Merge Chromium + Blink git repositories
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3080704 / ext / misc / amatch.c
blobd869dbd8d1394af672f96a5508d9e5ab91a2934f
1 /*
2 ** 2013-03-14
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code for a demonstration virtual table that finds
14 ** "approximate matches" - strings from a finite set that are nearly the
15 ** same as a single input string. The virtual table is called "amatch".
17 ** A amatch virtual table is created like this:
19 ** CREATE VIRTUAL TABLE f USING approximate_match(
20 ** vocabulary_table=<tablename>, -- V
21 ** vocabulary_word=<columnname>, -- W
22 ** vocabulary_language=<columnname>, -- L
23 ** edit_distances=<edit-cost-table>
24 ** );
26 ** When it is created, the new amatch table must be supplied with the
27 ** the name of a table V and columns V.W and V.L such that
29 ** SELECT W FROM V WHERE L=$language
31 ** returns the allowed vocabulary for the match. If the "vocabulary_language"
32 ** or L columnname is left unspecified or is an empty string, then no
33 ** filtering of the vocabulary by language is performed.
35 ** For efficiency, it is essential that the vocabulary table be indexed:
37 ** CREATE vocab_index ON V(W)
39 ** A separate edit-cost-table provides scoring information that defines
40 ** what it means for one string to be "close" to another.
42 ** The edit-cost-table must contain exactly four columns (more precisely,
43 ** the statement "SELECT * FROM <edit-cost-table>" must return records
44 ** that consist of four columns). It does not matter what the columns are
45 ** named.
47 ** Each row in the edit-cost-table represents a single character
48 ** transformation going from user input to the vocabulary. The leftmost
49 ** column of the row (column 0) contains an integer identifier of the
50 ** language to which the transformation rule belongs (see "MULTIPLE LANGUAGES"
51 ** below). The second column of the row (column 1) contains the input
52 ** character or characters - the characters of user input. The third
53 ** column contains characters as they appear in the vocabulary table.
54 ** And the fourth column contains the integer cost of making the
55 ** transformation. For example:
57 ** CREATE TABLE f_data(iLang, cFrom, cTo, Cost);
58 ** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, '', 'a', 100);
59 ** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, 'b', '', 87);
60 ** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, 'o', 'oe', 38);
61 ** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, 'oe', 'o', 40);
63 ** The first row inserted into the edit-cost-table by the SQL script
64 ** above indicates that the cost of having an extra 'a' in the vocabulary
65 ** table that is missing in the user input 100. (All costs are integers.
66 ** Overall cost must not exceed 16777216.) The second INSERT statement
67 ** creates a rule saying that the cost of having a single letter 'b' in
68 ** user input which is missing in the vocabulary table is 87. The third
69 ** INSERT statement mean that the cost of matching an 'o' in user input
70 ** against an 'oe' in the vocabulary table is 38. And so forth.
72 ** The following rules are special:
74 ** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, '?', '', 97);
75 ** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, '', '?', 98);
76 ** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, '?', '?', 99);
78 ** The '?' to '' rule is the cost of having any single character in the input
79 ** that is not found in the vocabular. The '' to '?' rule is the cost of
80 ** having a character in the vocabulary table that is missing from input.
81 ** And the '?' to '?' rule is the cost of doing an arbitrary character
82 ** substitution. These three generic rules apply across all languages.
83 ** In other words, the iLang field is ignored for the generic substitution
84 ** rules. If more than one cost is given for a generic substitution rule,
85 ** then the lowest cost is used.
87 ** Once it has been created, the amatch virtual table can be queried
88 ** as follows:
90 ** SELECT word, distance FROM f
91 ** WHERE word MATCH 'abcdefg'
92 ** AND distance<200;
94 ** This query outputs the strings contained in the T(F) field that
95 ** are close to "abcdefg" and in order of increasing distance. No string
96 ** is output more than once. If there are multiple ways to transform the
97 ** target string ("abcdefg") into a string in the vocabulary table then
98 ** the lowest cost transform is the one that is returned. In this example,
99 ** the search is limited to strings with a total distance of less than 200.
101 ** For efficiency, it is important to put tight bounds on the distance.
102 ** The time and memory space needed to perform this query is exponential
103 ** in the maximum distance. A good rule of thumb is to limit the distance
104 ** to no more than 1.5 or 2 times the maximum cost of any rule in the
105 ** edit-cost-table.
107 ** The amatch is a read-only table. Any attempt to DELETE, INSERT, or
108 ** UPDATE on a amatch table will throw an error.
110 ** It is important to put some kind of a limit on the amatch output. This
111 ** can be either in the form of a LIMIT clause at the end of the query,
112 ** or better, a "distance<NNN" constraint where NNN is some number. The
113 ** running time and memory requirement is exponential in the value of NNN
114 ** so you want to make sure that NNN is not too big. A value of NNN that
115 ** is about twice the average transformation cost seems to give good results.
117 ** The amatch table can be useful for tasks such as spelling correction.
118 ** Suppose all allowed words are in table vocabulary(w). Then one would create
119 ** an amatch virtual table like this:
121 ** CREATE VIRTUAL TABLE ex1 USING amatch(
122 ** vocabtable=vocabulary,
123 ** vocabcolumn=w,
124 ** edit_distances=ec1
125 ** );
127 ** Then given an input word $word, look up close spellings this way:
129 ** SELECT word, distance FROM ex1
130 ** WHERE word MATCH $word AND distance<200;
132 ** MULTIPLE LANGUAGES
134 ** Normally, the "iLang" value associated with all character transformations
135 ** in the edit-cost-table is zero. However, if required, the amatch
136 ** virtual table allows multiple languages to be defined. Each query uses
137 ** only a single iLang value. This allows, for example, a single
138 ** amatch table to support multiple languages.
140 ** By default, only the rules with iLang=0 are used. To specify an
141 ** alternative language, a "language = ?" expression must be added to the
142 ** WHERE clause of a SELECT, where ? is the integer identifier of the desired
143 ** language. For example:
145 ** SELECT word, distance FROM ex1
146 ** WHERE word MATCH $word
147 ** AND distance<=200
148 ** AND language=1 -- Specify use language 1 instead of 0
150 ** If no "language = ?" constraint is specified in the WHERE clause, language
151 ** 0 is used.
153 ** LIMITS
155 ** The maximum language number is 2147483647. The maximum length of either
156 ** of the strings in the second or third column of the amatch data table
157 ** is 50 bytes. The maximum cost on a rule is 1000.
159 #include "sqlite3ext.h"
160 SQLITE_EXTENSION_INIT1
161 #include <stdlib.h>
162 #include <string.h>
163 #include <assert.h>
164 #include <stdio.h>
165 #include <ctype.h>
167 #ifndef SQLITE_OMIT_VIRTUALTABLE
170 ** Forward declaration of objects used by this implementation
172 typedef struct amatch_vtab amatch_vtab;
173 typedef struct amatch_cursor amatch_cursor;
174 typedef struct amatch_rule amatch_rule;
175 typedef struct amatch_word amatch_word;
176 typedef struct amatch_avl amatch_avl;
179 /*****************************************************************************
180 ** AVL Tree implementation
183 ** Objects that want to be members of the AVL tree should embedded an
184 ** instance of this structure.
