames_after_end_of_stream = 0;
693 if (frames_written == 0) {
694 if (received_end_of_stream_) {
695 if (ended_timestamp_ == kInfiniteDuration())
696 ended_timestamp_ = audio_clock_->back_timestamp();
697 frames_after_end_of_stream = requested_frames;
698 } else if (state_ == kPlaying &&
699 buffering_state_ != BUFFERING_HAVE_NOTHING) {
700 algorithm_->IncreaseQueueCapacity();
701 SetBufferingState_Locked(BUFFERING_HAVE_NOTHING);
705 audio_clock_->WroteAudio(frames_written + frames_after_end_of_stream,
706 requested_frames,
707 delay_frames,
708 playback_rate_);
710 if (CanRead_Locked()) {
711 task_runner_->PostTask(FROM_HERE,
712 base::Bind(&AudioRendererImpl::AttemptRead,
713 weak_factory_.GetWeakPtr()));
716 if (audio_clock_->front_timestamp() >= ended_timestamp_ &&
717 !rendered_end_of_stream_) {
718 rendered_end_of_stream_ = true;
719 task_runner_->PostTask(FROM_HERE, ended_cb_);
723 DCHECK_LE(frames_written, requested_frames);
724 return frames_written;
727 void AudioRendererImpl::OnRenderError() {
728 // UMA data tells us this happens ~0.01% of the time. Trigger an error instead
729 // of trying to gracefully fall back to a fake sink. It's very likely
730 // OnRenderError() should be removed and the audio stack handle errors without
731 // notifying clients. See http://crbug.com/234708 for details.
732 HistogramRendererEvent(RENDER_ERROR);
734 MEDIA_LOG(ERROR, media_log_) << "audio render error";
736 // Post to |task_runner_| as this is called on the audio callback thread.
737 task_runner_->PostTask(FROM_HERE,
738 base::Bind(error_cb_, PIPELINE_ERROR_DECODE));
741 void AudioRendererImpl::HandleAbortedReadOrDecodeError(bool is_decode_error) {
742 DCHECK(task_runner_->BelongsToCurrentThread());
743 lock_.AssertAcquired();
745 PipelineStatus status = is_decode_error ? PIPELINE_ERROR_DECODE : PIPELINE_OK;
746 switch (state_) {
747 case kUninitialized:
748 case kInitializing:
749 NOTREACHED();
750 return;
751 case kFlushing:
752 ChangeState_Locked(kFlushed);
753 if (status == PIPELINE_OK) {
754 DoFlush_Locked();
755 return;
758 MEDIA_LOG(ERROR, media_log_) << "audio decode error during flushing";
759 error_cb_.Run(status);
760 base::ResetAndReturn(&flush_cb_).Run();
761 return;
763 case kFlushed:
764 case kPlaying:
765 if (status != PIPELINE_OK) {
766 MEDIA_LOG(ERROR, media_log_) << "audio decode error during playing";
767 error_cb_.Run(status);
769 return;
773 void AudioRendererImpl::ChangeState_Locked(State new_state) {
774 DVLOG(1) << __FUNCTION__ << " : " << state_ << " -> " << new_state;
775 lock_.AssertAcquired();
776 state_ = new_state;
779 void AudioRendererImpl::OnNewSpliceBuffer(base::TimeDelta splice_timestamp) {
780 DCHECK(task_runner_->BelongsToCurrentThread());
781 splicer_->SetSpliceTimestamp(splice_timestamp);
784 void AudioRendererImpl::OnConfigChange() {
785 DCHECK(task_runner_->BelongsToCurrentThread());
786 DCHECK(expecting_config_changes_);
787 buffer_converter_->ResetTimestampState();
788 // Drain flushed buffers from the converter so the AudioSplicer receives all
789 // data ahead of any OnNewSpliceBuffer() calls. Since discontinuities should
790 // only appear after config changes, AddInput() should never fail here.
791 while (buffer_converter_->HasNextBuffer())
792 CHECK(splicer_->AddInput(buffer_converter_->GetNextBuffer()));
795 void AudioRendererImpl::SetBufferingState_Locked(
796 BufferingState buffering_state) {
797 DVLOG(1) << __FUNCTION__ << " : " << buffering_state_ << " -> "
798 << buffering_state;
799 DCHECK_NE(buffering_state_, buffering_state);
800 lock_.AssertAcquired();
801 buffering_state_ = buffering_state;
803 task_runner_->PostTask(FROM_HERE,
804 base::Bind(buffering_state_cb_, buffering_state_));
807 } // namespace media