Merge Chromium + Blink git repositories
[chromium-blink-merge.git] / net / third_party / nss / ssl / derive.c
blobb7c38c30ba32cd7f226c7eee0184f4becf2c59c8
1 /*
2 * Key Derivation that doesn't use PKCS11
4 * This Source Code Form is subject to the terms of the Mozilla Public
5 * License, v. 2.0. If a copy of the MPL was not distributed with this
6 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
8 #include "ssl.h" /* prereq to sslimpl.h */
9 #include "certt.h" /* prereq to sslimpl.h */
10 #include "keythi.h" /* prereq to sslimpl.h */
11 #include "sslimpl.h"
12 #ifndef NO_PKCS11_BYPASS
13 #include "blapi.h"
14 #endif
16 #include "keyhi.h"
17 #include "pk11func.h"
18 #include "secasn1.h"
19 #include "cert.h"
20 #include "secmodt.h"
22 #include "sslproto.h"
23 #include "sslerr.h"
25 #ifndef NO_PKCS11_BYPASS
26 /* make this a macro! */
27 #ifdef NOT_A_MACRO
28 static void
29 buildSSLKey(unsigned char * keyBlock, unsigned int keyLen, SECItem * result,
30 const char * label)
32 result->type = siBuffer;
33 result->data = keyBlock;
34 result->len = keyLen;
35 PRINT_BUF(100, (NULL, label, keyBlock, keyLen));
37 #else
38 #define buildSSLKey(keyBlock, keyLen, result, label) \
39 { \
40 (result)->type = siBuffer; \
41 (result)->data = keyBlock; \
42 (result)->len = keyLen; \
43 PRINT_BUF(100, (NULL, label, keyBlock, keyLen)); \
45 #endif
48 * SSL Key generation given pre master secret
50 #ifndef NUM_MIXERS
51 #define NUM_MIXERS 9
52 #endif
53 static const char * const mixers[NUM_MIXERS] = {
54 "A",
55 "BB",
56 "CCC",
57 "DDDD",
58 "EEEEE",
59 "FFFFFF",
60 "GGGGGGG",
61 "HHHHHHHH",
62 "IIIIIIIII"
66 SECStatus
67 ssl3_KeyAndMacDeriveBypass(
68 ssl3CipherSpec * pwSpec,
69 const unsigned char * cr,
70 const unsigned char * sr,
71 PRBool isTLS,
72 PRBool isExport)
74 const ssl3BulkCipherDef *cipher_def = pwSpec->cipher_def;
75 unsigned char * key_block = pwSpec->key_block;
76 unsigned char * key_block2 = NULL;
77 unsigned int block_bytes = 0;
78 unsigned int block_needed = 0;
79 unsigned int i;
80 unsigned int keySize; /* actual size of cipher keys */
81 unsigned int effKeySize; /* effective size of cipher keys */
82 unsigned int macSize; /* size of MAC secret */
83 unsigned int IVSize; /* size of IV */
84 PRBool explicitIV = PR_FALSE;
85 SECStatus rv = SECFailure;
86 SECStatus status = SECSuccess;
87 PRBool isFIPS = PR_FALSE;
88 PRBool isTLS12 = pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2;
90 SECItem srcr;
91 SECItem crsr;
93 unsigned char srcrdata[SSL3_RANDOM_LENGTH * 2];
94 unsigned char crsrdata[SSL3_RANDOM_LENGTH * 2];
95 PRUint64 md5buf[22];
96 PRUint64 shabuf[40];
98 #define md5Ctx ((MD5Context *)md5buf)
99 #define shaCtx ((SHA1Context *)shabuf)
101 static const SECItem zed = { siBuffer, NULL, 0 };
103 if (pwSpec->msItem.data == NULL ||
104 pwSpec->msItem.len != SSL3_MASTER_SECRET_LENGTH) {
105 PORT_SetError(SEC_ERROR_INVALID_ARGS);
106 return rv;
109 PRINT_BUF(100, (NULL, "Master Secret", pwSpec->msItem.data,
110 pwSpec->msItem.len));
112 /* figure out how much is needed */
113 macSize = pwSpec->mac_size;
114 keySize = cipher_def->key_size;
115 effKeySize = cipher_def->secret_key_size;
116 IVSize = cipher_def->iv_size;
117 if (keySize == 0) {
118 effKeySize = IVSize = 0; /* only MACing */
120 if (cipher_def->type == type_block &&
121 pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_1) {
122 /* Block ciphers in >= TLS 1.1 use a per-record, explicit IV. */
123 explicitIV = PR_TRUE;
125 block_needed =
126 2 * (macSize + effKeySize + ((!isExport && !explicitIV) * IVSize));
