1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #define _USE_MATH_DEFINES
10 #include "skia/ext/image_operations.h"
12 // TODO(pkasting): skia/ext should not depend on base/!
13 #include "base/containers/stack_container.h"
14 #include "base/logging.h"
15 #include "base/metrics/histogram.h"
16 #include "base/time/time.h"
17 #include "base/trace_event/trace_event.h"
18 #include "build/build_config.h"
19 #include "skia/ext/convolver.h"
20 #include "third_party/skia/include/core/SkColorPriv.h"
21 #include "third_party/skia/include/core/SkRect.h"
27 // Returns the ceiling/floor as an integer.
28 inline int CeilInt(float val
) {
29 return static_cast<int>(ceil(val
));
31 inline int FloorInt(float val
) {
32 return static_cast<int>(floor(val
));
35 // Filter function computation -------------------------------------------------
37 // Evaluates the box filter, which goes from -0.5 to +0.5.
38 float EvalBox(float x
) {
39 return (x
>= -0.5f
&& x
< 0.5f
) ? 1.0f
: 0.0f
;
42 // Evaluates the Lanczos filter of the given filter size window for the given
45 // |filter_size| is the width of the filter (the "window"), outside of which
46 // the value of the function is 0. Inside of the window, the value is the
47 // normalized sinc function:
48 // lanczos(x) = sinc(x) * sinc(x / filter_size);
50 // sinc(x) = sin(pi*x) / (pi*x);
51 float EvalLanczos(int filter_size
, float x
) {
52 if (x
<= -filter_size
|| x
>= filter_size
)
53 return 0.0f
; // Outside of the window.
54 if (x
> -std::numeric_limits
<float>::epsilon() &&
55 x
< std::numeric_limits
<float>::epsilon())
56 return 1.0f
; // Special case the discontinuity at the origin.
57 float xpi
= x
* static_cast<float>(M_PI
);
58 return (sin(xpi
) / xpi
) * // sinc(x)
59 sin(xpi
/ filter_size
) / (xpi
/ filter_size
); // sinc(x/filter_size)
62 // Evaluates the Hamming filter of the given filter size window for the given
65 // The filter covers [-filter_size, +filter_size]. Outside of this window
66 // the value of the function is 0. Inside of the window, the value is sinus
67 // cardinal multiplied by a recentered Hamming function. The traditional
68 // Hamming formula for a window of size N and n ranging in [0, N-1] is:
69 // hamming(n) = 0.54 - 0.46 * cos(2 * pi * n / (N-1)))
70 // In our case we want the function centered for x == 0 and at its minimum
71 // on both ends of the window (x == +/- filter_size), hence the adjusted
73 // hamming(x) = (0.54 -
74 // 0.46 * cos(2 * pi * (x - filter_size)/ (2 * filter_size)))
75 // = 0.54 - 0.46 * cos(pi * x / filter_size - pi)
76 // = 0.54 + 0.46 * cos(pi * x / filter_size)
77 float EvalHamming(int filter_size
, float x
) {
78 if (x
<= -filter_size
|| x
>= filter_size
)
79 return 0.0f
; // Outside of the window.
80 if (x
> -std::numeric_limits
<float>::epsilon() &&
81 x
< std::numeric_limits
<float>::epsilon())
82 return 1.0f
; // Special case the sinc discontinuity at the origin.
83 const float xpi
= x
* static_cast<float>(M_PI
);
85 return ((sin(xpi
) / xpi
) * // sinc(x)
86 (0.54f
+ 0.46f
* cos(xpi
/ filter_size
))); // hamming(x)
89 // ResizeFilter ----------------------------------------------------------------
91 // Encapsulates computation and storage of the filters required for one complete
95 ResizeFilter(ImageOperations::ResizeMethod method
,
96 int src_full_width
, int src_full_height
,
97 int dest_width
, int dest_height
,
98 const SkIRect
& dest_subset
);
100 // Returns the filled filter values.
101 const ConvolutionFilter1D
& x_filter() { return x_filter_
; }
102 const ConvolutionFilter1D
& y_filter() { return y_filter_
; }
105 // Returns the number of pixels that the filer spans, in filter space (the
106 // destination image).