186 struct amatch_avl {
187 amatch_word *pWord; /* Points to the object being stored in the tree */
188 char *zKey; /* Key. zero-terminated string. Must be unique */
189 amatch_avl *pBefore; /* Other elements less than zKey */
190 amatch_avl *pAfter; /* Other elements greater than zKey */
191 amatch_avl *pUp; /* Parent element */
192 short int height; /* Height of this node. Leaf==1 */
193 short int imbalance; /* Height difference between pBefore and pAfter */
196 /* Recompute the amatch_avl.height and amatch_avl.imbalance fields for p.
197 ** Assume that the children of p have correct heights.
199 static void amatchAvlRecomputeHeight(amatch_avl *p){
200 short int hBefore = p->pBefore ? p->pBefore->height : 0;
201 short int hAfter = p->pAfter ? p->pAfter->height : 0;
202 p->imbalance = hBefore - hAfter; /* -: pAfter higher. +: pBefore higher */
203 p->height = (hBefore>hAfter ? hBefore : hAfter)+1;
207 ** P B
208 ** / \ / \
209 ** B Z ==> X P
210 ** / \ / \
211 ** X Y Y Z
214 static amatch_avl *amatchAvlRotateBefore(amatch_avl *pP){
215 amatch_avl *pB = pP->pBefore;
216 amatch_avl *pY = pB->pAfter;
217 pB->pUp = pP->pUp;
218 pB->pAfter = pP;
219 pP->pUp = pB;
220 pP->pBefore = pY;
221 if( pY ) pY->pUp = pP;
222 amatchAvlRecomputeHeight(pP);
223 amatchAvlRecomputeHeight(pB);
224 return pB;
228 ** P A
229 ** / \ / \
230 ** X A ==> P Z
231 ** / \ / \
232 ** Y Z X Y
235 static amatch_avl *amatchAvlRotateAfter(amatch_avl *pP){
236 amatch_avl *pA = pP->pAfter;
237 amatch_avl *pY = pA->pBefore;
238 pA->pUp = pP->pUp;
239 pA->pBefore = pP;
240 pP->pUp = pA;
241 pP->pAfter = pY;
242 if( pY ) pY->pUp = pP;
243 amatchAvlRecomputeHeight(pP);
244 amatchAvlRecomputeHeight(pA);
245 return pA;
249 ** Return a pointer to the pBefore or pAfter pointer in the parent
250 ** of p that points to p. Or if p is the root node, return pp.
252 static amatch_avl **amatchAvlFromPtr(amatch_avl *p, amatch_avl **pp){
253 amatch_avl *pUp = p->pUp;
254 if( pUp==0 ) return pp;
255 if( pUp->pAfter==p ) return &pUp->pAfter;
256 return &pUp->pBefore;
260 ** Rebalance all nodes starting with p and working up to the root.
261 ** Return the new root.
263 static amatch_avl *amatchAvlBalance(amatch_avl *p){
264 amatch_avl *pTop = p;
265 amatch_avl **pp;
266 while( p ){
267 amatchAvlRecomputeHeight(p);
268 if( p->imbalance>=2 ){
269 amatch_avl *pB = p->pBefore;
270 if( pB->imbalance<0 ) p->pBefore = amatchAvlRotateAfter(pB);
271 pp = amatchAvlFromPtr(p,&p);
272 p = *pp = amatchAvlRotateBefore(p);
273 }else if( p->imbalance<=(-2) ){
274 amatch_avl *pA = p->pAfter;
275 if( pA->imbalance>0 ) p->pAfter = amatchAvlRotateBefore(pA);
276 pp = amatchAvlFromPtr(p,&p);
277 p = *pp = amatchAvlRotateAfter(p);
279 pTop = p;
280 p = p->pUp;
282 return pTop;
285 /* Search the tree rooted at p for an entry with zKey. Return a pointer
286 ** to the entry or return NULL.
288 static amatch_avl *amatchAvlSearch(amatch_avl *p, const char *zKey){
289 int c;
290 while( p && (c = strcmp(zKey, p->zKey))!=0 ){
291 p = (c<0) ? p->pBefore : p->pAfter;
293 return p;
296 /* Find the first node (the one with the smallest key).
298 static amatch_avl *amatchAvlFirst(amatch_avl *p){
299 if( p ) while( p->pBefore ) p = p->pBefore;
300 return p;
303 #if 0 /* NOT USED */
304 /* Return the node with the next larger key after p.
306 static amatch_avl *amatchAvlNext(amatch_avl *p){
307 amatch_avl *pPrev = 0;
308 while( p && p->pAfter==pPrev ){
309 pPrev = p;
310 p = p->pUp;
312 if( p && pPrev==0 ){
313 p = amatchAvlFirst(p->pAfter);
315 return p;
317 #endif
319 #if 0 /* NOT USED */
320 /* Verify AVL tree integrity
322 static int amatchAvlIntegrity(amatch_avl *pHead){
323 amatch_avl *p;
324 if( pHead==0 ) return 1;
325 if( (p = pHead->pBefore)!=0 ){
326 assert( p->pUp==pHead );
327 assert( amatchAvlIntegrity(p) );
328 assert( strcmp(p->zKey, pHead->zKey)<0 );
329 while( p->pAfter ) p = p->pAfter;
330 assert( strcmp(p->zKey, pHead->zKey)<0 );
332 if( (p = pHead->pAfter)!=0 ){
333 assert( p->pUp==pHead );
334 assert( amatchAvlIntegrity(p) );
335 assert( strcmp(p->zKey, pHead->zKey)>0 );
336 p = amatchAvlFirst(p);
337 assert( strcmp(p->zKey, pHead->zKey)>0 );
339 return 1;
341 static int amatchAvlIntegrity2(amatch_avl *pHead){
342 amatch_avl *p, *pNext;
343 for(p=amatchAvlFirst(pHead); p; p=pNext){
344 pNext = amatchAvlNext(p);
345 if( pNext==0 ) break;
346 assert( strcmp(p->zKey, pNext->zKey)<0 );
348 return 1;
350 #endif
352 /* Insert a new node pNew. Return NULL on success. If the key is not
353 ** unique, then do not perform the insert but instead leave pNew unchanged
354 ** and return a pointer to an existing node with the same key.