129 * clear out our returned keys so we can recover on failure
131 pwSpec->client.write_key_item = zed;
132 pwSpec->client.write_mac_key_item = zed;
133 pwSpec->server.write_key_item = zed;
134 pwSpec->server.write_mac_key_item = zed;
136 /* initialize the server random, client random block */
137 srcr.type = siBuffer;
138 srcr.data = srcrdata;
139 srcr.len = sizeof srcrdata;
140 PORT_Memcpy(srcrdata, sr, SSL3_RANDOM_LENGTH);
141 PORT_Memcpy(srcrdata + SSL3_RANDOM_LENGTH, cr, SSL3_RANDOM_LENGTH);
143 /* initialize the client random, server random block */
144 crsr.type = siBuffer;
145 crsr.data = crsrdata;
146 crsr.len = sizeof crsrdata;
147 PORT_Memcpy(crsrdata, cr, SSL3_RANDOM_LENGTH);
148 PORT_Memcpy(crsrdata + SSL3_RANDOM_LENGTH, sr, SSL3_RANDOM_LENGTH);
149 PRINT_BUF(100, (NULL, "Key & MAC CRSR", crsr.data, crsr.len));
152 * generate the key material:
154 if (isTLS) {
155 SECItem keyblk;
157 keyblk.type = siBuffer;
158 keyblk.data = key_block;
159 keyblk.len = block_needed;
161 if (isTLS12) {
162 status = TLS_P_hash(HASH_AlgSHA256, &pwSpec->msItem,
163 "key expansion", &srcr, &keyblk, isFIPS);
164 } else {
165 status = TLS_PRF(&pwSpec->msItem, "key expansion", &srcr, &keyblk,
166 isFIPS);
168 if (status != SECSuccess) {
169 goto key_and_mac_derive_fail;
171 block_bytes = keyblk.len;
172 } else {
173 /* key_block =
174 * MD5(master_secret + SHA('A' + master_secret +
175 * ServerHello.random + ClientHello.random)) +
176 * MD5(master_secret + SHA('BB' + master_secret +
177 * ServerHello.random + ClientHello.random)) +
178 * MD5(master_secret + SHA('CCC' + master_secret +
179 * ServerHello.random + ClientHello.random)) +
180 * [...];
182 unsigned int made = 0;
183 for (i = 0; made < block_needed && i < NUM_MIXERS; ++i) {
184 unsigned int outLen;
185 unsigned char sha_out[SHA1_LENGTH];
187 SHA1_Begin(shaCtx);
188 SHA1_Update(shaCtx, (unsigned char*)(mixers[i]), i+1);
189 SHA1_Update(shaCtx, pwSpec->msItem.data, pwSpec->msItem.len);
190 SHA1_Update(shaCtx, srcr.data, srcr.len);
191 SHA1_End(shaCtx, sha_out, &outLen, SHA1_LENGTH);
192 PORT_Assert(outLen == SHA1_LENGTH);
194 MD5_Begin(md5Ctx);
195 MD5_Update(md5Ctx, pwSpec->msItem.data, pwSpec->msItem.len);
196 MD5_Update(md5Ctx, sha_out, outLen);
197 MD5_End(md5Ctx, key_block + made, &outLen, MD5_LENGTH);
198 PORT_Assert(outLen == MD5_LENGTH);
199 made += MD5_LENGTH;
201 block_bytes = made;
203 PORT_Assert(block_bytes >= block_needed);
204 PORT_Assert(block_bytes <= sizeof pwSpec->key_block);
205 PRINT_BUF(100, (NULL, "key block", key_block, block_bytes));
208 * Put the key material where it goes.
210 key_block2 = key_block + block_bytes;
211 i = 0; /* now shows how much consumed */
214 * The key_block is partitioned as follows:
215 * client_write_MAC_secret[CipherSpec.hash_size]
217 buildSSLKey(&key_block[i],macSize, &pwSpec->client.write_mac_key_item, \
218 "Client Write MAC Secret");
219 i += macSize;
222 * server_write_MAC_secret[CipherSpec.hash_size]
224 buildSSLKey(&key_block[i],macSize, &pwSpec->server.write_mac_key_item, \
225 "Server Write MAC Secret");
226 i += macSize;
228 if (!keySize) {
229 /* only MACing */
230 buildSSLKey(NULL, 0, &pwSpec->client.write_key_item, \
231 "Client Write Key (MAC only)");
232 buildSSLKey(NULL, 0, &pwSpec->server.write_key_item, \
233 "Server Write Key (MAC only)");
234 buildSSLKey(NULL, 0, &pwSpec->client.write_iv_item, \
235 "Client Write IV (MAC only)");
236 buildSSLKey(NULL, 0, &pwSpec->server.write_iv_item, \
237 "Server Write IV (MAC only)");
238 } else if (!isExport) {
240 ** Generate Domestic write keys and IVs.
