1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "media/audio/win/audio_low_latency_input_win.h"
7 #include "base/logging.h"
8 #include "base/memory/scoped_ptr.h"
9 #include "base/strings/utf_string_conversions.h"
10 #include "base/trace_event/trace_event.h"
11 #include "media/audio/win/audio_manager_win.h"
12 #include "media/audio/win/avrt_wrapper_win.h"
13 #include "media/audio/win/core_audio_util_win.h"
14 #include "media/base/audio_bus.h"
16 using base::win::ScopedComPtr
;
17 using base::win::ScopedCOMInitializer
;
21 WASAPIAudioInputStream::WASAPIAudioInputStream(AudioManagerWin
* manager
,
22 const AudioParameters
& params
,
23 const std::string
& device_id
)
25 capture_thread_(NULL
),
29 packet_size_frames_(0),
30 packet_size_bytes_(0),
31 endpoint_buffer_size_frames_(0),
32 device_id_(device_id
),
33 perf_count_to_100ns_units_(0.0),
34 ms_to_frame_count_(0.0),
36 audio_bus_(media::AudioBus::Create(params
)) {
39 // Load the Avrt DLL if not already loaded. Required to support MMCSS.
40 bool avrt_init
= avrt::Initialize();
41 DCHECK(avrt_init
) << "Failed to load the Avrt.dll";
43 // Set up the desired capture format specified by the client.
44 format_
.nSamplesPerSec
= params
.sample_rate();
45 format_
.wFormatTag
= WAVE_FORMAT_PCM
;
46 format_
.wBitsPerSample
= params
.bits_per_sample();
47 format_
.nChannels
= params
.channels();
48 format_
.nBlockAlign
= (format_
.wBitsPerSample
/ 8) * format_
.nChannels
;
49 format_
.nAvgBytesPerSec
= format_
.nSamplesPerSec
* format_
.nBlockAlign
;
52 // Size in bytes of each audio frame.
53 frame_size_
= format_
.nBlockAlign
;
54 // Store size of audio packets which we expect to get from the audio
55 // endpoint device in each capture event.
56 packet_size_frames_
= params
.GetBytesPerBuffer() / format_
.nBlockAlign
;
57 packet_size_bytes_
= params
.GetBytesPerBuffer();
58 DVLOG(1) << "Number of bytes per audio frame : " << frame_size_
;
59 DVLOG(1) << "Number of audio frames per packet: " << packet_size_frames_
;
61 // All events are auto-reset events and non-signaled initially.
63 // Create the event which the audio engine will signal each time
64 // a buffer becomes ready to be processed by the client.
65 audio_samples_ready_event_
.Set(CreateEvent(NULL
, FALSE
, FALSE
, NULL
));
66 DCHECK(audio_samples_ready_event_
.IsValid());
68 // Create the event which will be set in Stop() when capturing shall stop.
69 stop_capture_event_
.Set(CreateEvent(NULL
, FALSE
, FALSE
, NULL
));
70 DCHECK(stop_capture_event_
.IsValid());
72 ms_to_frame_count_
= static_cast<double>(params
.sample_rate()) / 1000.0;
74 LARGE_INTEGER performance_frequency
;
75 if (QueryPerformanceFrequency(&performance_frequency
)) {
76 perf_count_to_100ns_units_
=
77 (10000000.0 / static_cast<double>(performance_frequency
.QuadPart
));
79 DLOG(ERROR
) << "High-resolution performance counters are not supported.";
83 WASAPIAudioInputStream::~WASAPIAudioInputStream() {
84 DCHECK(CalledOnValidThread());
87 bool WASAPIAudioInputStream::Open() {
88 DCHECK(CalledOnValidThread());
89 // Verify that we are not already opened.
93 // Obtain a reference to the IMMDevice interface of the capturing
94 // device with the specified unique identifier or role which was
95 // set at construction.