356 static amatch_avl *amatchAvlInsert(amatch_avl **ppHead, amatch_avl *pNew){
357 int c;
358 amatch_avl *p = *ppHead;
359 if( p==0 ){
360 p = pNew;
361 pNew->pUp = 0;
362 }else{
363 while( p ){
364 c = strcmp(pNew->zKey, p->zKey);
365 if( c<0 ){
366 if( p->pBefore ){
367 p = p->pBefore;
368 }else{
369 p->pBefore = pNew;
370 pNew->pUp = p;
371 break;
373 }else if( c>0 ){
374 if( p->pAfter ){
375 p = p->pAfter;
376 }else{
377 p->pAfter = pNew;
378 pNew->pUp = p;
379 break;
381 }else{
382 return p;
386 pNew->pBefore = 0;
387 pNew->pAfter = 0;
388 pNew->height = 1;
389 pNew->imbalance = 0;
390 *ppHead = amatchAvlBalance(p);
391 /* assert( amatchAvlIntegrity(*ppHead) ); */
392 /* assert( amatchAvlIntegrity2(*ppHead) ); */
393 return 0;
396 /* Remove node pOld from the tree. pOld must be an element of the tree or
397 ** the AVL tree will become corrupt.
399 static void amatchAvlRemove(amatch_avl **ppHead, amatch_avl *pOld){
400 amatch_avl **ppParent;
401 amatch_avl *pBalance;
402 /* assert( amatchAvlSearch(*ppHead, pOld->zKey)==pOld ); */
403 ppParent = amatchAvlFromPtr(pOld, ppHead);
404 if( pOld->pBefore==0 && pOld->pAfter==0 ){
405 *ppParent = 0;
406 pBalance = pOld->pUp;
407 }else if( pOld->pBefore && pOld->pAfter ){
408 amatch_avl *pX, *pY;
409 pX = amatchAvlFirst(pOld->pAfter);
410 *amatchAvlFromPtr(pX, 0) = pX->pAfter;
411 if( pX->pAfter ) pX->pAfter->pUp = pX->pUp;
412 pBalance = pX->pUp;
413 pX->pAfter = pOld->pAfter;
414 if( pX->pAfter ){
415 pX->pAfter->pUp = pX;
416 }else{
417 assert( pBalance==pOld );
418 pBalance = pX;
420 pX->pBefore = pY = pOld->pBefore;
421 if( pY ) pY->pUp = pX;
422 pX->pUp = pOld->pUp;
423 *ppParent = pX;
424 }else if( pOld->pBefore==0 ){
425 *ppParent = pBalance = pOld->pAfter;
426 pBalance->pUp = pOld->pUp;
427 }else if( pOld->pAfter==0 ){
428 *ppParent = pBalance = pOld->pBefore;
429 pBalance->pUp = pOld->pUp;
431 *ppHead = amatchAvlBalance(pBalance);
432 pOld->pUp = 0;
433 pOld->pBefore = 0;
434 pOld->pAfter = 0;
435 /* assert( amatchAvlIntegrity(*ppHead) ); */
436 /* assert( amatchAvlIntegrity2(*ppHead) ); */
439 ** End of the AVL Tree implementation
440 ******************************************************************************/
444 ** Various types.
446 ** amatch_cost is the "cost" of an edit operation.
448 ** amatch_len is the length of a matching string.
450 ** amatch_langid is an ruleset identifier.
452 typedef int amatch_cost;
453 typedef signed char amatch_len;
454 typedef int amatch_langid;
457 ** Limits
459 #define AMATCH_MX_LENGTH 50 /* Maximum length of a rule string */
460 #define AMATCH_MX_LANGID 2147483647 /* Maximum rule ID */
461 #define AMATCH_MX_COST 1000 /* Maximum single-rule cost */
464 ** A match or partial match
466 struct amatch_word {
467 amatch_word *pNext; /* Next on a list of all amatch_words */
468 amatch_avl sCost; /* Linkage of this node into the cost tree */
469 amatch_avl sWord; /* Linkage of this node into the word tree */
470 amatch_cost rCost; /* Cost of the match so far */
471 int iSeq; /* Sequence number */
472 char zCost[10]; /* Cost key (text rendering of rCost) */
473 short int nMatch; /* Input characters matched */
474 char zWord[4]; /* Text of the word. Extra space appended as needed */
478 ** Each transformation rule is stored as an instance of this object.
479 ** All rules are kept on a linked list sorted by rCost.
481 struct amatch_rule {
482 amatch_rule *pNext; /* Next rule in order of increasing rCost */
483 char *zFrom; /* Transform from (a string from user input) */
484 amatch_cost rCost; /* Cost of this transformation */
485 amatch_langid iLang; /* The langauge to which this rule belongs */
486 amatch_len nFrom, nTo; /* Length of the zFrom and zTo strings */
487 char zTo[4]; /* Tranform to V.W value (extra space appended) */
491 ** A amatch virtual-table object
493 struct amatch_vtab {
494 sqlite3_vtab base; /* Base class - must be first */
495 char *zClassName; /* Name of this class. Default: "amatch" */
496 char *zDb; /* Name of database. (ex: "main") */
497 char *zSelf; /* Name of this virtual table */
498 char *zCostTab; /* Name of edit-cost-table */
499 char *zVocabTab; /* Name of vocabulary table */
500 char *zVocabWord; /* Name of vocabulary table word column */
501 char *zVocabLang; /* Name of vocabulary table language column */
502 amatch_rule *pRule; /* All active rules in this amatch */
503 amatch_cost rIns; /* Generic insertion cost '' -> ? */
504 amatch_cost rDel; /* Generic deletion cost ? -> '' */
505 amatch_cost rSub; /* Generic substitution cost ? -> ? */
506 sqlite3 *db; /* The database connection */
507 sqlite3_stmt *pVCheck; /* Query to check zVocabTab */
508 int nCursor; /* Number of active cursors */
511 /* A amatch cursor object */
512 struct amatch_cursor {
513 sqlite3_vtab_cursor base; /* Base class - must be first */
514 sqlite3_int64 iRowid; /* The rowid of the current word */
515 amatch_langid iLang; /* Use this language ID */
516 amatch_cost rLimit; /* Maximum cost of any term */
517 int nBuf; /* Space allocated for zBuf */
518 int oomErr; /* True following an OOM error */
519 int nWord; /* Number of amatch_word objects */
520 char *zBuf; /* Temp-use buffer space */
521 char *zInput; /* Input word to match against */
522 amatch_vtab *pVtab; /* The virtual table this cursor belongs to */
523 amatch_word *pAllWords; /* List of all amatch_word objects */
524 amatch_word *pCurrent; /* Most recent solution */
525 amatch_avl *pCost; /* amatch_word objects keyed by iCost */
526 amatch_avl *pWord; /* amatch_word objects keyed by zWord */
530 ** The two input rule lists are both sorted in order of increasing
531 ** cost. Merge them together into a single list, sorted by cost, and
532 ** return a pointer to the head of that list.
534 static amatch_rule *amatchMergeRules(amatch_rule *pA, amatch_rule *pB){
535 amatch_rule head;
536 amatch_rule *pTail;
538 pTail = &head;
539 while( pA && pB ){
540 if( pA->rCost<=pB->rCost ){
541 pTail->pNext = pA;
542 pTail = pA;
543 pA = pA->pNext;
544 }else{
545 pTail->pNext = pB;
546 pTail = pB;
547 pB = pB->pNext;
550 if( pA==0 ){
551 pTail->pNext = pB;
552 }else{
553 pTail->pNext = pA;
555 return head.pNext;
559 ** Statement pStmt currently points to a row in the amatch data table. This
560 ** function allocates and populates a amatch_rule structure according to
561 ** the content of the row.
