Roll src/third_party/WebKit d9c6159:8139f33 (svn 201974:201975)
[chromium-blink-merge.git] / sandbox / linux / bpf_dsl / policy_compiler.cc
blobcb6f00c114587b5e366bd2341ec4c3e5d4a64b41
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "sandbox/linux/bpf_dsl/policy_compiler.h"
7 #include <errno.h>
8 #include <sys/syscall.h>
10 #include <limits>
12 #include "base/logging.h"
13 #include "base/macros.h"
14 #include "sandbox/linux/bpf_dsl/bpf_dsl.h"
15 #include "sandbox/linux/bpf_dsl/bpf_dsl_impl.h"
16 #include "sandbox/linux/bpf_dsl/codegen.h"
17 #include "sandbox/linux/bpf_dsl/policy.h"
18 #include "sandbox/linux/bpf_dsl/seccomp_macros.h"
19 #include "sandbox/linux/bpf_dsl/syscall_set.h"
20 #include "sandbox/linux/system_headers/linux_filter.h"
21 #include "sandbox/linux/system_headers/linux_seccomp.h"
22 #include "sandbox/linux/system_headers/linux_syscalls.h"
24 namespace sandbox {
25 namespace bpf_dsl {
27 namespace {
29 #if defined(__i386__) || defined(__x86_64__)
30 const bool kIsIntel = true;
31 #else
32 const bool kIsIntel = false;
33 #endif
34 #if defined(__x86_64__) && defined(__ILP32__)
35 const bool kIsX32 = true;
36 #else
37 const bool kIsX32 = false;
38 #endif
40 const int kSyscallsRequiredForUnsafeTraps[] = {
41 __NR_rt_sigprocmask,
42 __NR_rt_sigreturn,
43 #if defined(__NR_sigprocmask)
44 __NR_sigprocmask,
45 #endif
46 #if defined(__NR_sigreturn)
47 __NR_sigreturn,
48 #endif
51 bool HasExactlyOneBit(uint64_t x) {
52 // Common trick; e.g., see http://stackoverflow.com/a/108329.
53 return x != 0 && (x & (x - 1)) == 0;
56 ResultExpr DefaultPanic(const char* error) {
57 return Kill();
60 // A Trap() handler that returns an "errno" value. The value is encoded
61 // in the "aux" parameter.
62 intptr_t ReturnErrno(const struct arch_seccomp_data&, void* aux) {
63 // TrapFnc functions report error by following the native kernel convention
64 // of returning an exit code in the range of -1..-4096. They do not try to
65 // set errno themselves. The glibc wrapper that triggered the SIGSYS will
66 // ultimately do so for us.
67 int err = reinterpret_cast<intptr_t>(aux) & SECCOMP_RET_DATA;
68 return -err;
71 bool HasUnsafeTraps(const Policy* policy) {
72 DCHECK(policy);
73 for (uint32_t sysnum : SyscallSet::ValidOnly()) {
74 if (policy->EvaluateSyscall(sysnum)->HasUnsafeTraps()) {
75 return true;
78 return policy->InvalidSyscall()->HasUnsafeTraps();
81 } // namespace
83 struct PolicyCompiler::Range {
84 uint32_t from;
85 CodeGen::Node node;
88 PolicyCompiler::PolicyCompiler(const Policy* policy, TrapRegistry* registry)
89 : policy_(policy),
90 registry_(registry),
91 escapepc_(0),
92 panic_func_(DefaultPanic),
93 gen_(),
94 has_unsafe_traps_(HasUnsafeTraps(policy_)) {
95 DCHECK(policy);
98 PolicyCompiler::~PolicyCompiler() {
101 scoped_ptr<CodeGen::Program> PolicyCompiler::Compile() {
102 CHECK(policy_->InvalidSyscall()->IsDeny())
103 << "Policies should deny invalid system calls";
105 // If our BPF program has unsafe traps, enable support for them.
