1 // Copyright (c) 2015 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/congestion_control/tcp_cubic_bytes_sender.h"
9 #include "net/quic/congestion_control/prr_sender.h"
10 #include "net/quic/congestion_control/rtt_stats.h"
11 #include "net/quic/crypto/crypto_protocol.h"
12 #include "net/quic/proto/cached_network_parameters.pb.h"
20 // Constants based on TCP defaults.
21 // The minimum cwnd based on RFC 3782 (TCP NewReno) for cwnd reductions on a
22 // fast retransmission.
23 const QuicByteCount kDefaultMinimumCongestionWindow
= 2 * kDefaultTCPMSS
;
24 const QuicByteCount kMaxSegmentSize
= kDefaultTCPMSS
;
25 const QuicByteCount kMaxBurstBytes
= 3 * kMaxSegmentSize
;
26 const float kRenoBeta
= 0.7f
; // Reno backoff factor.
27 const uint32 kDefaultNumConnections
= 2; // N-connection emulation.
30 TcpCubicBytesSender::TcpCubicBytesSender(
31 const QuicClock
* clock
,
32 const RttStats
* rtt_stats
,
34 QuicPacketCount initial_tcp_congestion_window
,
35 QuicPacketCount max_congestion_window
,
36 QuicConnectionStats
* stats
)
38 rtt_stats_(rtt_stats
),
41 num_connections_(kDefaultNumConnections
),
42 num_acked_packets_(0),
43 largest_sent_packet_number_(0),
44 largest_acked_packet_number_(0),
45 largest_sent_at_last_cutback_(0),
46 congestion_window_(initial_tcp_congestion_window
* kMaxSegmentSize
),
47 min_congestion_window_(kDefaultMinimumCongestionWindow
),
49 max_congestion_window_(max_congestion_window
* kMaxSegmentSize
),
50 slowstart_threshold_(max_congestion_window
* kMaxSegmentSize
),
51 last_cutback_exited_slowstart_(false),
54 TcpCubicBytesSender::~TcpCubicBytesSender() {
57 void TcpCubicBytesSender::SetFromConfig(const QuicConfig
& config
,
58 Perspective perspective
) {
59 if (perspective
== Perspective::IS_SERVER
) {
60 if (config
.HasReceivedConnectionOptions() &&
61 ContainsQuicTag(config
.ReceivedConnectionOptions(), kIW10
)) {
62 // Initial window experiment.
63 congestion_window_
= 10 * kMaxSegmentSize
;
65 if (config
.HasReceivedConnectionOptions() &&
66 ContainsQuicTag(config
.ReceivedConnectionOptions(), kMIN1
)) {
67 // Min CWND experiment.
68 min_congestion_window_
= kMaxSegmentSize
;
70 if (config
.HasReceivedConnectionOptions() &&
71 ContainsQuicTag(config
.ReceivedConnectionOptions(), kMIN4
)) {
72 // Min CWND of 4 experiment.
74 min_congestion_window_
= kMaxSegmentSize
;
79 void TcpCubicBytesSender::ResumeConnectionState(
80 const CachedNetworkParameters
& cached_network_params
,
81 bool max_bandwidth_resumption
) {
82 QuicBandwidth bandwidth
= QuicBandwidth::FromBytesPerSecond(
83 max_bandwidth_resumption
84 ? cached_network_params
.max_bandwidth_estimate_bytes_per_second()
85 : cached_network_params
.bandwidth_estimate_bytes_per_second());
86 QuicTime::Delta rtt_ms
=
87 QuicTime::Delta::FromMilliseconds(cached_network_params
.min_rtt_ms());
89 // Make sure CWND is in appropriate range (in case of bad data).
