1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 #include "cached-powers.h"
40 namespace double_conversion
{
42 // 2^53 = 9007199254740992.
43 // Any integer with at most 15 decimal digits will hence fit into a double
44 // (which has a 53bit significand) without loss of precision.
45 static const int kMaxExactDoubleIntegerDecimalDigits
= 15;
46 // 2^64 = 18446744073709551616 > 10^19
47 static const int kMaxUint64DecimalDigits
= 19;
49 // Max double: 1.7976931348623157 x 10^308
50 // Min non-zero double: 4.9406564584124654 x 10^-324
51 // Any x >= 10^309 is interpreted as +infinity.
52 // Any x <= 10^-324 is interpreted as 0.
53 // Note that 2.5e-324 (despite being smaller than the min double) will be read
54 // as non-zero (equal to the min non-zero double).
55 static const int kMaxDecimalPower
= 309;
56 static const int kMinDecimalPower
= -324;
58 // 2^64 = 18446744073709551616
59 static const uint64_t kMaxUint64
= UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF
);
62 static const double exact_powers_of_ten
[] = {
73 10000000000.0, // 10^10
81 1000000000000000000.0,
82 10000000000000000000.0,
83 100000000000000000000.0, // 10^20
84 1000000000000000000000.0,
85 // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
86 10000000000000000000000.0
88 static const int kExactPowersOfTenSize
= ARRAY_SIZE(exact_powers_of_ten
);
90 // Maximum number of significant digits in the decimal representation.
91 // In fact the value is 772 (see conversions.cc), but to give us some margin
92 // we round up to 780.
93 static const int kMaxSignificantDecimalDigits
= 780;
95 static Vector
<const char> TrimLeadingZeros(Vector
<const char> buffer
) {
96 for (int i
= 0; i
< buffer
.length(); i
++) {
97 if (buffer
[i
] != '0') {
98 return buffer
.SubVector(i
, buffer
.length());
101 return Vector
<const char>(buffer
.start(), 0);
105 static Vector
<const char> TrimTrailingZeros(Vector
<const char> buffer
) {
106 for (int i
= buffer
.length() - 1; i
>= 0; --i
) {
107 if (buffer
[i
] != '0') {
108 return buffer
.SubVector(0, i
+ 1);
111 return Vector
<const char>(buffer
.start(), 0);
115 static void TrimToMaxSignificantDigits(Vector
<const char> buffer
,
117 char* significant_buffer
,
118 int* significant_exponent
) {
119 for (int i
= 0; i
< kMaxSignificantDecimalDigits
- 1; ++i
) {
120 significant_buffer
[i
] = buffer
[i
];
122 // The input buffer has been trimmed. Therefore the last digit must be
123 // different from '0'.
124 ASSERT(buffer
[buffer
.length() - 1] != '0');
125 // Set the last digit to be non-zero. This is sufficient to guarantee
127 significant_buffer
[kMaxSignificantDecimalDigits
- 1] = '1';
128 *significant_exponent
=
129 exponent
+ (buffer
.length() - kMaxSignificantDecimalDigits
);
132 // Reads digits from the buffer and converts them to a uint64.
133 // Reads in as many digits as fit into a uint64.
134 // When the string starts with "1844674407370955161" no further digit is read.
135 // Since 2^64 = 18446744073709551616 it would still be possible read another
136 // digit if it was less or equal than 6, but this would complicate the code.
137 static uint64_t ReadUint64(Vector
<const char> buffer
,
138 int* number_of_read_digits
) {
141 while (i
< buffer
.length() && result
<= (kMaxUint64
/ 10 - 1)) {
142 int digit
= buffer
[i
++] - '0';
143 ASSERT(0 <= digit
&& digit
<= 9);
144 result
= 10 * result
+ digit
;
146 *number_of_read_digits
= i
;
151 // Reads a DiyFp from the buffer.
152 // The returned DiyFp is not necessarily normalized.
153 // If remaining_decimals is zero then the returned DiyFp is accurate.
154 // Otherwise it has been rounded and has error of at most 1/2 ulp.
155 static void ReadDiyFp(Vector
<const char> buffer
,
157 int* remaining_decimals
) {
159 uint64_t significand
= ReadUint64(buffer
, &read_digits
);
160 if (buffer
.length() == read_digits
) {
161 *result
= DiyFp(significand
, 0);
162 *remaining_decimals
= 0;
164 // Round the significand.
165 if (buffer
[read_digits
] >= '5') {
168 // Compute the binary exponent.
170 *result
= DiyFp(significand
, exponent
);
171 *remaining_decimals
= buffer
.length() - read_digits
;
176 static bool DoubleStrtod(Vector
<const char> trimmed
,
179 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
180 // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
181 // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
182 // result is not accurate.
183 // We know that Windows32 uses 64 bits and is therefore accurate.
184 // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
188 if (trimmed
.length() <= kMaxExactDoubleIntegerDecimalDigits
) {
190 // The trimmed input fits into a double.