96 HRESULT hr
= SetCaptureDevice();
100 // Obtain an IAudioClient interface which enables us to create and initialize
101 // an audio stream between an audio application and the audio engine.
102 hr
= ActivateCaptureDevice();
106 // Retrieve the stream format which the audio engine uses for its internal
107 // processing/mixing of shared-mode streams. This function call is for
108 // diagnostic purposes only and only in debug mode.
110 hr
= GetAudioEngineStreamFormat();
113 // Verify that the selected audio endpoint supports the specified format
114 // set during construction.
115 if (!DesiredFormatIsSupported())
118 // Initialize the audio stream between the client and the device using
119 // shared mode and a lowest possible glitch-free latency.
120 hr
= InitializeAudioEngine();
122 opened_
= SUCCEEDED(hr
);
126 void WASAPIAudioInputStream::Start(AudioInputCallback
* callback
) {
127 DCHECK(CalledOnValidThread());
129 DLOG_IF(ERROR
, !opened_
) << "Open() has not been called successfully";
139 // Starts periodic AGC microphone measurements if the AGC has been enabled
140 // using SetAutomaticGainControl().
143 // Create and start the thread that will drive the capturing by waiting for
145 capture_thread_
= new base::DelegateSimpleThread(
146 this, "wasapi_capture_thread",
147 base::SimpleThread::Options(base::ThreadPriority::REALTIME_AUDIO
));
148 capture_thread_
->Start();
150 // Start streaming data between the endpoint buffer and the audio engine.
151 HRESULT hr
= audio_client_
->Start();
152 DLOG_IF(ERROR
, FAILED(hr
)) << "Failed to start input streaming.";
154 if (SUCCEEDED(hr
) && audio_render_client_for_loopback_
.get())
155 hr
= audio_render_client_for_loopback_
->Start();
157 started_
= SUCCEEDED(hr
);
160 void WASAPIAudioInputStream::Stop() {
161 DCHECK(CalledOnValidThread());
162 DVLOG(1) << "WASAPIAudioInputStream::Stop()";
166 // Stops periodic AGC microphone measurements.
169 // Shut down the capture thread.
170 if (stop_capture_event_
.IsValid()) {
171 SetEvent(stop_capture_event_
.Get());
174 // Stop the input audio streaming.
175 HRESULT hr
= audio_client_
->Stop();
177 LOG(ERROR
) << "Failed to stop input streaming.";
180 // Wait until the thread completes and perform cleanup.
181 if (capture_thread_
) {
182 SetEvent(stop_capture_event_
.Get());
183 capture_thread_
->Join();
184 capture_thread_
= NULL
;
191 void WASAPIAudioInputStream::Close() {
192 DVLOG(1) << "WASAPIAudioInputStream::Close()";
193 // It is valid to call Close() before calling open or Start().
194 // It is also valid to call Close() after Start() has been called.
197 // Inform the audio manager that we have been closed. This will cause our
199 manager_
->ReleaseInputStream(this);
202 double WASAPIAudioInputStream::GetMaxVolume() {
203 // Verify that Open() has been called succesfully, to ensure that an audio
204 // session exists and that an ISimpleAudioVolume interface has been created.
205 DLOG_IF(ERROR
, !opened_
) << "Open() has not been called successfully";
209 // The effective volume value is always in the range 0.0 to 1.0, hence
210 // we can return a fixed value (=1.0) here.
214 void WASAPIAudioInputStream::SetVolume(double volume
) {
215 DVLOG(1) << "SetVolume(volume=" << volume
<< ")";
216 DCHECK(CalledOnValidThread());
217 DCHECK_GE(volume
, 0.0);
218 DCHECK_LE(volume
, 1.0);
220 DLOG_IF(ERROR
, !opened_
) << "Open() has not been called successfully";
224 // Set a new master volume level. Valid volume levels are in the range
225 // 0.0 to 1.0. Ignore volume-change events.