241 ** client_write_key[CipherSpec.key_material]
243 buildSSLKey(&key_block[i], keySize, &pwSpec->client.write_key_item, \
244 "Domestic Client Write Key");
245 i += keySize;
248 ** server_write_key[CipherSpec.key_material]
250 buildSSLKey(&key_block[i], keySize, &pwSpec->server.write_key_item, \
251 "Domestic Server Write Key");
252 i += keySize;
254 if (IVSize > 0) {
255 if (explicitIV) {
256 static unsigned char zero_block[32];
257 PORT_Assert(IVSize <= sizeof zero_block);
258 buildSSLKey(&zero_block[0], IVSize, \
259 &pwSpec->client.write_iv_item, \
260 "Domestic Client Write IV");
261 buildSSLKey(&zero_block[0], IVSize, \
262 &pwSpec->server.write_iv_item, \
263 "Domestic Server Write IV");
264 } else {
266 ** client_write_IV[CipherSpec.IV_size]
268 buildSSLKey(&key_block[i], IVSize, \
269 &pwSpec->client.write_iv_item, \
270 "Domestic Client Write IV");
271 i += IVSize;
274 ** server_write_IV[CipherSpec.IV_size]
276 buildSSLKey(&key_block[i], IVSize, \
277 &pwSpec->server.write_iv_item, \
278 "Domestic Server Write IV");
279 i += IVSize;
282 PORT_Assert(i <= block_bytes);
283 } else if (!isTLS) {
285 ** Generate SSL3 Export write keys and IVs.
287 unsigned int outLen;
290 ** client_write_key[CipherSpec.key_material]
291 ** final_client_write_key = MD5(client_write_key +
292 ** ClientHello.random + ServerHello.random);
294 MD5_Begin(md5Ctx);
295 MD5_Update(md5Ctx, &key_block[i], effKeySize);
296 MD5_Update(md5Ctx, crsr.data, crsr.len);
297 MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
298 i += effKeySize;
299 buildSSLKey(key_block2, keySize, &pwSpec->client.write_key_item, \
300 "SSL3 Export Client Write Key");
301 key_block2 += keySize;
304 ** server_write_key[CipherSpec.key_material]
305 ** final_server_write_key = MD5(server_write_key +
306 ** ServerHello.random + ClientHello.random);
308 MD5_Begin(md5Ctx);
309 MD5_Update(md5Ctx, &key_block[i], effKeySize);
310 MD5_Update(md5Ctx, srcr.data, srcr.len);
311 MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
312 i += effKeySize;
313 buildSSLKey(key_block2, keySize, &pwSpec->server.write_key_item, \
314 "SSL3 Export Server Write Key");
315 key_block2 += keySize;
316 PORT_Assert(i <= block_bytes);
318 if (IVSize) {
320 ** client_write_IV =
321 ** MD5(ClientHello.random + ServerHello.random);
323 MD5_Begin(md5Ctx);
324 MD5_Update(md5Ctx, crsr.data, crsr.len);
325 MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
326 buildSSLKey(key_block2, IVSize, &pwSpec->client.write_iv_item, \
327 "SSL3 Export Client Write IV");
328 key_block2 += IVSize;
331 ** server_write_IV =
332 ** MD5(ServerHello.random + ClientHello.random);
334 MD5_Begin(md5Ctx);
335 MD5_Update(md5Ctx, srcr.data, srcr.len);
336 MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
337 buildSSLKey(key_block2, IVSize, &pwSpec->server.write_iv_item, \
338 "SSL3 Export Server Write IV");
339 key_block2 += IVSize;
342 PORT_Assert(key_block2 - key_block <= sizeof pwSpec->key_block);
343 } else {
345 ** Generate TLS Export write keys and IVs.