107 float GetFilterSupport(float scale
) {
109 case ImageOperations::RESIZE_BOX
:
110 // The box filter just scales with the image scaling.
111 return 0.5f
; // Only want one side of the filter = /2.
112 case ImageOperations::RESIZE_HAMMING1
:
113 // The Hamming filter takes as much space in the source image in
114 // each direction as the size of the window = 1 for Hamming1.
116 case ImageOperations::RESIZE_LANCZOS2
:
117 // The Lanczos filter takes as much space in the source image in
118 // each direction as the size of the window = 2 for Lanczos2.
120 case ImageOperations::RESIZE_LANCZOS3
:
121 // The Lanczos filter takes as much space in the source image in
122 // each direction as the size of the window = 3 for Lanczos3.
130 // Computes one set of filters either horizontally or vertically. The caller
131 // will specify the "min" and "max" rather than the bottom/top and
132 // right/bottom so that the same code can be re-used in each dimension.
134 // |src_depend_lo| and |src_depend_size| gives the range for the source
135 // depend rectangle (horizontally or vertically at the caller's discretion
136 // -- see above for what this means).
138 // Likewise, the range of destination values to compute and the scale factor
139 // for the transform is also specified.
140 void ComputeFilters(int src_size
,
141 int dest_subset_lo
, int dest_subset_size
,
143 ConvolutionFilter1D
* output
);
145 // Computes the filter value given the coordinate in filter space.
146 inline float ComputeFilter(float pos
) {
148 case ImageOperations::RESIZE_BOX
:
150 case ImageOperations::RESIZE_HAMMING1
:
151 return EvalHamming(1, pos
);
152 case ImageOperations::RESIZE_LANCZOS2
:
153 return EvalLanczos(2, pos
);
154 case ImageOperations::RESIZE_LANCZOS3
:
155 return EvalLanczos(3, pos
);
162 ImageOperations::ResizeMethod method_
;
164 // Size of the filter support on one side only in the destination space.
165 // See GetFilterSupport.
166 float x_filter_support_
;
167 float y_filter_support_
;
169 // Subset of scaled destination bitmap to compute.
172 ConvolutionFilter1D x_filter_
;
173 ConvolutionFilter1D y_filter_
;
175 DISALLOW_COPY_AND_ASSIGN(ResizeFilter
);
178 ResizeFilter::ResizeFilter(ImageOperations::ResizeMethod method
,
179 int src_full_width
, int src_full_height
,
180 int dest_width
, int dest_height
,
181 const SkIRect
& dest_subset
)
183 out_bounds_(dest_subset
) {
184 // method_ will only ever refer to an "algorithm method".
185 SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD
<= method
) &&
186 (method
<= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD
));
188 float scale_x
= static_cast<float>(dest_width
) /
189 static_cast<float>(src_full_width
);
190 float scale_y
= static_cast<float>(dest_height
) /
191 static_cast<float>(src_full_height
);
193 ComputeFilters(src_full_width
, dest_subset
.fLeft
, dest_subset
.width(),
194 scale_x
, &x_filter_
);
195 ComputeFilters(src_full_height
, dest_subset
.fTop
, dest_subset
.height(),
196 scale_y
, &y_filter_
);
199 // TODO(egouriou): Take advantage of periods in the convolution.
200 // Practical resizing filters are periodic outside of the border area.
201 // For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the
202 // source become p pixels in the destination) will have a period of p.
203 // A nice consequence is a period of 1 when downscaling by an integral
204 // factor. Downscaling from typical display resolutions is also bound
205 // to produce interesting periods as those are chosen to have multiple
207 // Small periods reduce computational load and improve cache usage if
208 // the coefficients can be shared. For periods of 1 we can consider
209 // loading the factors only once outside the borders.
210 void ResizeFilter::ComputeFilters(int src_size
,
211 int dest_subset_lo
, int dest_subset_size
,
213 ConvolutionFilter1D
* output
) {
214 int dest_subset_hi
= dest_subset_lo
+ dest_subset_size
; // [lo, hi)
216 // When we're doing a magnification, the scale will be larger than one. This
217 // means the destination pixels are much smaller than the source pixels, and
218 // that the range covered by the filter won't necessarily cover any source
219 // pixel boundaries. Therefore, we use these clamped values (max of 1) for
220 // some computations.