227 simple_audio_volume_
->SetMasterVolume(static_cast<float>(volume
), NULL
);
229 DLOG(WARNING
) << "Failed to set new input master volume.";
231 // Update the AGC volume level based on the last setting above. Note that,
232 // the volume-level resolution is not infinite and it is therefore not
233 // possible to assume that the volume provided as input parameter can be
234 // used directly. Instead, a new query to the audio hardware is required.
235 // This method does nothing if AGC is disabled.
239 double WASAPIAudioInputStream::GetVolume() {
240 DCHECK(opened_
) << "Open() has not been called successfully";
244 // Retrieve the current volume level. The value is in the range 0.0 to 1.0.
246 HRESULT hr
= simple_audio_volume_
->GetMasterVolume(&level
);
248 DLOG(WARNING
) << "Failed to get input master volume.";
250 return static_cast<double>(level
);
253 bool WASAPIAudioInputStream::IsMuted() {
254 DCHECK(opened_
) << "Open() has not been called successfully";
255 DCHECK(CalledOnValidThread());
259 // Retrieves the current muting state for the audio session.
260 BOOL is_muted
= FALSE
;
261 HRESULT hr
= simple_audio_volume_
->GetMute(&is_muted
);
263 DLOG(WARNING
) << "Failed to get input master volume.";
265 return is_muted
!= FALSE
;
268 void WASAPIAudioInputStream::Run() {
269 ScopedCOMInitializer
com_init(ScopedCOMInitializer::kMTA
);
271 // Enable MMCSS to ensure that this thread receives prioritized access to
273 DWORD task_index
= 0;
274 HANDLE mm_task
= avrt::AvSetMmThreadCharacteristics(L
"Pro Audio",
277 (mm_task
&& avrt::AvSetMmThreadPriority(mm_task
, AVRT_PRIORITY_CRITICAL
));
279 // Failed to enable MMCSS on this thread. It is not fatal but can lead
280 // to reduced QoS at high load.
281 DWORD err
= GetLastError();
282 LOG(WARNING
) << "Failed to enable MMCSS (error code=" << err
<< ").";
285 // Allocate a buffer with a size that enables us to take care of cases like:
286 // 1) The recorded buffer size is smaller, or does not match exactly with,
287 // the selected packet size used in each callback.
288 // 2) The selected buffer size is larger than the recorded buffer size in
290 size_t buffer_frame_index
= 0;
291 size_t capture_buffer_size
= std::max(
292 2 * endpoint_buffer_size_frames_
* frame_size_
,
293 2 * packet_size_frames_
* frame_size_
);
294 scoped_ptr
<uint8
[]> capture_buffer(new uint8
[capture_buffer_size
]);
296 LARGE_INTEGER now_count
= {};
297 bool recording
= true;
299 double volume
= GetVolume();
300 HANDLE wait_array
[2] =
301 { stop_capture_event_
.Get(), audio_samples_ready_event_
.Get() };
303 base::win::ScopedComPtr
<IAudioClock
> audio_clock
;
304 audio_client_
->GetService(__uuidof(IAudioClock
), audio_clock
.ReceiveVoid());
306 while (recording
&& !error
) {
307 HRESULT hr
= S_FALSE
;
309 // Wait for a close-down event or a new capture event.
310 DWORD wait_result
= WaitForMultipleObjects(2, wait_array
, FALSE
, INFINITE
);
311 switch (wait_result
) {
315 case WAIT_OBJECT_0
+ 0:
316 // |stop_capture_event_| has been set.
319 case WAIT_OBJECT_0
+ 1:
321 TRACE_EVENT0("audio", "WASAPIAudioInputStream::Run_0");
322 // |audio_samples_ready_event_| has been set.
323 BYTE
* data_ptr
= NULL
;
324 UINT32 num_frames_to_read
= 0;
326 UINT64 device_position
= 0;
327 UINT64 first_audio_frame_timestamp
= 0;
329 // Retrieve the amount of data in the capture endpoint buffer,
330 // replace it with silence if required, create callbacks for each
331 // packet and store non-delivered data for the next event.