347 SECItem secret ;
348 SECItem keyblk ;
350 secret.type = siBuffer;
351 keyblk.type = siBuffer;
353 ** client_write_key[CipherSpec.key_material]
354 ** final_client_write_key = PRF(client_write_key,
355 ** "client write key",
356 ** client_random + server_random);
358 secret.data = &key_block[i];
359 secret.len = effKeySize;
360 i += effKeySize;
361 keyblk.data = key_block2;
362 keyblk.len = keySize;
363 status = TLS_PRF(&secret, "client write key", &crsr, &keyblk, isFIPS);
364 if (status != SECSuccess) {
365 goto key_and_mac_derive_fail;
367 buildSSLKey(key_block2, keySize, &pwSpec->client.write_key_item, \
368 "TLS Export Client Write Key");
369 key_block2 += keySize;
372 ** server_write_key[CipherSpec.key_material]
373 ** final_server_write_key = PRF(server_write_key,
374 ** "server write key",
375 ** client_random + server_random);
377 secret.data = &key_block[i];
378 secret.len = effKeySize;
379 i += effKeySize;
380 keyblk.data = key_block2;
381 keyblk.len = keySize;
382 status = TLS_PRF(&secret, "server write key", &crsr, &keyblk, isFIPS);
383 if (status != SECSuccess) {
384 goto key_and_mac_derive_fail;
386 buildSSLKey(key_block2, keySize, &pwSpec->server.write_key_item, \
387 "TLS Export Server Write Key");
388 key_block2 += keySize;
391 ** iv_block = PRF("", "IV block", client_random + server_random);
392 ** client_write_IV[SecurityParameters.IV_size]
393 ** server_write_IV[SecurityParameters.IV_size]
395 if (IVSize) {
396 secret.data = NULL;
397 secret.len = 0;
398 keyblk.data = key_block2;
399 keyblk.len = 2 * IVSize;
400 status = TLS_PRF(&secret, "IV block", &crsr, &keyblk, isFIPS);
401 if (status != SECSuccess) {
402 goto key_and_mac_derive_fail;
404 buildSSLKey(key_block2, IVSize, \
405 &pwSpec->client.write_iv_item, \
406 "TLS Export Client Write IV");
407 buildSSLKey(key_block2 + IVSize, IVSize, \
408 &pwSpec->server.write_iv_item, \
409 "TLS Export Server Write IV");
410 key_block2 += 2 * IVSize;
412 PORT_Assert(key_block2 - key_block <= sizeof pwSpec->key_block);
414 rv = SECSuccess;
416 key_and_mac_derive_fail:
418 MD5_DestroyContext(md5Ctx, PR_FALSE);
419 SHA1_DestroyContext(shaCtx, PR_FALSE);
421 if (rv != SECSuccess) {
422 PORT_SetError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
425 return rv;
429 /* derive the Master Secret from the PMS */
430 /* Presently, this is only done wtih RSA PMS, and only on the server side,
431 * so isRSA is always true.
433 SECStatus
434 ssl3_MasterKeyDeriveBypass(
435 ssl3CipherSpec * pwSpec,
436 const unsigned char * cr,
437 const unsigned char * sr,
438 const SECItem * pms,
439 PRBool isTLS,
440 PRBool isRSA)
442 unsigned char * key_block = pwSpec->key_block;
443 SECStatus rv = SECSuccess;
444 PRBool isFIPS = PR_FALSE;
445 PRBool isTLS12 = pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2;
447 SECItem crsr;
449 unsigned char crsrdata[SSL3_RANDOM_LENGTH * 2];
450 PRUint64 md5buf[22];
451 PRUint64 shabuf[40];
453 #define md5Ctx ((MD5Context *)md5buf)
454 #define shaCtx ((SHA1Context *)shabuf)
456 /* first do the consistancy checks */
457 if (isRSA) {
458 PORT_Assert(pms->len == SSL3_RSA_PMS_LENGTH);
459 if (pms->len != SSL3_RSA_PMS_LENGTH) {
460 PORT_SetError(SEC_ERROR_INVALID_ARGS);
461 return SECFailure;
463 /* caller must test PMS version for rollback */
466 /* initialize the client random, server random block */
467 crsr.type = siBuffer;
468 crsr.data = crsrdata;
469 crsr.len = sizeof crsrdata;