221 float clamped_scale
= std::min(1.0f
, scale
);
223 // This is how many source pixels from the center we need to count
224 // to support the filtering function.
225 float src_support
= GetFilterSupport(clamped_scale
) / clamped_scale
;
227 // Speed up the divisions below by turning them into multiplies.
228 float inv_scale
= 1.0f
/ scale
;
230 base::StackVector
<float, 64> filter_values
;
231 base::StackVector
<int16
, 64> fixed_filter_values
;
233 // Loop over all pixels in the output range. We will generate one set of
234 // filter values for each one. Those values will tell us how to blend the
235 // source pixels to compute the destination pixel.
236 for (int dest_subset_i
= dest_subset_lo
; dest_subset_i
< dest_subset_hi
;
238 // Reset the arrays. We don't declare them inside so they can re-use the
239 // same malloc-ed buffer.
240 filter_values
->clear();
241 fixed_filter_values
->clear();
243 // This is the pixel in the source directly under the pixel in the dest.
244 // Note that we base computations on the "center" of the pixels. To see
245 // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x
246 // downscale should "cover" the pixels around the pixel with *its center*
247 // at coordinates (2.5, 2.5) in the source, not those around (0, 0).
248 // Hence we need to scale coordinates (0.5, 0.5), not (0, 0).
249 float src_pixel
= (static_cast<float>(dest_subset_i
) + 0.5f
) * inv_scale
;
251 // Compute the (inclusive) range of source pixels the filter covers.
252 int src_begin
= std::max(0, FloorInt(src_pixel
- src_support
));
253 int src_end
= std::min(src_size
- 1, CeilInt(src_pixel
+ src_support
));
255 // Compute the unnormalized filter value at each location of the source
257 float filter_sum
= 0.0f
; // Sub of the filter values for normalizing.
258 for (int cur_filter_pixel
= src_begin
; cur_filter_pixel
<= src_end
;
259 cur_filter_pixel
++) {
260 // Distance from the center of the filter, this is the filter coordinate
261 // in source space. We also need to consider the center of the pixel
262 // when comparing distance against 'src_pixel'. In the 5x downscale
263 // example used above the distance from the center of the filter to
264 // the pixel with coordinates (2, 2) should be 0, because its center
266 float src_filter_dist
=
267 ((static_cast<float>(cur_filter_pixel
) + 0.5f
) - src_pixel
);
269 // Since the filter really exists in dest space, map it there.
270 float dest_filter_dist
= src_filter_dist
* clamped_scale
;
272 // Compute the filter value at that location.
273 float filter_value
= ComputeFilter(dest_filter_dist
);
274 filter_values
->push_back(filter_value
);
276 filter_sum
+= filter_value
;
278 DCHECK(!filter_values
->empty()) << "We should always get a filter!";
280 // The filter must be normalized so that we don't affect the brightness of
281 // the image. Convert to normalized fixed point.
283 for (size_t i
= 0; i
< filter_values
->size(); i
++) {
284 int16 cur_fixed
= output
->FloatToFixed(filter_values
[i
] / filter_sum
);
285 fixed_sum
+= cur_fixed
;
286 fixed_filter_values
->push_back(cur_fixed
);
289 // The conversion to fixed point will leave some rounding errors, which
290 // we add back in to avoid affecting the brightness of the image. We
291 // arbitrarily add this to the center of the filter array (this won't always
292 // be the center of the filter function since it could get clipped on the
293 // edges, but it doesn't matter enough to worry about that case).
294 int16 leftovers
= output
->FloatToFixed(1.0f
) - fixed_sum
;
295 fixed_filter_values
[fixed_filter_values
->size() / 2] += leftovers
;
297 // Now it's ready to go.
298 output
->AddFilter(src_begin
, &fixed_filter_values
[0],
299 static_cast<int>(fixed_filter_values
->size()));
302 output
->PaddingForSIMD();
305 ImageOperations::ResizeMethod
ResizeMethodToAlgorithmMethod(
306 ImageOperations::ResizeMethod method
) {
307 // Convert any "Quality Method" into an "Algorithm Method"
308 if (method
>= ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD
&&
309 method
<= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD
) {
312 // The call to ImageOperationsGtv::Resize() above took care of
313 // GPU-acceleration in the cases where it is possible. So now we just
314 // pick the appropriate software method for each resize quality.