191 // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
192 // can compute the result-double simply by multiplying (resp. dividing) the
194 // This is possible because IEEE guarantees that floating-point operations
195 // return the best possible approximation.
196 if (exponent
< 0 && -exponent
< kExactPowersOfTenSize
) {
197 // 10^-exponent fits into a double.
198 *result
= static_cast<double>(ReadUint64(trimmed
, &read_digits
));
199 ASSERT(read_digits
== trimmed
.length());
200 *result
/= exact_powers_of_ten
[-exponent
];
203 if (0 <= exponent
&& exponent
< kExactPowersOfTenSize
) {
204 // 10^exponent fits into a double.
205 *result
= static_cast<double>(ReadUint64(trimmed
, &read_digits
));
206 ASSERT(read_digits
== trimmed
.length());
207 *result
*= exact_powers_of_ten
[exponent
];
210 int remaining_digits
=
211 kMaxExactDoubleIntegerDecimalDigits
- trimmed
.length();
212 if ((0 <= exponent
) &&
213 (exponent
- remaining_digits
< kExactPowersOfTenSize
)) {
214 // The trimmed string was short and we can multiply it with
215 // 10^remaining_digits. As a result the remaining exponent now fits
216 // into a double too.
217 *result
= static_cast<double>(ReadUint64(trimmed
, &read_digits
));
218 ASSERT(read_digits
== trimmed
.length());
219 *result
*= exact_powers_of_ten
[remaining_digits
];
220 *result
*= exact_powers_of_ten
[exponent
- remaining_digits
];
228 // Returns 10^exponent as an exact DiyFp.
229 // The given exponent must be in the range [1; kDecimalExponentDistance[.
230 static DiyFp
AdjustmentPowerOfTen(int exponent
) {
231 ASSERT(0 < exponent
);
232 ASSERT(exponent
< PowersOfTenCache::kDecimalExponentDistance
);
233 // Simply hardcode the remaining powers for the given decimal exponent
235 ASSERT(PowersOfTenCache::kDecimalExponentDistance
== 8);
237 case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
238 case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
239 case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54);
240 case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50);
241 case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47);
242 case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44);
243 case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
251 // If the function returns true then the result is the correct double.
252 // Otherwise it is either the correct double or the double that is just below
253 // the correct double.
254 static bool DiyFpStrtod(Vector
<const char> buffer
,
258 int remaining_decimals
;
259 ReadDiyFp(buffer
, &input
, &remaining_decimals
);
260 // Since we may have dropped some digits the input is not accurate.
261 // If remaining_decimals is different than 0 than the error is at most
262 // .5 ulp (unit in the last place).
263 // We don't want to deal with fractions and therefore keep a common
265 const int kDenominatorLog
= 3;
266 const int kDenominator
= 1 << kDenominatorLog
;
267 // Move the remaining decimals into the exponent.
268 exponent
+= remaining_decimals
;
269 int error
= (remaining_decimals
== 0 ? 0 : kDenominator
/ 2);
271 int old_e
= input
.e();
273 error
<<= old_e
- input
.e();
275 ASSERT(exponent
<= PowersOfTenCache::kMaxDecimalExponent
);
276 if (exponent
< PowersOfTenCache::kMinDecimalExponent
) {
281 int cached_decimal_exponent
;
282 PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent
,
284 &cached_decimal_exponent
);
286 if (cached_decimal_exponent
!= exponent
) {
287 int adjustment_exponent
= exponent
- cached_decimal_exponent
;
288 DiyFp adjustment_power
= AdjustmentPowerOfTen(adjustment_exponent
);
289 input
.Multiply(adjustment_power
);
290 if (kMaxUint64DecimalDigits
- buffer
.length() >= adjustment_exponent
) {
291 // The product of input with the adjustment power fits into a 64 bit
293 ASSERT(DiyFp::kSignificandSize
== 64);
295 // The adjustment power is exact. There is hence only an error of 0.5.
296 error
+= kDenominator
/ 2;
300 input
.Multiply(cached_power
);
301 // The error introduced by a multiplication of a*b equals
302 // error_a + error_b + error_a*error_b/2^64 + 0.5
303 // Substituting a with 'input' and b with 'cached_power' we have
304 // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp),
305 // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
306 int error_b
= kDenominator
/ 2;
307 int error_ab
= (error
== 0 ? 0 : 1); // We round up to 1.
308 int fixed_error
= kDenominator
/ 2;
309 error
+= error_b
+ error_ab
+ fixed_error
;
313 error
<<= old_e
- input
.e();
315 // See if the double's significand changes if we add/subtract the error.
316 int order_of_magnitude
= DiyFp::kSignificandSize
+ input
.e();
317 int effective_significand_size
=
318 Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude
);
319 int precision_digits_count
=
320 DiyFp::kSignificandSize
- effective_significand_size
;
321 if (precision_digits_count
+ kDenominatorLog
>= DiyFp::kSignificandSize
) {
322 // This can only happen for very small denormals. In this case the
323 // half-way multiplied by the denominator exceeds the range of an uint64.