90 QuicByteCount new_congestion_window
= bandwidth
.ToBytesPerPeriod(rtt_ms
);
92 max(min(new_congestion_window
, kMaxCongestionWindow
* kMaxSegmentSize
),
93 kMinCongestionWindowForBandwidthResumption
* kMaxSegmentSize
);
96 void TcpCubicBytesSender::SetNumEmulatedConnections(int num_connections
) {
97 num_connections_
= max(1, num_connections
);
98 cubic_
.SetNumConnections(num_connections_
);
101 void TcpCubicBytesSender::SetMaxCongestionWindow(
102 QuicByteCount max_congestion_window
) {
103 max_congestion_window_
= max_congestion_window
;
106 float TcpCubicBytesSender::RenoBeta() const {
107 // kNConnectionBeta is the backoff factor after loss for our N-connection
108 // emulation, which emulates the effective backoff of an ensemble of N
109 // TCP-Reno connections on a single loss event. The effective multiplier is
111 return (num_connections_
- 1 + kRenoBeta
) / num_connections_
;
114 void TcpCubicBytesSender::OnCongestionEvent(
116 QuicByteCount bytes_in_flight
,
117 const CongestionVector
& acked_packets
,
118 const CongestionVector
& lost_packets
) {
119 if (rtt_updated
&& InSlowStart() &&
120 hybrid_slow_start_
.ShouldExitSlowStart(
121 rtt_stats_
->latest_rtt(), rtt_stats_
->min_rtt(),
122 congestion_window_
/ kMaxSegmentSize
)) {
123 slowstart_threshold_
= congestion_window_
;
125 for (CongestionVector::const_iterator it
= lost_packets
.begin();
126 it
!= lost_packets
.end(); ++it
) {
127 OnPacketLost(it
->first
, bytes_in_flight
);
129 for (CongestionVector::const_iterator it
= acked_packets
.begin();
130 it
!= acked_packets
.end(); ++it
) {
131 OnPacketAcked(it
->first
, it
->second
.bytes_sent
, bytes_in_flight
);
135 void TcpCubicBytesSender::OnPacketAcked(QuicPacketNumber acked_packet_number
,
136 QuicByteCount acked_bytes
,
137 QuicByteCount bytes_in_flight
) {
138 largest_acked_packet_number_
=
139 max(acked_packet_number
, largest_acked_packet_number_
);
141 // PRR is used when in recovery.
142 prr_
.OnPacketAcked(acked_bytes
);
145 MaybeIncreaseCwnd(acked_packet_number
, acked_bytes
, bytes_in_flight
);
146 // TODO(ianswett): Should this even be called when not in slow start?
147 hybrid_slow_start_
.OnPacketAcked(acked_packet_number
, InSlowStart());
150 void TcpCubicBytesSender::OnPacketLost(QuicPacketNumber packet_number
,
151 QuicByteCount bytes_in_flight
) {
152 // TCP NewReno (RFC6582) says that once a loss occurs, any losses in packets
153 // already sent should be treated as a single loss event, since it's expected.
154 if (packet_number
<= largest_sent_at_last_cutback_
) {
155 if (last_cutback_exited_slowstart_
) {
156 ++stats_
->slowstart_packets_lost
;
158 DVLOG(1) << "Ignoring loss for largest_missing:" << packet_number
159 << " because it was sent prior to the last CWND cutback.";
162 ++stats_
->tcp_loss_events
;
163 last_cutback_exited_slowstart_
= InSlowStart();
165 ++stats_
->slowstart_packets_lost
;
168 prr_
.OnPacketLost(bytes_in_flight
);
171 congestion_window_
= congestion_window_
* RenoBeta();
174 cubic_
.CongestionWindowAfterPacketLoss(congestion_window_
);
176 slowstart_threshold_
= congestion_window_
;
177 // Enforce TCP's minimum congestion window of 2*MSS.
178 if (congestion_window_
< min_congestion_window_
) {
179 congestion_window_
= min_congestion_window_
;
181 largest_sent_at_last_cutback_
= largest_sent_packet_number_
;
182 // Reset packet count from congestion avoidance mode. We start counting again
183 // when we're out of recovery.
184 num_acked_packets_
= 0;
185 DVLOG(1) << "Incoming loss; congestion window: " << congestion_window_
186 << " slowstart threshold: " << slowstart_threshold_
;
189 bool TcpCubicBytesSender::OnPacketSent(
190 QuicTime
/*sent_time*/,
191 QuicByteCount
/*bytes_in_flight*/,
192 QuicPacketNumber packet_number
,
194 HasRetransmittableData is_retransmittable
) {
196 ++(stats_
->slowstart_packets_sent
);
199 // Only update bytes_in_flight_ for data packets.
200 if (is_retransmittable
!= HAS_RETRANSMITTABLE_DATA
) {
204 // PRR is used when in recovery.
205 prr_
.OnPacketSent(bytes
);
207 DCHECK_LT(largest_sent_packet_number_
, packet_number
);
208 largest_sent_packet_number_
= packet_number
;
209 hybrid_slow_start_
.OnPacketSent(packet_number
);
213 QuicTime::Delta
TcpCubicBytesSender::TimeUntilSend(
215 QuicByteCount bytes_in_flight
,
216 HasRetransmittableData has_retransmittable_data
) const {
217 if (has_retransmittable_data
== NO_RETRANSMITTABLE_DATA
) {
218 // For TCP we can always send an ACK immediately.
219 return QuicTime::Delta::Zero();
222 // PRR is used when in recovery.
223 return prr_
.TimeUntilSend(GetCongestionWindow(), bytes_in_flight
,
224 slowstart_threshold_
);
226 if (GetCongestionWindow() > bytes_in_flight
) {
227 return QuicTime::Delta::Zero();
229 if (min4_mode_
&& bytes_in_flight
< 4 * kMaxSegmentSize
) {
230 return QuicTime::Delta::Zero();
232 return QuicTime::Delta::Infinite();
235 QuicBandwidth
TcpCubicBytesSender::PacingRate() const {
236 // We pace at twice the rate of the underlying sender's bandwidth estimate
237 // during slow start and 1.25x during congestion avoidance to ensure pacing
238 // doesn't prevent us from filling the window.