316 // Users of RESIZE_GOOD are willing to trade a lot of quality to
317 // get speed, allowing the use of linear resampling to get hardware
318 // acceleration (SRB). Hence any of our "good" software filters
319 // will be acceptable, and we use the fastest one, Hamming-1.
320 case ImageOperations::RESIZE_GOOD
:
321 // Users of RESIZE_BETTER are willing to trade some quality in order
322 // to improve performance, but are guaranteed not to devolve to a linear
323 // resampling. In visual tests we see that Hamming-1 is not as good as
324 // Lanczos-2, however it is about 40% faster and Lanczos-2 itself is
325 // about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed
326 // an acceptable trade-off between quality and speed.
327 case ImageOperations::RESIZE_BETTER
:
328 return ImageOperations::RESIZE_HAMMING1
;
330 return ImageOperations::RESIZE_LANCZOS3
;
336 // Resize ----------------------------------------------------------------------
339 SkBitmap
ImageOperations::Resize(const SkBitmap
& source
,
341 int dest_width
, int dest_height
,
342 const SkIRect
& dest_subset
,
343 SkBitmap::Allocator
* allocator
) {
344 TRACE_EVENT2("disabled-by-default-skia", "ImageOperations::Resize",
345 "src_pixels", source
.width() * source
.height(), "dst_pixels",
346 dest_width
* dest_height
);
347 // Ensure that the ResizeMethod enumeration is sound.
348 SkASSERT(((RESIZE_FIRST_QUALITY_METHOD
<= method
) &&
349 (method
<= RESIZE_LAST_QUALITY_METHOD
)) ||
350 ((RESIZE_FIRST_ALGORITHM_METHOD
<= method
) &&
351 (method
<= RESIZE_LAST_ALGORITHM_METHOD
)));
353 // Time how long this takes to see if it's a problem for users.
354 base::TimeTicks resize_start
= base::TimeTicks::Now();
356 SkIRect dest
= { 0, 0, dest_width
, dest_height
};
357 DCHECK(dest
.contains(dest_subset
)) <<
358 "The supplied subset does not fall within the destination image.";
360 // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just
362 if (source
.width() < 1 || source
.height() < 1 ||
363 dest_width
< 1 || dest_height
< 1)
366 method
= ResizeMethodToAlgorithmMethod(method
);
367 // Check that we deal with an "algorithm methods" from this point onward.
368 SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD
<= method
) &&
369 (method
<= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD
));
371 SkAutoLockPixels
locker(source
);
372 if (!source
.readyToDraw() || source
.colorType() != kN32_SkColorType
)
375 ResizeFilter
filter(method
, source
.width(), source
.height(),
376 dest_width
, dest_height
, dest_subset
);
378 // Get a source bitmap encompassing this touched area. We construct the
379 // offsets and row strides such that it looks like a new bitmap, while
380 // referring to the old data.
381 const uint8
* source_subset
=
382 reinterpret_cast<const uint8
*>(source
.getPixels());
384 // Convolve into the result.
386 result
.setInfo(SkImageInfo::MakeN32(dest_subset
.width(), dest_subset
.height(), source
.alphaType()));
387 result
.allocPixels(allocator
, NULL
);
388 if (!result
.readyToDraw())
391 BGRAConvolve2D(source_subset
, static_cast<int>(source
.rowBytes()),
392 !source
.isOpaque(), filter
.x_filter(), filter
.y_filter(),
393 static_cast<int>(result
.rowBytes()),
394 static_cast<unsigned char*>(result
.getPixels()),
397 base::TimeDelta delta
= base::TimeTicks::Now() - resize_start
;
398 UMA_HISTOGRAM_TIMES("Image.ResampleMS", delta
);
404 SkBitmap
ImageOperations::Resize(const SkBitmap
& source
,
406 int dest_width
, int dest_height
,
407 SkBitmap::Allocator
* allocator
) {
408 SkIRect dest_subset
= { 0, 0, dest_width
, dest_height
};
409 return Resize(source
, method
, dest_width
, dest_height
, dest_subset
,