106 if (has_unsafe_traps_) {
107 CHECK_NE(0U, escapepc_) << "UnsafeTrap() requires a valid escape PC";
109 for (int sysnum : kSyscallsRequiredForUnsafeTraps) {
110 CHECK(policy_->EvaluateSyscall(sysnum)->IsAllow())
111 << "Policies that use UnsafeTrap() must unconditionally allow all "
112 "required system calls";
115 CHECK(registry_->EnableUnsafeTraps())
116 << "We'd rather die than enable unsafe traps";
119 // Assemble the BPF filter program.
120 scoped_ptr<CodeGen::Program> program(new CodeGen::Program());
121 gen_.Compile(AssemblePolicy(), program.get());
122 return program.Pass();
125 void PolicyCompiler::DangerousSetEscapePC(uint64_t escapepc) {
126 escapepc_ = escapepc;
129 void PolicyCompiler::SetPanicFunc(PanicFunc panic_func) {
130 panic_func_ = panic_func;
133 CodeGen::Node PolicyCompiler::AssemblePolicy() {
134 // A compiled policy consists of three logical parts:
135 // 1. Check that the "arch" field matches the expected architecture.
136 // 2. If the policy involves unsafe traps, check if the syscall was
137 // invoked by Syscall::Call, and then allow it unconditionally.
138 // 3. Check the system call number and jump to the appropriate compiled
139 // system call policy number.
140 return CheckArch(MaybeAddEscapeHatch(DispatchSyscall()));
143 CodeGen::Node PolicyCompiler::CheckArch(CodeGen::Node passed) {
144 // If the architecture doesn't match SECCOMP_ARCH, disallow the
145 // system call.
146 return gen_.MakeInstruction(
147 BPF_LD + BPF_W + BPF_ABS, SECCOMP_ARCH_IDX,
148 gen_.MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, SECCOMP_ARCH, passed,
149 CompileResult(panic_func_(
150 "Invalid audit architecture in BPF filter"))));
153 CodeGen::Node PolicyCompiler::MaybeAddEscapeHatch(CodeGen::Node rest) {
154 // If no unsafe traps, then simply return |rest|.
155 if (!has_unsafe_traps_) {
156 return rest;
159 // We already enabled unsafe traps in Compile, but enable them again to give
160 // the trap registry a second chance to complain before we add the backdoor.
161 CHECK(registry_->EnableUnsafeTraps());
163 // Allow system calls, if they originate from our magic return address.
164 const uint32_t lopc = static_cast<uint32_t>(escapepc_);
165 const uint32_t hipc = static_cast<uint32_t>(escapepc_ >> 32);
167 // BPF cannot do native 64-bit comparisons, so we have to compare
168 // both 32-bit halves of the instruction pointer. If they match what
169 // we expect, we return ERR_ALLOWED. If either or both don't match,
170 // we continue evalutating the rest of the sandbox policy.
172 // For simplicity, we check the full 64-bit instruction pointer even
173 // on 32-bit architectures.
174 return gen_.MakeInstruction(
175 BPF_LD + BPF_W + BPF_ABS, SECCOMP_IP_LSB_IDX,
176 gen_.MakeInstruction(
177 BPF_JMP + BPF_JEQ + BPF_K, lopc,
178 gen_.MakeInstruction(
179 BPF_LD + BPF_W + BPF_ABS, SECCOMP_IP_MSB_IDX,
180 gen_.MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, hipc,
181 CompileResult(Allow()), rest)),
182 rest));
185 CodeGen::Node PolicyCompiler::DispatchSyscall() {
186 // Evaluate all possible system calls and group their Nodes into
187 // ranges of identical codes.
188 Ranges ranges;
189 FindRanges(&ranges);
191 // Compile the system call ranges to an optimized BPF jumptable
192 CodeGen::Node jumptable = AssembleJumpTable(ranges.begin(), ranges.end());
194 // Grab the system call number, so that we can check it and then
195 // execute the jump table.