563 ** If successful, *ppRule is set to point to the new object and SQLITE_OK
564 ** is returned. Otherwise, *ppRule is zeroed, *pzErr may be set to point
565 ** to an error message and an SQLite error code returned.
567 static int amatchLoadOneRule(
568 amatch_vtab *p, /* Fuzzer virtual table handle */
569 sqlite3_stmt *pStmt, /* Base rule on statements current row */
570 amatch_rule **ppRule, /* OUT: New rule object */
571 char **pzErr /* OUT: Error message */
573 sqlite3_int64 iLang = sqlite3_column_int64(pStmt, 0);
574 const char *zFrom = (const char *)sqlite3_column_text(pStmt, 1);
575 const char *zTo = (const char *)sqlite3_column_text(pStmt, 2);
576 amatch_cost rCost = sqlite3_column_int(pStmt, 3);
578 int rc = SQLITE_OK; /* Return code */
579 int nFrom; /* Size of string zFrom, in bytes */
580 int nTo; /* Size of string zTo, in bytes */
581 amatch_rule *pRule = 0; /* New rule object to return */
583 if( zFrom==0 ) zFrom = "";
584 if( zTo==0 ) zTo = "";
585 nFrom = (int)strlen(zFrom);
586 nTo = (int)strlen(zTo);
588 /* Silently ignore null transformations */
589 if( strcmp(zFrom, zTo)==0 ){
590 if( zFrom[0]=='?' && zFrom[1]==0 ){
591 if( p->rSub==0 || p->rSub>rCost ) p->rSub = rCost;
593 *ppRule = 0;
594 return SQLITE_OK;
597 if( rCost<=0 || rCost>AMATCH_MX_COST ){
598 *pzErr = sqlite3_mprintf("%s: cost must be between 1 and %d",
599 p->zClassName, AMATCH_MX_COST
601 rc = SQLITE_ERROR;
602 }else
603 if( nFrom>AMATCH_MX_LENGTH || nTo>AMATCH_MX_LENGTH ){
604 *pzErr = sqlite3_mprintf("%s: maximum string length is %d",
605 p->zClassName, AMATCH_MX_LENGTH
607 rc = SQLITE_ERROR;
608 }else
609 if( iLang<0 || iLang>AMATCH_MX_LANGID ){
610 *pzErr = sqlite3_mprintf("%s: iLang must be between 0 and %d",
611 p->zClassName, AMATCH_MX_LANGID
613 rc = SQLITE_ERROR;
614 }else
615 if( strcmp(zFrom,"")==0 && strcmp(zTo,"?")==0 ){
616 if( p->rIns==0 || p->rIns>rCost ) p->rIns = rCost;
617 }else
618 if( strcmp(zFrom,"?")==0 && strcmp(zTo,"")==0 ){
619 if( p->rDel==0 || p->rDel>rCost ) p->rDel = rCost;
620 }else
622 pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo );
623 if( pRule==0 ){
624 rc = SQLITE_NOMEM;
625 }else{
626 memset(pRule, 0, sizeof(*pRule));
627 pRule->zFrom = &pRule->zTo[nTo+1];
628 pRule->nFrom = nFrom;
629 memcpy(pRule->zFrom, zFrom, nFrom+1);
630 memcpy(pRule->zTo, zTo, nTo+1);
631 pRule->nTo = nTo;
632 pRule->rCost = rCost;
633 pRule->iLang = (int)iLang;
637 *ppRule = pRule;
638 return rc;
642 ** Free all the content in the edit-cost-table
644 static void amatchFreeRules(amatch_vtab *p){
645 while( p->pRule ){
646 amatch_rule *pRule = p->pRule;
647 p->pRule = pRule->pNext;
648 sqlite3_free(pRule);
650 p->pRule = 0;
654 ** Load the content of the amatch data table into memory.
656 static int amatchLoadRules(
657 sqlite3 *db, /* Database handle */
658 amatch_vtab *p, /* Virtual amatch table to configure */
659 char **pzErr /* OUT: Error message */
661 int rc = SQLITE_OK; /* Return code */
662 char *zSql; /* SELECT used to read from rules table */
663 amatch_rule *pHead = 0;
665 zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", p->zDb, p->zCostTab);
666 if( zSql==0 ){
667 rc = SQLITE_NOMEM;
668 }else{
669 int rc2; /* finalize() return code */
670 sqlite3_stmt *pStmt = 0;
671 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
672 if( rc!=SQLITE_OK ){
673 *pzErr = sqlite3_mprintf("%s: %s", p->zClassName, sqlite3_errmsg(db));
674 }else if( sqlite3_column_count(pStmt)!=4 ){
675 *pzErr = sqlite3_mprintf("%s: %s has %d columns, expected 4",
676 p->zClassName, p->zCostTab, sqlite3_column_count(pStmt)
678 rc = SQLITE_ERROR;
679 }else{
680 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
681 amatch_rule *pRule = 0;
682 rc = amatchLoadOneRule(p, pStmt, &pRule, pzErr);
683 if( pRule ){
684 pRule->pNext = pHead;
685 pHead = pRule;
689 rc2 = sqlite3_finalize(pStmt);
690 if( rc==SQLITE_OK ) rc = rc2;
692 sqlite3_free(zSql);
694 /* All rules are now in a singly linked list starting at pHead. This
695 ** block sorts them by cost and then sets amatch_vtab.pRule to point to
696 ** point to the head of the sorted list.
698 if( rc==SQLITE_OK ){
699 unsigned int i;
700 amatch_rule *pX;
701 amatch_rule *a[15];
702 for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0;
703 while( (pX = pHead)!=0 ){
704 pHead = pX->pNext;
705 pX->pNext = 0;
706 for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){
707 pX = amatchMergeRules(a[i], pX);
708 a[i] = 0;
710 a[i] = amatchMergeRules(a[i], pX);
712 for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){
713 pX = amatchMergeRules(a[i], pX);
715 p->pRule = amatchMergeRules(p->pRule, pX);
716 }else{
717 /* An error has occurred. Setting p->pRule to point to the head of the
718 ** allocated list ensures that the list will be cleaned up in this case.
720 assert( p->pRule==0 );
721 p->pRule = pHead;
724 return rc;
728 ** This function converts an SQL quoted string into an unquoted string
729 ** and returns a pointer to a buffer allocated using sqlite3_malloc()
730 ** containing the result. The caller should eventually free this buffer
731 ** using sqlite3_free.
