Merge Chromium + Blink git repositories
[chromium-blink-merge.git] / third_party / WebKit / Source / wtf / dtoa / fixed-dtoa.cc
blob859418c9942f05f4b98ad703af1becee0b2c0ebc
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "config.h"
30 #include <math.h>
32 #include "double.h"
33 #include "fixed-dtoa.h"
35 namespace WTF {
37 namespace double_conversion {
39 // Represents a 128bit type. This class should be replaced by a native type on
40 // platforms that support 128bit integers.
41 class UInt128 {
42 public:
43 UInt128() : high_bits_(0), low_bits_(0) { }
44 UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
46 void Multiply(uint32_t multiplicand) {
47 uint64_t accumulator;
49 accumulator = (low_bits_ & kMask32) * multiplicand;
50 uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
51 accumulator >>= 32;
52 accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
53 low_bits_ = (accumulator << 32) + part;
54 accumulator >>= 32;
55 accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
56 part = static_cast<uint32_t>(accumulator & kMask32);
57 accumulator >>= 32;
58 accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
59 high_bits_ = (accumulator << 32) + part;
60 ASSERT((accumulator >> 32) == 0);
63 void Shift(int shift_amount) {
64 ASSERT(-64 <= shift_amount && shift_amount <= 64);
65 if (shift_amount == 0) {
66 return;
67 } else if (shift_amount == -64) {
68 high_bits_ = low_bits_;
69 low_bits_ = 0;
70 } else if (shift_amount == 64) {
71 low_bits_ = high_bits_;
72 high_bits_ = 0;
73 } else if (shift_amount <= 0) {
74 high_bits_ <<= -shift_amount;
75 high_bits_ += low_bits_ >> (64 + shift_amount);
76 low_bits_ <<= -shift_amount;
77 } else {
78 low_bits_ >>= shift_amount;
79 low_bits_ += high_bits_ << (64 - shift_amount);
80 high_bits_ >>= shift_amount;
84 // Modifies *this to *this MOD (2^power).
85 // Returns *this DIV (2^power).
86 int DivModPowerOf2(int power) {
87 if (power >= 64) {
88 int result = static_cast<int>(high_bits_ >> (power - 64));
89 high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
90 return result;
91 } else {
92 uint64_t part_low = low_bits_ >> power;
93 uint64_t part_high = high_bits_ << (64 - power);
94 int result = static_cast<int>(part_low + part_high);
95 high_bits_ = 0;
96 low_bits_ -= part_low << power;
97 return result;
101 bool IsZero() const {
102 return high_bits_ == 0 && low_bits_ == 0;
105 int BitAt(int position) {
106 if (position >= 64) {
107 return static_cast<int>(high_bits_ >> (position - 64)) & 1;
108 } else {
109 return static_cast<int>(low_bits_ >> position) & 1;
113 private:
114 static const uint64_t kMask32 = 0xFFFFFFFF;
115 // Value == (high_bits_ << 64) + low_bits_
116 uint64_t high_bits_;
117 uint64_t low_bits_;
121 static const int kDoubleSignificandSize = 53; // Includes the hidden bit.
124 static void FillDigits32FixedLength(uint32_t number, int requested_length,
125 Vector<char> buffer, int* length) {
126 for (int i = requested_length - 1; i >= 0; --i) {
127 buffer[(*length) + i] = '0' + number % 10;
128 number /= 10;
130 *length += requested_length;
134 static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
135 int number_length = 0;
136 // We fill the digits in reverse order and exchange them afterwards.
137 while (number != 0) {
138 char digit = number % 10;
139 number /= 10;
140 buffer[(*length) + number_length] = '0' + digit;
141 number_length++;
143 // Exchange the digits.
144 int i = *length;
145 int j = *length + number_length - 1;
146 while (i < j) {
147 char tmp = buffer[i];
148 buffer[i] = buffer[j];
149 buffer[j] = tmp;
150 i++;
151 j--;
153 *length += number_length;
157 static void FillDigits64FixedLength(uint64_t number, int,
158 Vector<char> buffer, int* length) {
159 const uint32_t kTen7 = 10000000;
160 // For efficiency cut the number into 3 uint32_t parts, and print those.
161 uint32_t part2 = static_cast<uint32_t>(number % kTen7);
162 number /= kTen7;
163 uint32_t part1 = static_cast<uint32_t>(number % kTen7);
164 uint32_t part0 = static_cast<uint32_t>(number / kTen7);
166 FillDigits32FixedLength(part0, 3, buffer, length);
167 FillDigits32FixedLength(part1, 7, buffer, length);
168 FillDigits32FixedLength(part2, 7, buffer, length);
172 static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
173 const uint32_t kTen7 = 10000000;
174 // For efficiency cut the number into 3 uint32_t parts, and print those.