470 PORT_Memcpy(crsrdata, cr, SSL3_RANDOM_LENGTH);
471 PORT_Memcpy(crsrdata + SSL3_RANDOM_LENGTH, sr, SSL3_RANDOM_LENGTH);
472 PRINT_BUF(100, (NULL, "Master Secret CRSR", crsr.data, crsr.len));
474 /* finally do the key gen */
475 if (isTLS) {
476 SECItem master = { siBuffer, NULL, 0 };
478 master.data = key_block;
479 master.len = SSL3_MASTER_SECRET_LENGTH;
481 if (isTLS12) {
482 rv = TLS_P_hash(HASH_AlgSHA256, pms, "master secret", &crsr,
483 &master, isFIPS);
484 } else {
485 rv = TLS_PRF(pms, "master secret", &crsr, &master, isFIPS);
487 if (rv != SECSuccess) {
488 PORT_SetError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
490 } else {
491 int i;
492 unsigned int made = 0;
493 for (i = 0; i < 3; i++) {
494 unsigned int outLen;
495 unsigned char sha_out[SHA1_LENGTH];
497 SHA1_Begin(shaCtx);
498 SHA1_Update(shaCtx, (unsigned char*) mixers[i], i+1);
499 SHA1_Update(shaCtx, pms->data, pms->len);
500 SHA1_Update(shaCtx, crsr.data, crsr.len);
501 SHA1_End(shaCtx, sha_out, &outLen, SHA1_LENGTH);
502 PORT_Assert(outLen == SHA1_LENGTH);
504 MD5_Begin(md5Ctx);
505 MD5_Update(md5Ctx, pms->data, pms->len);
506 MD5_Update(md5Ctx, sha_out, outLen);
507 MD5_End(md5Ctx, key_block + made, &outLen, MD5_LENGTH);
508 PORT_Assert(outLen == MD5_LENGTH);
509 made += outLen;
513 /* store the results */
514 PORT_Memcpy(pwSpec->raw_master_secret, key_block,
515 SSL3_MASTER_SECRET_LENGTH);
516 pwSpec->msItem.data = pwSpec->raw_master_secret;
517 pwSpec->msItem.len = SSL3_MASTER_SECRET_LENGTH;
518 PRINT_BUF(100, (NULL, "Master Secret", pwSpec->msItem.data,
519 pwSpec->msItem.len));
521 return rv;
524 static SECStatus
525 ssl_canExtractMS(PK11SymKey *pms, PRBool isTLS, PRBool isDH, PRBool *pcbp)
526 { SECStatus rv;
527 PK11SymKey * ms = NULL;
528 SECItem params = {siBuffer, NULL, 0};
529 CK_SSL3_MASTER_KEY_DERIVE_PARAMS master_params;
530 unsigned char rand[SSL3_RANDOM_LENGTH];
531 CK_VERSION pms_version;
532 CK_MECHANISM_TYPE master_derive;
533 CK_MECHANISM_TYPE key_derive;
534 CK_FLAGS keyFlags;
536 if (pms == NULL)
537 return(SECFailure);
539 PORT_Memset(rand, 0, SSL3_RANDOM_LENGTH);
541 if (isTLS) {
542 if(isDH) master_derive = CKM_TLS_MASTER_KEY_DERIVE_DH;
543 else master_derive = CKM_TLS_MASTER_KEY_DERIVE;
544 key_derive = CKM_TLS_KEY_AND_MAC_DERIVE;
545 keyFlags = CKF_SIGN | CKF_VERIFY;
546 } else {
547 if (isDH) master_derive = CKM_SSL3_MASTER_KEY_DERIVE_DH;
548 else master_derive = CKM_SSL3_MASTER_KEY_DERIVE;
549 key_derive = CKM_SSL3_KEY_AND_MAC_DERIVE;
550 keyFlags = 0;
553 master_params.pVersion = &pms_version;
554 master_params.RandomInfo.pClientRandom = rand;
555 master_params.RandomInfo.ulClientRandomLen = SSL3_RANDOM_LENGTH;
556 master_params.RandomInfo.pServerRandom = rand;
557 master_params.RandomInfo.ulServerRandomLen = SSL3_RANDOM_LENGTH;
559 params.data = (unsigned char *) &master_params;
560 params.len = sizeof master_params;
562 ms = PK11_DeriveWithFlags(pms, master_derive, &params, key_derive,
563 CKA_DERIVE, 0, keyFlags);
564 if (ms == NULL)
565 return(SECFailure);
567 rv = PK11_ExtractKeyValue(ms);
568 *pcbp = (rv == SECSuccess);
569 PK11_FreeSymKey(ms);
571 return(rv);
574 #endif /* !NO_PKCS11_BYPASS */
576 /* Check the key exchange algorithm for each cipher in the list to see if
577 * a master secret key can be extracted. If the KEA will use keys from the
578 * specified cert make sure the extract operation is attempted from the slot
579 * where the private key resides.