196 return gen_.MakeInstruction(
197 BPF_LD + BPF_W + BPF_ABS, SECCOMP_NR_IDX, CheckSyscallNumber(jumptable));
200 CodeGen::Node PolicyCompiler::CheckSyscallNumber(CodeGen::Node passed) {
201 if (kIsIntel) {
202 // On Intel architectures, verify that system call numbers are in the
203 // expected number range.
204 CodeGen::Node invalidX32 =
205 CompileResult(panic_func_("Illegal mixing of system call ABIs"));
206 if (kIsX32) {
207 // The newer x32 API always sets bit 30.
208 return gen_.MakeInstruction(
209 BPF_JMP + BPF_JSET + BPF_K, 0x40000000, passed, invalidX32);
210 } else {
211 // The older i386 and x86-64 APIs clear bit 30 on all system calls.
212 return gen_.MakeInstruction(
213 BPF_JMP + BPF_JSET + BPF_K, 0x40000000, invalidX32, passed);
217 // TODO(mdempsky): Similar validation for other architectures?
218 return passed;
221 void PolicyCompiler::FindRanges(Ranges* ranges) {
222 // Please note that "struct seccomp_data" defines system calls as a signed
223 // int32_t, but BPF instructions always operate on unsigned quantities. We
224 // deal with this disparity by enumerating from MIN_SYSCALL to MAX_SYSCALL,
225 // and then verifying that the rest of the number range (both positive and
226 // negative) all return the same Node.
227 const CodeGen::Node invalid_node = CompileResult(policy_->InvalidSyscall());
228 uint32_t old_sysnum = 0;
229 CodeGen::Node old_node =
230 SyscallSet::IsValid(old_sysnum)
231 ? CompileResult(policy_->EvaluateSyscall(old_sysnum))
232 : invalid_node;
234 for (uint32_t sysnum : SyscallSet::All()) {
235 CodeGen::Node node =
236 SyscallSet::IsValid(sysnum)
237 ? CompileResult(policy_->EvaluateSyscall(static_cast<int>(sysnum)))
238 : invalid_node;
239 // N.B., here we rely on CodeGen folding (i.e., returning the same
240 // node value for) identical code sequences, otherwise our jump
241 // table will blow up in size.
242 if (node != old_node) {
243 ranges->push_back(Range{old_sysnum, old_node});
244 old_sysnum = sysnum;
245 old_node = node;
248 ranges->push_back(Range{old_sysnum, old_node});
251 CodeGen::Node PolicyCompiler::AssembleJumpTable(Ranges::const_iterator start,
252 Ranges::const_iterator stop) {
253 // We convert the list of system call ranges into jump table that performs
254 // a binary search over the ranges.
255 // As a sanity check, we need to have at least one distinct ranges for us
256 // to be able to build a jump table.
257 CHECK(start < stop) << "Invalid iterator range";
258 const auto n = stop - start;
259 if (n == 1) {
260 // If we have narrowed things down to a single range object, we can
261 // return from the BPF filter program.
262 return start->node;
265 // Pick the range object that is located at the mid point of our list.
266 // We compare our system call number against the lowest valid system call
267 // number in this range object. If our number is lower, it is outside of
268 // this range object. If it is greater or equal, it might be inside.
269 Ranges::const_iterator mid = start + n / 2;
271 // Sub-divide the list of ranges and continue recursively.
272 CodeGen::Node jf = AssembleJumpTable(start, mid);
273 CodeGen::Node jt = AssembleJumpTable(mid, stop);
274 return gen_.MakeInstruction(BPF_JMP + BPF_JGE + BPF_K, mid->from, jt, jf);
277 CodeGen::Node PolicyCompiler::CompileResult(const ResultExpr& res) {
278 return res->Compile(this);
281 CodeGen::Node PolicyCompiler::MaskedEqual(int argno,
282 size_t width,
283 uint64_t mask,
284 uint64_t value,
285 CodeGen::Node passed,
286 CodeGen::Node failed) {
287 // Sanity check that arguments make sense.