332 hr
= audio_capture_client_
->GetBuffer(&data_ptr
,
336 &first_audio_frame_timestamp
);
338 DLOG(ERROR
) << "Failed to get data from the capture buffer";
343 // The reported timestamp from GetBuffer is not as reliable as the
344 // clock from the client. We've seen timestamps reported for
345 // USB audio devices, be off by several days. Furthermore we've
346 // seen them jump back in time every 2 seconds or so.
347 audio_clock
->GetPosition(
348 &device_position
, &first_audio_frame_timestamp
);
352 if (num_frames_to_read
!= 0) {
353 size_t pos
= buffer_frame_index
* frame_size_
;
354 size_t num_bytes
= num_frames_to_read
* frame_size_
;
355 DCHECK_GE(capture_buffer_size
, pos
+ num_bytes
);
357 if (flags
& AUDCLNT_BUFFERFLAGS_SILENT
) {
358 // Clear out the local buffer since silence is reported.
359 memset(&capture_buffer
[pos
], 0, num_bytes
);
361 // Copy captured data from audio engine buffer to local buffer.
362 memcpy(&capture_buffer
[pos
], data_ptr
, num_bytes
);
365 buffer_frame_index
+= num_frames_to_read
;
368 hr
= audio_capture_client_
->ReleaseBuffer(num_frames_to_read
);
369 DLOG_IF(ERROR
, FAILED(hr
)) << "Failed to release capture buffer";
371 // Derive a delay estimate for the captured audio packet.
372 // The value contains two parts (A+B), where A is the delay of the
373 // first audio frame in the packet and B is the extra delay
374 // contained in any stored data. Unit is in audio frames.
375 QueryPerformanceCounter(&now_count
);
376 // first_audio_frame_timestamp will be 0 if we didn't get a timestamp.
377 double audio_delay_frames
= first_audio_frame_timestamp
== 0 ?
379 ((perf_count_to_100ns_units_
* now_count
.QuadPart
-
380 first_audio_frame_timestamp
) / 10000.0) * ms_to_frame_count_
+
381 buffer_frame_index
- num_frames_to_read
;
383 // Get a cached AGC volume level which is updated once every second
384 // on the audio manager thread. Note that, |volume| is also updated
385 // each time SetVolume() is called through IPC by the render-side AGC.
386 GetAgcVolume(&volume
);
388 // Deliver captured data to the registered consumer using a packet
389 // size which was specified at construction.
390 uint32 delay_frames
= static_cast<uint32
>(audio_delay_frames
+ 0.5);
391 while (buffer_frame_index
>= packet_size_frames_
) {
392 // Copy data to audio bus to match the OnData interface.
393 uint8
* audio_data
= reinterpret_cast<uint8
*>(capture_buffer
.get());
394 audio_bus_
->FromInterleaved(
395 audio_data
, audio_bus_
->frames(), format_
.wBitsPerSample
/ 8);
397 // Deliver data packet, delay estimation and volume level to
400 this, audio_bus_
.get(), delay_frames
* frame_size_
, volume
);
402 // Store parts of the recorded data which can't be delivered
403 // using the current packet size. The stored section will be used
404 // either in the next while-loop iteration or in the next
406 // TODO(tommi): If this data will be used in the next capture
407 // event, we will report incorrect delay estimates because
408 // we'll use the one for the captured data that time around
409 // (i.e. in the future).
410 memmove(&capture_buffer
[0],
411 &capture_buffer
[packet_size_bytes_
],
412 (buffer_frame_index
- packet_size_frames_
) * frame_size_
);
414 DCHECK_GE(buffer_frame_index
, packet_size_frames_
);
415 buffer_frame_index
-= packet_size_frames_
;
416 if (delay_frames
> packet_size_frames_
) {
417 delay_frames
-= packet_size_frames_
;
430 if (recording
&& error
) {
431 // TODO(henrika): perhaps it worth improving the cleanup here by e.g.