580 * If MS can be extracted for all ciphers, (*pcanbypass) is set to TRUE and
581 * SECSuccess is returned. In all other cases but one (*pcanbypass) is
582 * set to FALSE and SECFailure is returned.
583 * In that last case Derive() has been called successfully but the MS is null,
584 * CanBypass sets (*pcanbypass) to FALSE and returns SECSuccess indicating the
585 * arguments were all valid but the slot cannot be bypassed.
588 /* XXX Add SSL_CBP_TLS1_1 and test it in protocolmask when setting isTLS. */
590 SECStatus
591 SSL_CanBypass(CERTCertificate *cert, SECKEYPrivateKey *srvPrivkey,
592 PRUint32 protocolmask, PRUint16 *ciphersuites, int nsuites,
593 PRBool *pcanbypass, void *pwArg)
595 #ifdef NO_PKCS11_BYPASS
596 if (!pcanbypass) {
597 PORT_SetError(SEC_ERROR_INVALID_ARGS);
598 return SECFailure;
600 *pcanbypass = PR_FALSE;
601 return SECSuccess;
602 #else
603 SECStatus rv;
604 int i;
605 PRUint16 suite;
606 PK11SymKey * pms = NULL;
607 SECKEYPublicKey * srvPubkey = NULL;
608 KeyType privKeytype;
609 PK11SlotInfo * slot = NULL;
610 SECItem param;
611 CK_VERSION version;
612 CK_MECHANISM_TYPE mechanism_array[2];
613 SECItem enc_pms = {siBuffer, NULL, 0};
614 PRBool isTLS = PR_FALSE;
615 SSLCipherSuiteInfo csdef;
616 PRBool testrsa = PR_FALSE;
617 PRBool testrsa_export = PR_FALSE;
618 PRBool testecdh = PR_FALSE;
619 PRBool testecdhe = PR_FALSE;
620 #ifndef NSS_DISABLE_ECC
621 SECKEYECParams ecParams = { siBuffer, NULL, 0 };
622 #endif
624 if (!cert || !srvPrivkey || !ciphersuites || !pcanbypass) {
625 PORT_SetError(SEC_ERROR_INVALID_ARGS);
626 return SECFailure;
629 srvPubkey = CERT_ExtractPublicKey(cert);
630 if (!srvPubkey)
631 return SECFailure;
633 *pcanbypass = PR_TRUE;
634 rv = SECFailure;
636 /* determine which KEAs to test */
637 /* 0 (TLS_NULL_WITH_NULL_NULL) is used as a list terminator because
638 * SSL3 and TLS specs forbid negotiating that cipher suite number.
640 for (i=0; i < nsuites && (suite = *ciphersuites++) != 0; i++) {
641 /* skip SSL2 cipher suites and ones NSS doesn't support */
642 if (SSL_GetCipherSuiteInfo(suite, &csdef, sizeof(csdef)) != SECSuccess
643 || SSL_IS_SSL2_CIPHER(suite) )
644 continue;
645 switch (csdef.keaType) {
646 case ssl_kea_rsa:
647 switch (csdef.cipherSuite) {
648 case TLS_RSA_EXPORT1024_WITH_RC4_56_SHA:
649 case TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA:
650 case TLS_RSA_EXPORT_WITH_RC4_40_MD5:
651 case TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5:
652 testrsa_export = PR_TRUE;
654 if (!testrsa_export)
655 testrsa = PR_TRUE;
656 break;
657 case ssl_kea_ecdh:
658 if (strcmp(csdef.keaTypeName, "ECDHE") == 0) /* ephemeral? */
659 testecdhe = PR_TRUE;
660 else
661 testecdh = PR_TRUE;
662 break;
663 case ssl_kea_dh:
664 /* this is actually DHE */
665 default:
666 continue;
670 /* For each protocol try to derive and extract an MS.
671 * Failure of function any function except MS extract means
672 * continue with the next cipher test. Stop testing when the list is
673 * exhausted or when the first MS extract--not derive--fails.