175 uint32_t part2 = static_cast<uint32_t>(number % kTen7);
176 number /= kTen7;
177 uint32_t part1 = static_cast<uint32_t>(number % kTen7);
178 uint32_t part0 = static_cast<uint32_t>(number / kTen7);
180 if (part0 != 0) {
181 FillDigits32(part0, buffer, length);
182 FillDigits32FixedLength(part1, 7, buffer, length);
183 FillDigits32FixedLength(part2, 7, buffer, length);
184 } else if (part1 != 0) {
185 FillDigits32(part1, buffer, length);
186 FillDigits32FixedLength(part2, 7, buffer, length);
187 } else {
188 FillDigits32(part2, buffer, length);
193 static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) {
194 // An empty buffer represents 0.
195 if (*length == 0) {
196 buffer[0] = '1';
197 *decimal_point = 1;
198 *length = 1;
199 return;
201 // Round the last digit until we either have a digit that was not '9' or until
202 // we reached the first digit.
203 buffer[(*length) - 1]++;
204 for (int i = (*length) - 1; i > 0; --i) {
205 if (buffer[i] != '0' + 10) {
206 return;
208 buffer[i] = '0';
209 buffer[i - 1]++;
211 // If the first digit is now '0' + 10, we would need to set it to '0' and add
212 // a '1' in front. However we reach the first digit only if all following
213 // digits had been '9' before rounding up. Now all trailing digits are '0' and
214 // we simply switch the first digit to '1' and update the decimal-point
215 // (indicating that the point is now one digit to the right).
216 if (buffer[0] == '0' + 10) {
217 buffer[0] = '1';
218 (*decimal_point)++;
223 // The given fractionals number represents a fixed-point number with binary
224 // point at bit (-exponent).
225 // Preconditions:
226 // -128 <= exponent <= 0.
227 // 0 <= fractionals * 2^exponent < 1
228 // The buffer holds the result.
229 // The function will round its result. During the rounding-process digits not
230 // generated by this function might be updated, and the decimal-point variable
231 // might be updated. If this function generates the digits 99 and the buffer
232 // already contained "199" (thus yielding a buffer of "19999") then a
233 // rounding-up will change the contents of the buffer to "20000".
234 static void FillFractionals(uint64_t fractionals, int exponent,
235 int fractional_count, Vector<char> buffer,
236 int* length, int* decimal_point) {
237 ASSERT(-128 <= exponent && exponent <= 0);
238 // 'fractionals' is a fixed-point number, with binary point at bit
239 // (-exponent). Inside the function the non-converted remainder of fractionals
240 // is a fixed-point number, with binary point at bit 'point'.
241 if (-exponent <= 64) {
242 // One 64 bit number is sufficient.
243 ASSERT(fractionals >> 56 == 0);
244 int point = -exponent;
245 for (int i = 0; i < fractional_count; ++i) {
246 if (fractionals == 0) break;
247 // Instead of multiplying by 10 we multiply by 5 and adjust the point
248 // location. This way the fractionals variable will not overflow.
249 // Invariant at the beginning of the loop: fractionals < 2^point.
250 // Initially we have: point <= 64 and fractionals < 2^56
251 // After each iteration the point is decremented by one.
252 // Note that 5^3 = 125 < 128 = 2^7.
253 // Therefore three iterations of this loop will not overflow fractionals
254 // (even without the subtraction at the end of the loop body). At this
255 // time point will satisfy point <= 61 and therefore fractionals < 2^point
256 // and any further multiplication of fractionals by 5 will not overflow.
257 fractionals *= 5;
258 point--;
259 char digit = static_cast<char>(fractionals >> point);
260 buffer[*length] = '0' + digit;
261 (*length)++;
262 fractionals -= static_cast<uint64_t>(digit) << point;
264 // If the first bit after the point is set we have to round up.
265 if (((fractionals >> (point - 1)) & 1) == 1) {
266 RoundUp(buffer, length, decimal_point);
268 } else { // We need 128 bits.
269 ASSERT(64 < -exponent && -exponent <= 128);
270 UInt128 fractionals128 = UInt128(fractionals, 0);
271 fractionals128.Shift(-exponent - 64);
272 int point = 128;
273 for (int i = 0; i < fractional_count; ++i) {
274 if (fractionals128.IsZero()) break;
275 // As before: instead of multiplying by 10 we multiply by 5 and adjust the
276 // point location.
277 // This multiplication will not overflow for the same reasons as before.