432 // stopping the audio client, joining the thread etc.?
433 NOTREACHED() << "WASAPI capturing failed with error code "
438 if (mm_task
&& !avrt::AvRevertMmThreadCharacteristics(mm_task
)) {
439 PLOG(WARNING
) << "Failed to disable MMCSS";
443 void WASAPIAudioInputStream::HandleError(HRESULT err
) {
444 NOTREACHED() << "Error code: " << err
;
446 sink_
->OnError(this);
449 HRESULT
WASAPIAudioInputStream::SetCaptureDevice() {
450 DCHECK(!endpoint_device_
.get());
452 ScopedComPtr
<IMMDeviceEnumerator
> enumerator
;
453 HRESULT hr
= enumerator
.CreateInstance(__uuidof(MMDeviceEnumerator
),
454 NULL
, CLSCTX_INPROC_SERVER
);
458 // Retrieve the IMMDevice by using the specified role or the specified
459 // unique endpoint device-identification string.
461 if (device_id_
== AudioManagerBase::kDefaultDeviceId
) {
462 // Retrieve the default capture audio endpoint for the specified role.
463 // Note that, in Windows Vista, the MMDevice API supports device roles
464 // but the system-supplied user interface programs do not.
465 hr
= enumerator
->GetDefaultAudioEndpoint(eCapture
, eConsole
,
466 endpoint_device_
.Receive());
467 } else if (device_id_
== AudioManagerBase::kCommunicationsDeviceId
) {
468 hr
= enumerator
->GetDefaultAudioEndpoint(eCapture
, eCommunications
,
469 endpoint_device_
.Receive());
470 } else if (device_id_
== AudioManagerBase::kLoopbackInputDeviceId
) {
471 // Capture the default playback stream.
472 hr
= enumerator
->GetDefaultAudioEndpoint(eRender
, eConsole
,
473 endpoint_device_
.Receive());
475 hr
= enumerator
->GetDevice(base::UTF8ToUTF16(device_id_
).c_str(),
476 endpoint_device_
.Receive());
482 // Verify that the audio endpoint device is active, i.e., the audio
483 // adapter that connects to the endpoint device is present and enabled.
484 DWORD state
= DEVICE_STATE_DISABLED
;
485 hr
= endpoint_device_
->GetState(&state
);
489 if (!(state
& DEVICE_STATE_ACTIVE
)) {
490 DLOG(ERROR
) << "Selected capture device is not active.";
497 HRESULT
WASAPIAudioInputStream::ActivateCaptureDevice() {
498 // Creates and activates an IAudioClient COM object given the selected
499 // capture endpoint device.
500 HRESULT hr
= endpoint_device_
->Activate(__uuidof(IAudioClient
),
501 CLSCTX_INPROC_SERVER
,
503 audio_client_
.ReceiveVoid());
507 HRESULT
WASAPIAudioInputStream::GetAudioEngineStreamFormat() {
510 // The GetMixFormat() method retrieves the stream format that the
511 // audio engine uses for its internal processing of shared-mode streams.
512 // The method always uses a WAVEFORMATEXTENSIBLE structure, instead
513 // of a stand-alone WAVEFORMATEX structure, to specify the format.
514 // An WAVEFORMATEXTENSIBLE structure can specify both the mapping of
515 // channels to speakers and the number of bits of precision in each sample.
516 base::win::ScopedCoMem
<WAVEFORMATEXTENSIBLE
> format_ex
;
517 hr
= audio_client_
->GetMixFormat(
518 reinterpret_cast<WAVEFORMATEX
**>(&format_ex
));
520 // See http://msdn.microsoft.com/en-us/windows/hardware/gg463006#EFH
521 // for details on the WAVE file format.