675 privKeytype = SECKEY_GetPrivateKeyType(srvPrivkey);
676 protocolmask &= SSL_CBP_SSL3|SSL_CBP_TLS1_0;
677 while (protocolmask) {
678 if (protocolmask & SSL_CBP_SSL3) {
679 isTLS = PR_FALSE;
680 protocolmask ^= SSL_CBP_SSL3;
681 } else {
682 isTLS = PR_TRUE;
683 protocolmask ^= SSL_CBP_TLS1_0;
686 if (privKeytype == rsaKey && testrsa_export) {
687 if (PK11_GetPrivateModulusLen(srvPrivkey) > EXPORT_RSA_KEY_LENGTH) {
688 *pcanbypass = PR_FALSE;
689 rv = SECSuccess;
690 break;
691 } else
692 testrsa = PR_TRUE;
694 for (; privKeytype == rsaKey && testrsa; ) {
695 /* TLS_RSA */
696 unsigned char rsaPmsBuf[SSL3_RSA_PMS_LENGTH];
697 unsigned int outLen = 0;
698 CK_MECHANISM_TYPE target;
699 SECStatus irv;
701 mechanism_array[0] = CKM_SSL3_PRE_MASTER_KEY_GEN;
702 mechanism_array[1] = CKM_RSA_PKCS;
704 slot = PK11_GetBestSlotMultiple(mechanism_array, 2, pwArg);
705 if (slot == NULL) {
706 PORT_SetError(SSL_ERROR_TOKEN_SLOT_NOT_FOUND);
707 break;
710 /* Generate the pre-master secret ... (client side) */
711 version.major = 3 /*MSB(clientHelloVersion)*/;
712 version.minor = 0 /*LSB(clientHelloVersion)*/;
713 param.data = (unsigned char *)&version;
714 param.len = sizeof version;
715 pms = PK11_KeyGen(slot, CKM_SSL3_PRE_MASTER_KEY_GEN, &param, 0, pwArg);
716 PK11_FreeSlot(slot);
717 if (!pms)
718 break;
719 /* now wrap it */
720 enc_pms.len = SECKEY_PublicKeyStrength(srvPubkey);
721 enc_pms.data = (unsigned char*)PORT_Alloc(enc_pms.len);
722 if (enc_pms.data == NULL) {
723 PORT_SetError(PR_OUT_OF_MEMORY_ERROR);
724 break;
726 irv = PK11_PubWrapSymKey(CKM_RSA_PKCS, srvPubkey, pms, &enc_pms);
727 if (irv != SECSuccess)
728 break;
729 PK11_FreeSymKey(pms);
730 pms = NULL;
731 /* now do the server side--check the triple bypass first */
732 rv = PK11_PrivDecryptPKCS1(srvPrivkey, rsaPmsBuf, &outLen,
733 sizeof rsaPmsBuf,
734 (unsigned char *)enc_pms.data,
735 enc_pms.len);
736 /* if decrypt worked we're done with the RSA test */
737 if (rv == SECSuccess) {
738 *pcanbypass = PR_TRUE;
739 break;
741 /* check for fallback to double bypass */
742 target = isTLS ? CKM_TLS_MASTER_KEY_DERIVE
743 : CKM_SSL3_MASTER_KEY_DERIVE;
744 pms = PK11_PubUnwrapSymKey(srvPrivkey, &enc_pms,
745 target, CKA_DERIVE, 0);
746 rv = ssl_canExtractMS(pms, isTLS, PR_FALSE, pcanbypass);
747 if (rv == SECSuccess && *pcanbypass == PR_FALSE)
748 goto done;
749 break;
752 /* Check for NULL to avoid double free.
