1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef SaturatedArithmeticARM_h
6 #define SaturatedArithmeticARM_h
12 ALWAYS_INLINE
int32_t saturatedAddition(int32_t a
, int32_t b
)
16 asm("qadd %[output],%[first],%[second]"
17 : [output
] "=r" (result
)
24 ALWAYS_INLINE
int32_t saturatedSubtraction(int32_t a
, int32_t b
)
28 asm("qsub %[output],%[first],%[second]"
29 : [output
] "=r" (result
)
36 inline int getMaxSaturatedSetResultForTesting(int FractionalShift
)
38 // For ARM Asm version the set function maxes out to the biggest
39 // possible integer part with the fractional part zero'd out.
41 return std::numeric_limits
<int>::max() & ~((1 << FractionalShift
)-1);
44 inline int getMinSaturatedSetResultForTesting(int FractionalShift
)
46 return std::numeric_limits
<int>::min();
49 ALWAYS_INLINE
int saturatedSet(int value
, int FractionalShift
)
51 // Figure out how many bits are left for storing the integer part of
52 // the fixed point number, and saturate our input to that
53 const int saturate
= 32 - FractionalShift
;
57 // The following ARM code will Saturate the passed value to the number of
58 // bits used for the whole part of the fixed point representation, then
59 // shift it up into place. This will result in the low <FractionShift> bits
60 // all being 0's. When the value saturates this gives a different result
61 // to from the C++ case; in the C++ code a saturated value has all the low
62 // bits set to 1 (for a +ve number at least). This cannot be done rapidly
63 // in ARM ... we live with the difference, for the sake of speed.
65 asm("ssat %[output],%[saturate],%[value]\n\t"
66 "lsl %[output],%[shift]"
67 : [output
] "=r" (result
)
68 : [value
] "r" (value
),
69 [saturate
] "n" (saturate
),
70 [shift
] "n" (FractionalShift
));
76 ALWAYS_INLINE
int saturatedSet(unsigned value
, int FractionalShift
)
78 // Here we are being passed an unsigned value to saturate,
79 // even though the result is returned as a signed integer. The ARM
80 // instruction for unsigned saturation therefore needs to be given one
81 // less bit (i.e. the sign bit) for the saturation to work correctly; hence
83 const int saturate
= 31 - FractionalShift
;
85 // The following ARM code will Saturate the passed value to the number of
86 // bits used for the whole part of the fixed point representation, then
87 // shift it up into place. This will result in the low <FractionShift> bits
88 // all being 0's. When the value saturates this gives a different result
89 // to from the C++ case; in the C++ code a saturated value has all the low
90 // bits set to 1. This cannot be done rapidly in ARM, so we live with the
91 // difference, for the sake of speed.
95 asm("usat %[output],%[saturate],%[value]\n\t"
96 "lsl %[output],%[shift]"
97 : [output
] "=r" (result
)
98 : [value
] "r" (value
),
99 [saturate
] "n" (saturate
),
100 [shift
] "n" (FractionalShift
));
105 #endif // SaturatedArithmeticARM_h