522 WAVEFORMATEX format
= format_ex
->Format
;
523 DVLOG(2) << "WAVEFORMATEX:";
524 DVLOG(2) << " wFormatTags : 0x" << std::hex
<< format
.wFormatTag
;
525 DVLOG(2) << " nChannels : " << format
.nChannels
;
526 DVLOG(2) << " nSamplesPerSec : " << format
.nSamplesPerSec
;
527 DVLOG(2) << " nAvgBytesPerSec: " << format
.nAvgBytesPerSec
;
528 DVLOG(2) << " nBlockAlign : " << format
.nBlockAlign
;
529 DVLOG(2) << " wBitsPerSample : " << format
.wBitsPerSample
;
530 DVLOG(2) << " cbSize : " << format
.cbSize
;
532 DVLOG(2) << "WAVEFORMATEXTENSIBLE:";
533 DVLOG(2) << " wValidBitsPerSample: " <<
534 format_ex
->Samples
.wValidBitsPerSample
;
535 DVLOG(2) << " dwChannelMask : 0x" << std::hex
<<
536 format_ex
->dwChannelMask
;
537 if (format_ex
->SubFormat
== KSDATAFORMAT_SUBTYPE_PCM
)
538 DVLOG(2) << " SubFormat : KSDATAFORMAT_SUBTYPE_PCM";
539 else if (format_ex
->SubFormat
== KSDATAFORMAT_SUBTYPE_IEEE_FLOAT
)
540 DVLOG(2) << " SubFormat : KSDATAFORMAT_SUBTYPE_IEEE_FLOAT";
541 else if (format_ex
->SubFormat
== KSDATAFORMAT_SUBTYPE_WAVEFORMATEX
)
542 DVLOG(2) << " SubFormat : KSDATAFORMAT_SUBTYPE_WAVEFORMATEX";
547 bool WASAPIAudioInputStream::DesiredFormatIsSupported() {
548 // An application that uses WASAPI to manage shared-mode streams can rely
549 // on the audio engine to perform only limited format conversions. The audio
550 // engine can convert between a standard PCM sample size used by the
551 // application and the floating-point samples that the engine uses for its
552 // internal processing. However, the format for an application stream
553 // typically must have the same number of channels and the same sample
554 // rate as the stream format used by the device.
555 // Many audio devices support both PCM and non-PCM stream formats. However,
556 // the audio engine can mix only PCM streams.
557 base::win::ScopedCoMem
<WAVEFORMATEX
> closest_match
;
558 HRESULT hr
= audio_client_
->IsFormatSupported(AUDCLNT_SHAREMODE_SHARED
,
561 DLOG_IF(ERROR
, hr
== S_FALSE
) << "Format is not supported "
562 << "but a closest match exists.";
566 HRESULT
WASAPIAudioInputStream::InitializeAudioEngine() {
568 // Use event-driven mode only fo regular input devices. For loopback the
569 // EVENTCALLBACK flag is specified when intializing
570 // |audio_render_client_for_loopback_|.
571 if (device_id_
== AudioManagerBase::kLoopbackInputDeviceId
) {
572 flags
= AUDCLNT_STREAMFLAGS_LOOPBACK
| AUDCLNT_STREAMFLAGS_NOPERSIST
;
574 flags
= AUDCLNT_STREAMFLAGS_EVENTCALLBACK
| AUDCLNT_STREAMFLAGS_NOPERSIST
;
577 // Initialize the audio stream between the client and the device.
578 // We connect indirectly through the audio engine by using shared mode.
579 // Note that, |hnsBufferDuration| is set of 0, which ensures that the
580 // buffer is never smaller than the minimum buffer size needed to ensure
581 // that glitches do not occur between the periodic processing passes.
582 // This setting should lead to lowest possible latency.