324 // Simply shift everything to the right.
325 int shift_amount
= (precision_digits_count
+ kDenominatorLog
) -
326 DiyFp::kSignificandSize
+ 1;
327 input
.set_f(input
.f() >> shift_amount
);
328 input
.set_e(input
.e() + shift_amount
);
329 // We add 1 for the lost precision of error, and kDenominator for
330 // the lost precision of input.f().
331 error
= (error
>> shift_amount
) + 1 + kDenominator
;
332 precision_digits_count
-= shift_amount
;
334 // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
335 ASSERT(DiyFp::kSignificandSize
== 64);
336 ASSERT(precision_digits_count
< 64);
338 uint64_t precision_bits_mask
= (one64
<< precision_digits_count
) - 1;
339 uint64_t precision_bits
= input
.f() & precision_bits_mask
;
340 uint64_t half_way
= one64
<< (precision_digits_count
- 1);
341 precision_bits
*= kDenominator
;
342 half_way
*= kDenominator
;
343 DiyFp
rounded_input(input
.f() >> precision_digits_count
,
344 input
.e() + precision_digits_count
);
345 if (precision_bits
>= half_way
+ error
) {
346 rounded_input
.set_f(rounded_input
.f() + 1);
348 // If the last_bits are too close to the half-way case than we are too
349 // inaccurate and round down. In this case we return false so that we can
350 // fall back to a more precise algorithm.
352 *result
= Double(rounded_input
).value();
353 if (half_way
- error
< precision_bits
&& precision_bits
< half_way
+ error
) {
354 // Too imprecise. The caller will have to fall back to a slower version.
355 // However the returned number is guaranteed to be either the correct
356 // double, or the next-lower double.
364 // Returns the correct double for the buffer*10^exponent.
365 // The variable guess should be a close guess that is either the correct double
366 // or its lower neighbor (the nearest double less than the correct one).
368 // buffer.length() + exponent <= kMaxDecimalPower + 1
369 // buffer.length() + exponent > kMinDecimalPower
370 // buffer.length() <= kMaxDecimalSignificantDigits
371 static double BignumStrtod(Vector
<const char> buffer
,
374 if (guess
== Double::Infinity()) {
378 DiyFp upper_boundary
= Double(guess
).UpperBoundary();
380 ASSERT(buffer
.length() + exponent
<= kMaxDecimalPower
+ 1);
381 ASSERT(buffer
.length() + exponent
> kMinDecimalPower
);
382 ASSERT(buffer
.length() <= kMaxSignificantDecimalDigits
);
383 // Make sure that the Bignum will be able to hold all our numbers.
384 // Our Bignum implementation has a separate field for exponents. Shifts will
385 // consume at most one bigit (< 64 bits).
386 // ln(10) == 3.3219...
387 ASSERT(((kMaxDecimalPower
+ 1) * 333 / 100) < Bignum::kMaxSignificantBits
);
390 input
.AssignDecimalString(buffer
);
391 boundary
.AssignUInt64(upper_boundary
.f());
393 input
.MultiplyByPowerOfTen(exponent
);
395 boundary
.MultiplyByPowerOfTen(-exponent
);
397 if (upper_boundary
.e() > 0) {
398 boundary
.ShiftLeft(upper_boundary
.e());
400 input
.ShiftLeft(-upper_boundary
.e());
402 int comparison
= Bignum::Compare(input
, boundary
);
403 if (comparison
< 0) {
405 } else if (comparison
> 0) {
406 return Double(guess
).NextDouble();
407 } else if ((Double(guess
).Significand() & 1) == 0) {
408 // Round towards even.
411 return Double(guess
).NextDouble();
416 double Strtod(Vector
<const char> buffer
, int exponent
) {
417 Vector
<const char> left_trimmed
= TrimLeadingZeros(buffer
);
418 Vector
<const char> trimmed
= TrimTrailingZeros(left_trimmed
);
419 exponent
+= left_trimmed
.length() - trimmed
.length();
420 if (trimmed
.length() == 0) return 0.0;
421 if (trimmed
.length() > kMaxSignificantDecimalDigits
) {
422 char significant_buffer
[kMaxSignificantDecimalDigits
];
423 int significant_exponent
;
424 TrimToMaxSignificantDigits(trimmed
, exponent
,
425 significant_buffer
, &significant_exponent
);
426 return Strtod(Vector
<const char>(significant_buffer
,
427 kMaxSignificantDecimalDigits
),
428 significant_exponent
);
430 if (exponent
+ trimmed
.length() - 1 >= kMaxDecimalPower
) {
431 return Double::Infinity();
433 if (exponent
+ trimmed
.length() <= kMinDecimalPower
) {
438 if (DoubleStrtod(trimmed
, exponent
, &guess
) ||
439 DiyFpStrtod(trimmed
, exponent
, &guess
)) {
442 return BignumStrtod(trimmed
, exponent
, guess
);
445 } // namespace double_conversion