239 QuicTime::Delta srtt
= rtt_stats_
->smoothed_rtt();
241 srtt
= QuicTime::Delta::FromMicroseconds(rtt_stats_
->initial_rtt_us());
243 const QuicBandwidth bandwidth
=
244 QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), srtt
);
245 return bandwidth
.Scale(InSlowStart() ? 2 : 1.25);
248 QuicBandwidth
TcpCubicBytesSender::BandwidthEstimate() const {
249 QuicTime::Delta srtt
= rtt_stats_
->smoothed_rtt();
251 // If we haven't measured an rtt, the bandwidth estimate is unknown.
252 return QuicBandwidth::Zero();
254 return QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), srtt
);
257 QuicTime::Delta
TcpCubicBytesSender::RetransmissionDelay() const {
258 if (rtt_stats_
->smoothed_rtt().IsZero()) {
259 return QuicTime::Delta::Zero();
261 return rtt_stats_
->smoothed_rtt().Add(
262 rtt_stats_
->mean_deviation().Multiply(4));
265 QuicByteCount
TcpCubicBytesSender::GetCongestionWindow() const {
266 return congestion_window_
;
269 bool TcpCubicBytesSender::InSlowStart() const {
270 return congestion_window_
< slowstart_threshold_
;
273 QuicByteCount
TcpCubicBytesSender::GetSlowStartThreshold() const {
274 return slowstart_threshold_
;
277 bool TcpCubicBytesSender::IsCwndLimited(QuicByteCount bytes_in_flight
) const {
278 if (bytes_in_flight
>= congestion_window_
) {
281 const QuicByteCount available_bytes
= congestion_window_
- bytes_in_flight
;
282 const bool slow_start_limited
=
283 InSlowStart() && bytes_in_flight
> congestion_window_
/ 2;
284 return slow_start_limited
|| available_bytes
<= kMaxBurstBytes
;
287 bool TcpCubicBytesSender::InRecovery() const {
288 return largest_acked_packet_number_
<= largest_sent_at_last_cutback_
&&
289 largest_acked_packet_number_
!= 0;
292 // Called when we receive an ack. Normal TCP tracks how many packets one ack
293 // represents, but quic has a separate ack for each packet.
294 void TcpCubicBytesSender::MaybeIncreaseCwnd(
295 QuicPacketNumber acked_packet_number
,
296 QuicByteCount acked_bytes
,
297 QuicByteCount bytes_in_flight
) {
298 LOG_IF(DFATAL
, InRecovery()) << "Never increase the CWND during recovery.";
299 if (!IsCwndLimited(bytes_in_flight
)) {
300 // We don't update the congestion window unless we are close to using the
301 // window we have available.
304 if (congestion_window_
>= max_congestion_window_
) {
308 // TCP slow start, exponential growth, increase by one for each ACK.
309 congestion_window_
+= kMaxSegmentSize
;
310 DVLOG(1) << "Slow start; congestion window: " << congestion_window_
311 << " slowstart threshold: " << slowstart_threshold_
;
314 // Congestion avoidance.
316 // Classic Reno congestion avoidance.
317 ++num_acked_packets_
;
318 // Divide by num_connections to smoothly increase the CWND at a faster rate
319 // than conventional Reno.
320 if (num_acked_packets_
* num_connections_
>=
321 congestion_window_
/ kMaxSegmentSize
) {
322 congestion_window_
+= kMaxSegmentSize
;
323 num_acked_packets_
= 0;
326 DVLOG(1) << "Reno; congestion window: " << congestion_window_
327 << " slowstart threshold: " << slowstart_threshold_
328 << " congestion window count: " << num_acked_packets_
;
331 min(max_congestion_window_
,
332 cubic_
.CongestionWindowAfterAck(acked_bytes
, congestion_window_
,
333 rtt_stats_
->min_rtt()));
334 DVLOG(1) << "Cubic; congestion window: " << congestion_window_
335 << " slowstart threshold: " << slowstart_threshold_
;
339 void TcpCubicBytesSender::OnRetransmissionTimeout(bool packets_retransmitted
) {
340 largest_sent_at_last_cutback_
= 0;
341 if (!packets_retransmitted
) {
345 hybrid_slow_start_
.Restart();
346 slowstart_threshold_
= congestion_window_
/ 2;
347 congestion_window_
= min_congestion_window_
;
350 CongestionControlType
TcpCubicBytesSender::GetCongestionControlType() const {
351 return reno_
? kRenoBytes
: kCubicBytes
;