733 ** Examples:
735 ** "abc" becomes abc
736 ** 'xyz' becomes xyz
737 ** [pqr] becomes pqr
738 ** `mno` becomes mno
740 static char *amatchDequote(const char *zIn){
741 int nIn; /* Size of input string, in bytes */
742 char *zOut; /* Output (dequoted) string */
744 nIn = (int)strlen(zIn);
745 zOut = sqlite3_malloc(nIn+1);
746 if( zOut ){
747 char q = zIn[0]; /* Quote character (if any ) */
749 if( q!='[' && q!= '\'' && q!='"' && q!='`' ){
750 memcpy(zOut, zIn, nIn+1);
751 }else{
752 int iOut = 0; /* Index of next byte to write to output */
753 int iIn; /* Index of next byte to read from input */
755 if( q=='[' ) q = ']';
756 for(iIn=1; iIn<nIn; iIn++){
757 if( zIn[iIn]==q ) iIn++;
758 zOut[iOut++] = zIn[iIn];
761 assert( (int)strlen(zOut)<=nIn );
763 return zOut;
767 ** Deallocate the pVCheck prepared statement.
769 static void amatchVCheckClear(amatch_vtab *p){
770 if( p->pVCheck ){
771 sqlite3_finalize(p->pVCheck);
772 p->pVCheck = 0;
777 ** Deallocate an amatch_vtab object
779 static void amatchFree(amatch_vtab *p){
780 if( p ){
781 amatchFreeRules(p);
782 amatchVCheckClear(p);
783 sqlite3_free(p->zClassName);
784 sqlite3_free(p->zDb);
785 sqlite3_free(p->zCostTab);
786 sqlite3_free(p->zVocabTab);
787 sqlite3_free(p->zVocabWord);
788 sqlite3_free(p->zVocabLang);
789 sqlite3_free(p->zSelf);
790 memset(p, 0, sizeof(*p));
791 sqlite3_free(p);
796 ** xDisconnect/xDestroy method for the amatch module.
798 static int amatchDisconnect(sqlite3_vtab *pVtab){
799 amatch_vtab *p = (amatch_vtab*)pVtab;
800 assert( p->nCursor==0 );
801 amatchFree(p);
802 return SQLITE_OK;
806 ** Check to see if the argument is of the form:
808 ** KEY = VALUE
810 ** If it is, return a pointer to the first character of VALUE.
811 ** If not, return NULL. Spaces around the = are ignored.
813 static const char *amatchValueOfKey(const char *zKey, const char *zStr){
814 int nKey = (int)strlen(zKey);
815 int nStr = (int)strlen(zStr);
816 int i;
817 if( nStr<nKey+1 ) return 0;
818 if( memcmp(zStr, zKey, nKey)!=0 ) return 0;
819 for(i=nKey; isspace(zStr[i]); i++){}
820 if( zStr[i]!='=' ) return 0;
821 i++;
822 while( isspace(zStr[i]) ){ i++; }
823 return zStr+i;
827 ** xConnect/xCreate method for the amatch module. Arguments are:
829 ** argv[0] -> module name ("approximate_match")
830 ** argv[1] -> database name
831 ** argv[2] -> table name
832 ** argv[3...] -> arguments
834 static int amatchConnect(
835 sqlite3 *db,
836 void *pAux,
837 int argc, const char *const*argv,
838 sqlite3_vtab **ppVtab,
839 char **pzErr
841 int rc = SQLITE_OK; /* Return code */
842 amatch_vtab *pNew = 0; /* New virtual table */
843 const char *zModule = argv[0];
844 const char *zDb = argv[1];
845 const char *zVal;
846 int i;
848 (void)pAux;
849 *ppVtab = 0;
850 pNew = sqlite3_malloc( sizeof(*pNew) );
851 if( pNew==0 ) return SQLITE_NOMEM;
852 rc = SQLITE_NOMEM;
853 memset(pNew, 0, sizeof(*pNew));
854 pNew->db = db;
855 pNew->zClassName = sqlite3_mprintf("%s", zModule);
856 if( pNew->zClassName==0 ) goto amatchConnectError;
857 pNew->zDb = sqlite3_mprintf("%s", zDb);
858 if( pNew->zDb==0 ) goto amatchConnectError;
859 pNew->zSelf = sqlite3_mprintf("%s", argv[2]);
860 if( pNew->zSelf==0 ) goto amatchConnectError;
861 for(i=3; i<argc; i++){
862 zVal = amatchValueOfKey("vocabulary_table", argv[i]);
863 if( zVal ){
864 sqlite3_free(pNew->zVocabTab);
865 pNew->zVocabTab = amatchDequote(zVal);
866 if( pNew->zVocabTab==0 ) goto amatchConnectError;
867 continue;
869 zVal = amatchValueOfKey("vocabulary_word", argv[i]);
870 if( zVal ){
871 sqlite3_free(pNew->zVocabWord);
872 pNew->zVocabWord = amatchDequote(zVal);
873 if( pNew->zVocabWord==0 ) goto amatchConnectError;
874 continue;
876 zVal = amatchValueOfKey("vocabulary_language", argv[i]);
877 if( zVal ){
878 sqlite3_free(pNew->zVocabLang);
879 pNew->zVocabLang = amatchDequote(zVal);
880 if( pNew->zVocabLang==0 ) goto amatchConnectError;
881 continue;
883 zVal = amatchValueOfKey("edit_distances", argv[i]);
884 if( zVal ){
885 sqlite3_free(pNew->zCostTab);
886 pNew->zCostTab = amatchDequote(zVal);
887 if( pNew->zCostTab==0 ) goto amatchConnectError;
888 continue;
890 *pzErr = sqlite3_mprintf("unrecognized argument: [%s]\n", argv[i]);
891 amatchFree(pNew);
892 *ppVtab = 0;
893 return SQLITE_ERROR;
895 rc = SQLITE_OK;
896 if( pNew->zCostTab==0 ){
897 *pzErr = sqlite3_mprintf("no edit_distances table specified");
898 rc = SQLITE_ERROR;
899 }else{
900 rc = amatchLoadRules(db, pNew, pzErr);
902 if( rc==SQLITE_OK ){
903 rc = sqlite3_declare_vtab(db,
904 "CREATE TABLE x(word,distance,language,"
905 "command HIDDEN,nword HIDDEN)"
907 #define AMATCH_COL_WORD 0
908 #define AMATCH_COL_DISTANCE 1
909 #define AMATCH_COL_LANGUAGE 2
910 #define AMATCH_COL_COMMAND 3
911 #define AMATCH_COL_NWORD 4
913 if( rc!=SQLITE_OK ){
914 amatchFree(pNew);
916 *ppVtab = &pNew->base;
917 return rc;
919 amatchConnectError:
920 amatchFree(pNew);
921 return rc;
925 ** Open a new amatch cursor.
927 static int amatchOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
928 amatch_vtab *p = (amatch_vtab*)pVTab;
929 amatch_cursor *pCur;
930 pCur = sqlite3_malloc( sizeof(*pCur) );
931 if( pCur==0 ) return SQLITE_NOMEM;
932 memset(pCur, 0, sizeof(*pCur));
933 pCur->pVtab = p;
934 *ppCursor = &pCur->base;
935 p->nCursor++;
936 return SQLITE_OK;
940 ** Free up all the memory allocated by a cursor. Set it rLimit to 0
941 ** to indicate that it is at EOF.