288 CHECK(argno >= 0 && argno < 6) << "Invalid argument number " << argno;
289 CHECK(width == 4 || width == 8) << "Invalid argument width " << width;
290 CHECK_NE(0U, mask) << "Zero mask is invalid";
291 CHECK_EQ(value, value & mask) << "Value contains masked out bits";
292 if (sizeof(void*) == 4) {
293 CHECK_EQ(4U, width) << "Invalid width on 32-bit platform";
295 if (width == 4) {
296 CHECK_EQ(0U, mask >> 32) << "Mask exceeds argument size";
297 CHECK_EQ(0U, value >> 32) << "Value exceeds argument size";
300 // We want to emit code to check "(arg & mask) == value" where arg, mask, and
301 // value are 64-bit values, but the BPF machine is only 32-bit. We implement
302 // this by independently testing the upper and lower 32-bits and continuing to
303 // |passed| if both evaluate true, or to |failed| if either evaluate false.
304 return MaskedEqualHalf(argno, width, mask, value, ArgHalf::UPPER,
305 MaskedEqualHalf(argno, width, mask, value,
306 ArgHalf::LOWER, passed, failed),
307 failed);
310 CodeGen::Node PolicyCompiler::MaskedEqualHalf(int argno,
311 size_t width,
312 uint64_t full_mask,
313 uint64_t full_value,
314 ArgHalf half,
315 CodeGen::Node passed,
316 CodeGen::Node failed) {
317 if (width == 4 && half == ArgHalf::UPPER) {
318 // Special logic for sanity checking the upper 32-bits of 32-bit system
319 // call arguments.
321 // TODO(mdempsky): Compile Unexpected64bitArgument() just per program.
322 CodeGen::Node invalid_64bit = Unexpected64bitArgument();
324 const uint32_t upper = SECCOMP_ARG_MSB_IDX(argno);
325 const uint32_t lower = SECCOMP_ARG_LSB_IDX(argno);
327 if (sizeof(void*) == 4) {
328 // On 32-bit platforms, the upper 32-bits should always be 0:
329 // LDW [upper]
330 // JEQ 0, passed, invalid
331 return gen_.MakeInstruction(
332 BPF_LD + BPF_W + BPF_ABS,
333 upper,
334 gen_.MakeInstruction(
335 BPF_JMP + BPF_JEQ + BPF_K, 0, passed, invalid_64bit));
338 // On 64-bit platforms, the upper 32-bits may be 0 or ~0; but we only allow
339 // ~0 if the sign bit of the lower 32-bits is set too:
340 // LDW [upper]
341 // JEQ 0, passed, (next)
342 // JEQ ~0, (next), invalid
343 // LDW [lower]
344 // JSET (1<<31), passed, invalid
346 // TODO(mdempsky): The JSET instruction could perhaps jump to passed->next
347 // instead, as the first instruction of passed should be "LDW [lower]".
348 return gen_.MakeInstruction(
349 BPF_LD + BPF_W + BPF_ABS,
350 upper,
351 gen_.MakeInstruction(
352 BPF_JMP + BPF_JEQ + BPF_K,
354 passed,
355 gen_.MakeInstruction(
356 BPF_JMP + BPF_JEQ + BPF_K,
357 std::numeric_limits<uint32_t>::max(),
358 gen_.MakeInstruction(
359 BPF_LD + BPF_W + BPF_ABS,
360 lower,
361 gen_.MakeInstruction(BPF_JMP + BPF_JSET + BPF_K,
362 1U << 31,
363 passed,
364 invalid_64bit)),
365 invalid_64bit)));
368 const uint32_t idx = (half == ArgHalf::UPPER) ? SECCOMP_ARG_MSB_IDX(argno)
369 : SECCOMP_ARG_LSB_IDX(argno);
370 const uint32_t mask = (half == ArgHalf::UPPER) ? full_mask >> 32 : full_mask;
371 const uint32_t value =
372 (half == ArgHalf::UPPER) ? full_value >> 32 : full_value;
374 // Emit a suitable instruction sequence for (arg & mask) == value.