583 HRESULT hr
= audio_client_
->Initialize(
584 AUDCLNT_SHAREMODE_SHARED
,
586 0, // hnsBufferDuration
589 device_id_
== AudioManagerBase::kCommunicationsDeviceId
?
590 &kCommunicationsSessionId
: nullptr);
595 // Retrieve the length of the endpoint buffer shared between the client
596 // and the audio engine. The buffer length determines the maximum amount
597 // of capture data that the audio engine can read from the endpoint buffer
598 // during a single processing pass.
599 // A typical value is 960 audio frames <=> 20ms @ 48kHz sample rate.
600 hr
= audio_client_
->GetBufferSize(&endpoint_buffer_size_frames_
);
604 DVLOG(1) << "endpoint buffer size: " << endpoint_buffer_size_frames_
608 // The period between processing passes by the audio engine is fixed for a
609 // particular audio endpoint device and represents the smallest processing
610 // quantum for the audio engine. This period plus the stream latency between
611 // the buffer and endpoint device represents the minimum possible latency
612 // that an audio application can achieve.
613 // TODO(henrika): possibly remove this section when all parts are ready.
614 REFERENCE_TIME device_period_shared_mode
= 0;
615 REFERENCE_TIME device_period_exclusive_mode
= 0;
616 HRESULT hr_dbg
= audio_client_
->GetDevicePeriod(
617 &device_period_shared_mode
, &device_period_exclusive_mode
);
618 if (SUCCEEDED(hr_dbg
)) {
619 DVLOG(1) << "device period: "
620 << static_cast<double>(device_period_shared_mode
/ 10000.0)
624 REFERENCE_TIME latency
= 0;
625 hr_dbg
= audio_client_
->GetStreamLatency(&latency
);
626 if (SUCCEEDED(hr_dbg
)) {
627 DVLOG(1) << "stream latency: " << static_cast<double>(latency
/ 10000.0)
632 // Set the event handle that the audio engine will signal each time a buffer
633 // becomes ready to be processed by the client.
635 // In loopback case the capture device doesn't receive any events, so we
636 // need to create a separate playback client to get notifications. According
639 // A pull-mode capture client does not receive any events when a stream is
640 // initialized with event-driven buffering and is loopback-enabled. To
641 // work around this, initialize a render stream in event-driven mode. Each
642 // time the client receives an event for the render stream, it must signal
643 // the capture client to run the capture thread that reads the next set of
644 // samples from the capture endpoint buffer.
646 // http://msdn.microsoft.com/en-us/library/windows/desktop/dd316551(v=vs.85).aspx
647 if (device_id_
== AudioManagerBase::kLoopbackInputDeviceId
) {
648 hr
= endpoint_device_
->Activate(
649 __uuidof(IAudioClient
), CLSCTX_INPROC_SERVER
, NULL
,
650 audio_render_client_for_loopback_
.ReceiveVoid());
654 hr
= audio_render_client_for_loopback_
->Initialize(
655 AUDCLNT_SHAREMODE_SHARED
,
656 AUDCLNT_STREAMFLAGS_EVENTCALLBACK
| AUDCLNT_STREAMFLAGS_NOPERSIST
,
657 0, 0, &format_
, NULL
);
661 hr
= audio_render_client_for_loopback_
->SetEventHandle(
662 audio_samples_ready_event_
.Get());
664 hr
= audio_client_
->SetEventHandle(audio_samples_ready_event_
.Get());
670 // Get access to the IAudioCaptureClient interface. This interface
671 // enables us to read input data from the capture endpoint buffer.
672 hr
= audio_client_
->GetService(__uuidof(IAudioCaptureClient
),
673 audio_capture_client_
.ReceiveVoid());
677 // Obtain a reference to the ISimpleAudioVolume interface which enables
678 // us to control the master volume level of an audio session.
679 hr
= audio_client_
->GetService(__uuidof(ISimpleAudioVolume
),
680 simple_audio_volume_
.ReceiveVoid());