943 static void amatchClearCursor(amatch_cursor *pCur){
944 amatch_word *pWord, *pNextWord;
945 for(pWord=pCur->pAllWords; pWord; pWord=pNextWord){
946 pNextWord = pWord->pNext;
947 sqlite3_free(pWord);
949 pCur->pAllWords = 0;
950 sqlite3_free(pCur->zInput);
951 pCur->zInput = 0;
952 sqlite3_free(pCur->zBuf);
953 pCur->zBuf = 0;
954 pCur->nBuf = 0;
955 pCur->pCost = 0;
956 pCur->pWord = 0;
957 pCur->pCurrent = 0;
958 pCur->rLimit = 1000000;
959 pCur->iLang = 0;
960 pCur->nWord = 0;
964 ** Close a amatch cursor.
966 static int amatchClose(sqlite3_vtab_cursor *cur){
967 amatch_cursor *pCur = (amatch_cursor *)cur;
968 amatchClearCursor(pCur);
969 pCur->pVtab->nCursor--;
970 sqlite3_free(pCur);
971 return SQLITE_OK;
975 ** Render a 24-bit unsigned integer as a 4-byte base-64 number.
977 static void amatchEncodeInt(int x, char *z){
978 static const char a[] =
979 "0123456789"
980 "ABCDEFGHIJ"
981 "KLMNOPQRST"
982 "UVWXYZ^abc"
983 "defghijklm"
984 "nopqrstuvw"
985 "xyz~";
986 z[0] = a[(x>>18)&0x3f];
987 z[1] = a[(x>>12)&0x3f];
988 z[2] = a[(x>>6)&0x3f];
989 z[3] = a[x&0x3f];
993 ** Write the zCost[] field for a amatch_word object
995 static void amatchWriteCost(amatch_word *pWord){
996 amatchEncodeInt(pWord->rCost, pWord->zCost);
997 amatchEncodeInt(pWord->iSeq, pWord->zCost+4);
998 pWord->zCost[8] = 0;
1002 ** Add a new amatch_word object to the queue.
1004 ** If a prior amatch_word object with the same zWord, and nMatch
1005 ** already exists, update its rCost (if the new rCost is less) but
1006 ** otherwise leave it unchanged. Do not add a duplicate.
1008 ** Do nothing if the cost exceeds threshold.
1010 static void amatchAddWord(
1011 amatch_cursor *pCur,
1012 amatch_cost rCost,
1013 int nMatch,
1014 const char *zWordBase,
1015 const char *zWordTail
1017 amatch_word *pWord;
1018 amatch_avl *pNode;
1019 amatch_avl *pOther;
1020 int nBase, nTail;
1021 char zBuf[4];
1023 if( rCost>pCur->rLimit ){
1024 return;
1026 nBase = (int)strlen(zWordBase);
1027 nTail = (int)strlen(zWordTail);
1028 if( nBase+nTail+3>pCur->nBuf ){
1029 pCur->nBuf = nBase+nTail+100;
1030 pCur->zBuf = sqlite3_realloc(pCur->zBuf, pCur->nBuf);
1031 if( pCur->zBuf==0 ){
1032 pCur->nBuf = 0;
1033 return;
1036 amatchEncodeInt(nMatch, zBuf);
1037 memcpy(pCur->zBuf, zBuf+2, 2);
1038 memcpy(pCur->zBuf+2, zWordBase, nBase);
1039 memcpy(pCur->zBuf+2+nBase, zWordTail, nTail+1);
1040 pNode = amatchAvlSearch(pCur->pWord, pCur->zBuf);
1041 if( pNode ){
1042 pWord = pNode->pWord;
1043 if( pWord->rCost>rCost ){
1044 #ifdef AMATCH_TRACE_1
1045 printf("UPDATE [%s][%.*s^%s] %d (\"%s\" \"%s\")\n",
1046 pWord->zWord+2, pWord->nMatch, pCur->zInput, pCur->zInput,
1047 pWord->rCost, pWord->zWord, pWord->zCost);
1048 #endif
1049 amatchAvlRemove(&pCur->pCost, &pWord->sCost);
1050 pWord->rCost = rCost;
1051 amatchWriteCost(pWord);
1052 #ifdef AMATCH_TRACE_1
1053 printf(" ---> %d (\"%s\" \"%s\")\n",
1054 pWord->rCost, pWord->zWord, pWord->zCost);
1055 #endif
1056 pOther = amatchAvlInsert(&pCur->pCost, &pWord->sCost);
1057 assert( pOther==0 ); (void)pOther;
1059 return;
1061 pWord = sqlite3_malloc( sizeof(*pWord) + nBase + nTail - 1 );
1062 if( pWord==0 ) return;
1063 memset(pWord, 0, sizeof(*pWord));
1064 pWord->rCost = rCost;
1065 pWord->iSeq = pCur->nWord++;
1066 amatchWriteCost(pWord);
1067 pWord->nMatch = nMatch;
1068 pWord->pNext = pCur->pAllWords;
1069 pCur->pAllWords = pWord;
1070 pWord->sCost.zKey = pWord->zCost;
1071 pWord->sCost.pWord = pWord;
1072 pOther = amatchAvlInsert(&pCur->pCost, &pWord->sCost);
1073 assert( pOther==0 ); (void)pOther;
1074 pWord->sWord.zKey = pWord->zWord;
1075 pWord->sWord.pWord = pWord;
1076 strcpy(pWord->zWord, pCur->zBuf);
1077 pOther = amatchAvlInsert(&pCur->pWord, &pWord->sWord);
1078 assert( pOther==0 ); (void)pOther;
1079 #ifdef AMATCH_TRACE_1
1080 printf("INSERT [%s][%.*s^%s] %d (\"%s\" \"%s\")\n", pWord->zWord+2,
1081 pWord->nMatch, pCur->zInput, pCur->zInput+pWord->nMatch, rCost,
1082 pWord->zWord, pWord->zCost);
1083 #endif
1087 ** Advance a cursor to its next row of output
1089 static int amatchNext(sqlite3_vtab_cursor *cur){
1090 amatch_cursor *pCur = (amatch_cursor*)cur;
1091 amatch_word *pWord = 0;
1092 amatch_avl *pNode;
1093 int isMatch = 0;
1094 amatch_vtab *p = pCur->pVtab;
1095 int nWord;
1096 int rc;
1097 int i;
1098 const char *zW;
1099 amatch_rule *pRule;
1100 char *zBuf = 0;
1101 char nBuf = 0;
1102 char zNext[8];
1103 char zNextIn[8];
1104 int nNextIn;
1106 if( p->pVCheck==0 ){
1107 char *zSql;
1108 if( p->zVocabLang && p->zVocabLang[0] ){
1109 zSql = sqlite3_mprintf(
1110 "SELECT \"%w\" FROM \"%w\"",
1111 " WHERE \"%w\">=?1 AND \"%w\"=?2"
1112 " ORDER BY 1",
1113 p->zVocabWord, p->zVocabTab,
1114 p->zVocabWord, p->zVocabLang
1116 }else{
1117 zSql = sqlite3_mprintf(
1118 "SELECT \"%w\" FROM \"%w\""