278 fractionals128.Multiply(5);
279 point--;
280 char digit = static_cast<char>(fractionals128.DivModPowerOf2(point));
281 buffer[*length] = '0' + digit;
282 (*length)++;
284 if (fractionals128.BitAt(point - 1) == 1) {
285 RoundUp(buffer, length, decimal_point);
291 // Removes leading and trailing zeros.
292 // If leading zeros are removed then the decimal point position is adjusted.
293 static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
294 while (*length > 0 && buffer[(*length) - 1] == '0') {
295 (*length)--;
297 int first_non_zero = 0;
298 while (first_non_zero < *length && buffer[first_non_zero] == '0') {
299 first_non_zero++;
301 if (first_non_zero != 0) {
302 for (int i = first_non_zero; i < *length; ++i) {
303 buffer[i - first_non_zero] = buffer[i];
305 *length -= first_non_zero;
306 *decimal_point -= first_non_zero;
311 bool FastFixedDtoa(double v,
312 int fractional_count,
313 Vector<char> buffer,
314 int* length,
315 int* decimal_point) {
316 const uint32_t kMaxUInt32 = 0xFFFFFFFF;
317 uint64_t significand = Double(v).Significand();
318 int exponent = Double(v).Exponent();
319 // v = significand * 2^exponent (with significand a 53bit integer).
320 // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
321 // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
322 // If necessary this limit could probably be increased, but we don't need
323 // more.
324 if (exponent > 20) return false;
325 if (fractional_count > 20) return false;
326 *length = 0;
327 // At most kDoubleSignificandSize bits of the significand are non-zero.
328 // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
329 // bits: 0..11*..0xxx..53*..xx
330 if (exponent + kDoubleSignificandSize > 64) {
331 // The exponent must be > 11.
333 // We know that v = significand * 2^exponent.
334 // And the exponent > 11.
335 // We simplify the task by dividing v by 10^17.
336 // The quotient delivers the first digits, and the remainder fits into a 64
337 // bit number.
338 // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
339 const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5); // 5^17
340 uint64_t divisor = kFive17;
341 int divisor_power = 17;
342 uint64_t dividend = significand;
343 uint32_t quotient;
344 uint64_t remainder;
345 // Let v = f * 2^e with f == significand and e == exponent.
346 // Then need q (quotient) and r (remainder) as follows:
347 // v = q * 10^17 + r
348 // f * 2^e = q * 10^17 + r
349 // f * 2^e = q * 5^17 * 2^17 + r
350 // If e > 17 then
351 // f * 2^(e-17) = q * 5^17 + r/2^17
352 // else
353 // f = q * 5^17 * 2^(17-e) + r/2^e
354 if (exponent > divisor_power) {
355 // We only allow exponents of up to 20 and therefore (17 - e) <= 3
356 dividend <<= exponent - divisor_power;
357 quotient = static_cast<uint32_t>(dividend / divisor);
358 remainder = (dividend % divisor) << divisor_power;
359 } else {
360 divisor <<= divisor_power - exponent;
361 quotient = static_cast<uint32_t>(dividend / divisor);
362 remainder = (dividend % divisor) << exponent;
364 FillDigits32(quotient, buffer, length);
365 FillDigits64FixedLength(remainder, divisor_power, buffer, length);
366 *decimal_point = *length;
367 } else if (exponent >= 0) {
368 // 0 <= exponent <= 11
369 significand <<= exponent;
370 FillDigits64(significand, buffer, length);
371 *decimal_point = *length;
372 } else if (exponent > -kDoubleSignificandSize) {
373 // We have to cut the number.
374 uint64_t integrals = significand >> -exponent;
375 uint64_t fractionals = significand - (integrals << -exponent);
376 if (integrals > kMaxUInt32) {
377 FillDigits64(integrals, buffer, length);
378 } else {
379 FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
381 *decimal_point = *length;
382 FillFractionals(fractionals, exponent, fractional_count,
383 buffer, length, decimal_point);
384 } else if (exponent < -128) {
385 // This configuration (with at most 20 digits) means that all digits must be
386 // 0.
387 ASSERT(fractional_count <= 20);
388 buffer[0] = '\0';
389 *length = 0;
390 *decimal_point = -fractional_count;
391 } else {
392 *decimal_point = 0;
393 FillFractionals(significand, exponent, fractional_count,
394 buffer, length, decimal_point);
396 TrimZeros(buffer, length, decimal_point);
397 buffer[*length] = '\0';
398 if ((*length) == 0) {
399 // The string is empty and the decimal_point thus has no importance. Mimick
400 // Gay's dtoa and and set it to -fractional_count.
401 *decimal_point = -fractional_count;
403 return true;
406 } // namespace double_conversion
408 } // namespace WTF