376 // For (arg & 0) == 0, just return passed.
377 if (mask == 0) {
378 CHECK_EQ(0U, value);
379 return passed;
382 // For (arg & ~0) == value, emit:
383 // LDW [idx]
384 // JEQ value, passed, failed
385 if (mask == std::numeric_limits<uint32_t>::max()) {
386 return gen_.MakeInstruction(
387 BPF_LD + BPF_W + BPF_ABS,
388 idx,
389 gen_.MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, value, passed, failed));
392 // For (arg & mask) == 0, emit:
393 // LDW [idx]
394 // JSET mask, failed, passed
395 // (Note: failed and passed are intentionally swapped.)
396 if (value == 0) {
397 return gen_.MakeInstruction(
398 BPF_LD + BPF_W + BPF_ABS,
399 idx,
400 gen_.MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, mask, failed, passed));
403 // For (arg & x) == x where x is a single-bit value, emit:
404 // LDW [idx]
405 // JSET mask, passed, failed
406 if (mask == value && HasExactlyOneBit(mask)) {
407 return gen_.MakeInstruction(
408 BPF_LD + BPF_W + BPF_ABS,
409 idx,
410 gen_.MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, mask, passed, failed));
413 // Generic fallback:
414 // LDW [idx]
415 // AND mask
416 // JEQ value, passed, failed
417 return gen_.MakeInstruction(
418 BPF_LD + BPF_W + BPF_ABS,
419 idx,
420 gen_.MakeInstruction(
421 BPF_ALU + BPF_AND + BPF_K,
422 mask,
423 gen_.MakeInstruction(
424 BPF_JMP + BPF_JEQ + BPF_K, value, passed, failed)));
427 CodeGen::Node PolicyCompiler::Unexpected64bitArgument() {
428 return CompileResult(panic_func_("Unexpected 64bit argument detected"));
431 CodeGen::Node PolicyCompiler::Return(uint32_t ret) {
432 if (has_unsafe_traps_ && (ret & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) {
433 // When inside an UnsafeTrap() callback, we want to allow all system calls.
434 // This means, we must conditionally disable the sandbox -- and that's not
435 // something that kernel-side BPF filters can do, as they cannot inspect
436 // any state other than the syscall arguments.
437 // But if we redirect all error handlers to user-space, then we can easily
438 // make this decision.
439 // The performance penalty for this extra round-trip to user-space is not
440 // actually that bad, as we only ever pay it for denied system calls; and a
441 // typical program has very few of these.
442 return Trap(ReturnErrno, reinterpret_cast<void*>(ret & SECCOMP_RET_DATA),
443 true);
446 return gen_.MakeInstruction(BPF_RET + BPF_K, ret);
449 CodeGen::Node PolicyCompiler::Trap(TrapRegistry::TrapFnc fnc,
450 const void* aux,
451 bool safe) {
452 uint16_t trap_id = registry_->Add(fnc, aux, safe);
453 return gen_.MakeInstruction(BPF_RET + BPF_K, SECCOMP_RET_TRAP + trap_id);
456 bool PolicyCompiler::IsRequiredForUnsafeTrap(int sysno) {
457 for (size_t i = 0; i < arraysize(kSyscallsRequiredForUnsafeTraps); ++i) {
458 if (sysno == kSyscallsRequiredForUnsafeTraps[i]) {
459 return true;
462 return false;
465 } // namespace bpf_dsl
466 } // namespace sandbox