1119 " WHERE \"%w\">=?1"
1120 " ORDER BY 1",
1121 p->zVocabWord, p->zVocabTab,
1122 p->zVocabWord
1125 rc = sqlite3_prepare_v2(p->db, zSql, -1, &p->pVCheck, 0);
1126 sqlite3_free(zSql);
1127 if( rc ) return rc;
1129 sqlite3_bind_int(p->pVCheck, 2, pCur->iLang);
1132 pNode = amatchAvlFirst(pCur->pCost);
1133 if( pNode==0 ){
1134 pWord = 0;
1135 break;
1137 pWord = pNode->pWord;
1138 amatchAvlRemove(&pCur->pCost, &pWord->sCost);
1140 #ifdef AMATCH_TRACE_1
1141 printf("PROCESS [%s][%.*s^%s] %d (\"%s\" \"%s\")\n",
1142 pWord->zWord+2, pWord->nMatch, pCur->zInput, pCur->zInput+pWord->nMatch,
1143 pWord->rCost, pWord->zWord, pWord->zCost);
1144 #endif
1145 nWord = (int)strlen(pWord->zWord+2);
1146 if( nWord+20>nBuf ){
1147 nBuf = nWord+100;
1148 zBuf = sqlite3_realloc(zBuf, nBuf);
1149 if( zBuf==0 ) return SQLITE_NOMEM;
1151 strcpy(zBuf, pWord->zWord+2);
1152 zNext[0] = 0;
1153 zNextIn[0] = pCur->zInput[pWord->nMatch];
1154 if( zNextIn[0] ){
1155 for(i=1; i<=4 && (pCur->zInput[pWord->nMatch+i]&0xc0)==0x80; i++){
1156 zNextIn[i] = pCur->zInput[pWord->nMatch+i];
1158 zNextIn[i] = 0;
1159 nNextIn = i;
1160 }else{
1161 nNextIn = 0;
1164 if( zNextIn[0] && zNextIn[0]!='*' ){
1165 sqlite3_reset(p->pVCheck);
1166 strcat(zBuf, zNextIn);
1167 sqlite3_bind_text(p->pVCheck, 1, zBuf, nWord+nNextIn, SQLITE_STATIC);
1168 rc = sqlite3_step(p->pVCheck);
1169 if( rc==SQLITE_ROW ){
1170 zW = (const char*)sqlite3_column_text(p->pVCheck, 0);
1171 if( strncmp(zBuf, zW, nWord+nNextIn)==0 ){
1172 amatchAddWord(pCur, pWord->rCost, pWord->nMatch+nNextIn, zBuf, "");
1175 zBuf[nWord] = 0;
1178 while( 1 ){
1179 strcpy(zBuf+nWord, zNext);
1180 sqlite3_reset(p->pVCheck);
1181 sqlite3_bind_text(p->pVCheck, 1, zBuf, -1, SQLITE_TRANSIENT);
1182 rc = sqlite3_step(p->pVCheck);
1183 if( rc!=SQLITE_ROW ) break;
1184 zW = (const char*)sqlite3_column_text(p->pVCheck, 0);
1185 strcpy(zBuf+nWord, zNext);
1186 if( strncmp(zW, zBuf, nWord)!=0 ) break;
1187 if( (zNextIn[0]=='*' && zNextIn[1]==0)
1188 || (zNextIn[0]==0 && zW[nWord]==0)
1190 isMatch = 1;
1191 zNextIn[0] = 0;
1192 nNextIn = 0;
1193 break;
1195 zNext[0] = zW[nWord];
1196 for(i=1; i<=4 && (zW[nWord+i]&0xc0)==0x80; i++){
1197 zNext[i] = zW[nWord+i];
1199 zNext[i] = 0;
1200 zBuf[nWord] = 0;
1201 if( p->rIns>0 ){
1202 amatchAddWord(pCur, pWord->rCost+p->rIns, pWord->nMatch,
1203 zBuf, zNext);
1205 if( p->rSub>0 ){
1206 amatchAddWord(pCur, pWord->rCost+p->rSub, pWord->nMatch+nNextIn,
1207 zBuf, zNext);
1209 if( p->rIns<0 && p->rSub<0 ) break;
1210 zNext[i-1]++; /* FIX ME */
1212 sqlite3_reset(p->pVCheck);
1214 if( p->rDel>0 ){
1215 zBuf[nWord] = 0;
1216 amatchAddWord(pCur, pWord->rCost+p->rDel, pWord->nMatch+nNextIn,
1217 zBuf, "");
1220 for(pRule=p->pRule; pRule; pRule=pRule->pNext){
1221 if( pRule->iLang!=pCur->iLang ) continue;
1222 if( strncmp(pRule->zFrom, pCur->zInput+pWord->nMatch, pRule->nFrom)==0 ){
1223 amatchAddWord(pCur, pWord->rCost+pRule->rCost,
1224 pWord->nMatch+pRule->nFrom, pWord->zWord+2, pRule->zTo);
1227 }while( !isMatch );
1228 pCur->pCurrent = pWord;
1229 sqlite3_free(zBuf);
1230 return SQLITE_OK;
1234 ** Called to "rewind" a cursor back to the beginning so that
1235 ** it starts its output over again. Always called at least once
1236 ** prior to any amatchColumn, amatchRowid, or amatchEof call.
1238 static int amatchFilter(
1239 sqlite3_vtab_cursor *pVtabCursor,
1240 int idxNum, const char *idxStr,
1241 int argc, sqlite3_value **argv
1243 amatch_cursor *pCur = (amatch_cursor *)pVtabCursor;
1244 const char *zWord = "*";
1245 int idx;
1247 amatchClearCursor(pCur);
1248 idx = 0;
1249 if( idxNum & 1 ){
1250 zWord = (const char*)sqlite3_value_text(argv[0]);
1251 idx++;
1253 if( idxNum & 2 ){
1254 pCur->rLimit = (amatch_cost)sqlite3_value_int(argv[idx]);
1255 idx++;
1257 if( idxNum & 4 ){
1258 pCur->iLang = (amatch_cost)sqlite3_value_int(argv[idx]);
1259 idx++;
1261 pCur->zInput = sqlite3_mprintf("%s", zWord);
1262 if( pCur->zInput==0 ) return SQLITE_NOMEM;
1263 amatchAddWord(pCur, 0, 0, "", "");
1264 amatchNext(pVtabCursor);
1266 return SQLITE_OK;
1270 ** Only the word and distance columns have values. All other columns
1271 ** return NULL
1273 static int amatchColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
1274 amatch_cursor *pCur = (amatch_cursor*)cur;
1275 switch( i ){
1276 case AMATCH_COL_WORD: {
1277 sqlite3_result_text(ctx, pCur->pCurrent->zWord+2, -1, SQLITE_STATIC);
1278 break;
1280 case AMATCH_COL_DISTANCE: {
1281 sqlite3_result_int(ctx, pCur->pCurrent->rCost);
1282 break;
1284 case AMATCH_COL_LANGUAGE: {
1285 sqlite3_result_int(ctx, pCur->iLang);
1286 break;
1288 case AMATCH_COL_NWORD: {
1289 sqlite3_result_int(ctx, pCur->nWord);
1290 break;
1292 default: {
1293 sqlite3_result_null(ctx);
1294 break;
1297 return SQLITE_OK;
1301 ** The rowid.