753 * SECItem_FreeItem sets data NULL in secitem.c#265
755 if (enc_pms.data != NULL) {
756 SECITEM_FreeItem(&enc_pms, PR_FALSE);
758 #ifndef NSS_DISABLE_ECC
759 for (; (privKeytype == ecKey && ( testecdh || testecdhe)) ||
760 (privKeytype == rsaKey && testecdhe); ) {
761 CK_MECHANISM_TYPE target;
762 SECKEYPublicKey *keapub = NULL;
763 SECKEYPrivateKey *keapriv;
764 SECKEYPublicKey *cpub = NULL; /* client's ephemeral ECDH keys */
765 SECKEYPrivateKey *cpriv = NULL;
766 SECKEYECParams *pecParams = NULL;
768 if (privKeytype == ecKey && testecdhe) {
769 /* TLS_ECDHE_ECDSA */
770 pecParams = &srvPubkey->u.ec.DEREncodedParams;
771 } else if (privKeytype == rsaKey && testecdhe) {
772 /* TLS_ECDHE_RSA */
773 ECName ec_curve;
774 int serverKeyStrengthInBits;
775 int signatureKeyStrength;
776 int requiredECCbits;
778 /* find a curve of equivalent strength to the RSA key's */
779 requiredECCbits = PK11_GetPrivateModulusLen(srvPrivkey);
780 if (requiredECCbits < 0)
781 break;
782 requiredECCbits *= BPB;
783 serverKeyStrengthInBits = srvPubkey->u.rsa.modulus.len;
784 if (srvPubkey->u.rsa.modulus.data[0] == 0) {
785 serverKeyStrengthInBits--;
787 /* convert to strength in bits */
788 serverKeyStrengthInBits *= BPB;
790 signatureKeyStrength =
791 SSL_RSASTRENGTH_TO_ECSTRENGTH(serverKeyStrengthInBits);
793 if ( requiredECCbits > signatureKeyStrength )
794 requiredECCbits = signatureKeyStrength;
796 ec_curve =
797 ssl3_GetCurveWithECKeyStrength(
798 ssl3_GetSupportedECCurveMask(NULL),
799 requiredECCbits);
800 rv = ssl3_ECName2Params(NULL, ec_curve, &ecParams);
801 if (rv == SECFailure) {
802 break;
804 pecParams = &ecParams;
807 if (testecdhe) {
808 /* generate server's ephemeral keys */
809 keapriv = SECKEY_CreateECPrivateKey(pecParams, &keapub, NULL);
810 if (!keapriv || !keapub) {
811 if (keapriv)
812 SECKEY_DestroyPrivateKey(keapriv);
813 if (keapub)
814 SECKEY_DestroyPublicKey(keapub);
815 PORT_SetError(SEC_ERROR_KEYGEN_FAIL);
816 rv = SECFailure;
817 break;
819 } else {
820 /* TLS_ECDH_ECDSA */
821 keapub = srvPubkey;
822 keapriv = srvPrivkey;
823 pecParams = &srvPubkey->u.ec.DEREncodedParams;
826 /* perform client side ops */
827 /* generate a pair of ephemeral keys using server's parms */
828 cpriv = SECKEY_CreateECPrivateKey(pecParams, &cpub, NULL);
829 if (!cpriv || !cpub) {
830 if (testecdhe) {
831 SECKEY_DestroyPrivateKey(keapriv);
832 SECKEY_DestroyPublicKey(keapub);
834 PORT_SetError(SEC_ERROR_KEYGEN_FAIL);
835 rv = SECFailure;
836 break;
838 /* now do the server side */
839 /* determine the PMS using client's public value */
840 target = isTLS ? CKM_TLS_MASTER_KEY_DERIVE_DH
841 : CKM_SSL3_MASTER_KEY_DERIVE_DH;
842 pms = PK11_PubDeriveWithKDF(keapriv, cpub, PR_FALSE, NULL, NULL,
843 CKM_ECDH1_DERIVE,
844 target,
845 CKA_DERIVE, 0, CKD_NULL, NULL, NULL);
846 rv = ssl_canExtractMS(pms, isTLS, PR_TRUE, pcanbypass);
847 SECKEY_DestroyPrivateKey(cpriv);
848 SECKEY_DestroyPublicKey(cpub);
849 if (testecdhe) {
850 SECKEY_DestroyPrivateKey(keapriv);
851 SECKEY_DestroyPublicKey(keapub);
853 if (rv == SECSuccess && *pcanbypass == PR_FALSE)
854 goto done;
855 break;
857 /* Check for NULL to avoid double free. */
858 if (ecParams.data != NULL) {
859 PORT_Free(ecParams.data);
860 ecParams.data = NULL;
862 #endif /* NSS_DISABLE_ECC */
863 if (pms)
864 PK11_FreeSymKey(pms);
867 /* *pcanbypass has been set */
868 rv = SECSuccess;
870 done:
871 if (pms)
872 PK11_FreeSymKey(pms);
874 /* Check for NULL to avoid double free.
875 * SECItem_FreeItem sets data NULL in secitem.c#265
877 if (enc_pms.data != NULL) {
878 SECITEM_FreeItem(&enc_pms, PR_FALSE);
880 #ifndef NSS_DISABLE_ECC
881 if (ecParams.data != NULL) {
882 PORT_Free(ecParams.data);
883 ecParams.data = NULL;
885 #endif /* NSS_DISABLE_ECC */
887 if (srvPubkey) {
888 SECKEY_DestroyPublicKey(srvPubkey);
889 srvPubkey = NULL;
893 return rv;
894 #endif /* NO_PKCS11_BYPASS */