1303 static int amatchRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
1304 amatch_cursor *pCur = (amatch_cursor*)cur;
1305 *pRowid = pCur->iRowid;
1306 return SQLITE_OK;
1310 ** EOF indicator
1312 static int amatchEof(sqlite3_vtab_cursor *cur){
1313 amatch_cursor *pCur = (amatch_cursor*)cur;
1314 return pCur->pCurrent==0;
1318 ** Search for terms of these forms:
1320 ** (A) word MATCH $str
1321 ** (B1) distance < $value
1322 ** (B2) distance <= $value
1323 ** (C) language == $language
1325 ** The distance< and distance<= are both treated as distance<=.
1326 ** The query plan number is a bit vector:
1328 ** bit 1: Term of the form (A) found
1329 ** bit 2: Term like (B1) or (B2) found
1330 ** bit 3: Term like (C) found
1332 ** If bit-1 is set, $str is always in filter.argv[0]. If bit-2 is set
1333 ** then $value is in filter.argv[0] if bit-1 is clear and is in
1334 ** filter.argv[1] if bit-1 is set. If bit-3 is set, then $ruleid is
1335 ** in filter.argv[0] if bit-1 and bit-2 are both zero, is in
1336 ** filter.argv[1] if exactly one of bit-1 and bit-2 are set, and is in
1337 ** filter.argv[2] if both bit-1 and bit-2 are set.
1339 static int amatchBestIndex(
1340 sqlite3_vtab *tab,
1341 sqlite3_index_info *pIdxInfo
1343 int iPlan = 0;
1344 int iDistTerm = -1;
1345 int iLangTerm = -1;
1346 int i;
1347 const struct sqlite3_index_constraint *pConstraint;
1349 (void)tab;
1350 pConstraint = pIdxInfo->aConstraint;
1351 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
1352 if( pConstraint->usable==0 ) continue;
1353 if( (iPlan & 1)==0
1354 && pConstraint->iColumn==0
1355 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
1357 iPlan |= 1;
1358 pIdxInfo->aConstraintUsage[i].argvIndex = 1;
1359 pIdxInfo->aConstraintUsage[i].omit = 1;
1361 if( (iPlan & 2)==0
1362 && pConstraint->iColumn==1
1363 && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
1364 || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE)
1366 iPlan |= 2;
1367 iDistTerm = i;
1369 if( (iPlan & 4)==0
1370 && pConstraint->iColumn==2
1371 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
1373 iPlan |= 4;
1374 pIdxInfo->aConstraintUsage[i].omit = 1;
1375 iLangTerm = i;
1378 if( iPlan & 2 ){
1379 pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0);
1381 if( iPlan & 4 ){
1382 int idx = 1;
1383 if( iPlan & 1 ) idx++;
1384 if( iPlan & 2 ) idx++;
1385 pIdxInfo->aConstraintUsage[iLangTerm].argvIndex = idx;
1387 pIdxInfo->idxNum = iPlan;
1388 if( pIdxInfo->nOrderBy==1
1389 && pIdxInfo->aOrderBy[0].iColumn==1
1390 && pIdxInfo->aOrderBy[0].desc==0
1392 pIdxInfo->orderByConsumed = 1;
1394 pIdxInfo->estimatedCost = (double)10000;
1396 return SQLITE_OK;
1400 ** The xUpdate() method.
1402 ** This implementation disallows DELETE and UPDATE. The only thing
1403 ** allowed is INSERT into the "command" column.
1405 static int amatchUpdate(
1406 sqlite3_vtab *pVTab,
1407 int argc,
1408 sqlite3_value **argv,
1409 sqlite_int64 *pRowid
1411 amatch_vtab *p = (amatch_vtab*)pVTab;
1412 const unsigned char *zCmd;
1413 (void)pRowid;
1414 if( argc==1 ){
1415 pVTab->zErrMsg = sqlite3_mprintf("DELETE from %s is not allowed",
1416 p->zSelf);
1417 return SQLITE_ERROR;
1419 if( sqlite3_value_type(argv[0])!=SQLITE_NULL ){
1420 pVTab->zErrMsg = sqlite3_mprintf("UPDATE of %s is not allowed",
1421 p->zSelf);
1422 return SQLITE_ERROR;
1424 if( sqlite3_value_type(argv[2+AMATCH_COL_WORD])!=SQLITE_NULL
1425 || sqlite3_value_type(argv[2+AMATCH_COL_DISTANCE])!=SQLITE_NULL
1426 || sqlite3_value_type(argv[2+AMATCH_COL_LANGUAGE])!=SQLITE_NULL
1428 pVTab->zErrMsg = sqlite3_mprintf(
1429 "INSERT INTO %s allowed for column [command] only", p->zSelf);
1430 return SQLITE_ERROR;
1432 zCmd = sqlite3_value_text(argv[2+AMATCH_COL_COMMAND]);
1433 if( zCmd==0 ) return SQLITE_OK;
1435 return SQLITE_OK;
1439 ** A virtual table module that implements the "approximate_match".
1441 static sqlite3_module amatchModule = {
1442 0, /* iVersion */
1443 amatchConnect, /* xCreate */
1444 amatchConnect, /* xConnect */
1445 amatchBestIndex, /* xBestIndex */
1446 amatchDisconnect, /* xDisconnect */
1447 amatchDisconnect, /* xDestroy */
1448 amatchOpen, /* xOpen - open a cursor */
1449 amatchClose, /* xClose - close a cursor */
1450 amatchFilter, /* xFilter - configure scan constraints */
1451 amatchNext, /* xNext - advance a cursor */
1452 amatchEof, /* xEof - check for end of scan */
1453 amatchColumn, /* xColumn - read data */
1454 amatchRowid, /* xRowid - read data */
1455 amatchUpdate, /* xUpdate */
1456 0, /* xBegin */
1457 0, /* xSync */
1458 0, /* xCommit */
1459 0, /* xRollback */
1460 0, /* xFindMethod */
1461 0, /* xRename */
1462 0, /* xSavepoint */
1463 0, /* xRelease */
1464 0 /* xRollbackTo */
1467 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1470 ** Register the amatch virtual table
1472 #ifdef _WIN32
1473 __declspec(dllexport)
1474 #endif
1475 int sqlite3_amatch_init(
1476 sqlite3 *db,
1477 char **pzErrMsg,
1478 const sqlite3_api_routines *pApi
1480 int rc = SQLITE_OK;
1481 SQLITE_EXTENSION_INIT2(pApi);
1482 (void)pzErrMsg; /* Not used */
1483 #ifndef SQLITE_OMIT_VIRTUALTABLE
1484 rc = sqlite3_create_module(db, "approximate_match", &amatchModule, 0);
1485 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1486 return rc;