1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/base/math_util.h"
11 #include "base/trace_event/trace_event_argument.h"
12 #include "base/values.h"
13 #include "ui/gfx/geometry/quad_f.h"
14 #include "ui/gfx/geometry/rect.h"
15 #include "ui/gfx/geometry/rect_conversions.h"
16 #include "ui/gfx/geometry/rect_f.h"
17 #include "ui/gfx/geometry/vector2d_f.h"
18 #include "ui/gfx/geometry/vector3d_f.h"
19 #include "ui/gfx/transform.h"
23 const double MathUtil::kPiDouble
= 3.14159265358979323846;
24 const float MathUtil::kPiFloat
= 3.14159265358979323846f
;
26 static HomogeneousCoordinate
ProjectHomogeneousPoint(
27 const gfx::Transform
& transform
,
28 const gfx::PointF
& p
) {
30 -(transform
.matrix().get(2, 0) * p
.x() +
31 transform
.matrix().get(2, 1) * p
.y() + transform
.matrix().get(2, 3)) /
32 transform
.matrix().get(2, 2);
34 // In this case, the layer we are trying to project onto is perpendicular to
35 // ray (point p and z-axis direction) that we are trying to project. This
36 // happens when the layer is rotated so that it is infinitesimally thin, or
37 // when it is co-planar with the camera origin -- i.e. when the layer is
39 if (!std::isfinite(z
))
40 return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);
42 HomogeneousCoordinate
result(p
.x(), p
.y(), z
, 1.0);
43 transform
.matrix().mapMScalars(result
.vec
, result
.vec
);
47 static HomogeneousCoordinate
ProjectHomogeneousPoint(
48 const gfx::Transform
& transform
,
51 HomogeneousCoordinate h
= ProjectHomogeneousPoint(transform
, p
);
52 *clipped
= h
.w() <= 0;
56 static HomogeneousCoordinate
MapHomogeneousPoint(
57 const gfx::Transform
& transform
,
58 const gfx::Point3F
& p
) {
59 HomogeneousCoordinate
result(p
.x(), p
.y(), p
.z(), 1.0);
60 transform
.matrix().mapMScalars(result
.vec
, result
.vec
);
64 static HomogeneousCoordinate
ComputeClippedPointForEdge(
65 const HomogeneousCoordinate
& h1
,
66 const HomogeneousCoordinate
& h2
) {
67 // Points h1 and h2 form a line in 4d, and any point on that line can be
68 // represented as an interpolation between h1 and h2:
69 // p = (1-t) h1 + (t) h2
71 // We want to compute point p such that p.w == epsilon, where epsilon is a
72 // small non-zero number. (but the smaller the number is, the higher the risk
74 // To do this, we solve for t in the following equation:
75 // p.w = epsilon = (1-t) * h1.w + (t) * h2.w
77 // Once paramter t is known, the rest of p can be computed via
78 // p = (1-t) h1 + (t) h2.
80 // Technically this is a special case of the following assertion, but its a
81 // good idea to keep it an explicit sanity check here.
82 DCHECK_NE(h2
.w(), h1
.w());
83 // Exactly one of h1 or h2 (but not both) must be on the negative side of the
84 // w plane when this is called.
85 DCHECK(h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped());
87 // ...or any positive non-zero small epsilon
88 SkMScalar w
= 0.00001f
;
89 SkMScalar t
= (w
- h1
.w()) / (h2
.w() - h1
.w());
91 SkMScalar x
= (SK_MScalar1
- t
) * h1
.x() + t
* h2
.x();
92 SkMScalar y
= (SK_MScalar1
- t
) * h1
.y() + t
* h2
.y();
93 SkMScalar z
= (SK_MScalar1
- t
) * h1
.z() + t
* h2
.z();
95 return HomogeneousCoordinate(x
, y
, z
, w
);
98 static inline void ExpandBoundsToIncludePoint(float* xmin
,
102 const gfx::PointF
& p
) {
103 *xmin
= std::min(p
.x(), *xmin
);
104 *xmax
= std::max(p
.x(), *xmax
);
105 *ymin
= std::min(p
.y(), *ymin
);
106 *ymax
= std::max(p
.y(), *ymax
);
109 static inline void AddVertexToClippedQuad(const gfx::PointF
& new_vertex
,
110 gfx::PointF clipped_quad
[8],
111 int* num_vertices_in_clipped_quad
) {
112 clipped_quad
[*num_vertices_in_clipped_quad
] = new_vertex
;
113 (*num_vertices_in_clipped_quad
)++;
116 static inline void AddVertexToClippedQuad3d(const gfx::Point3F
& new_vertex
,
117 gfx::Point3F clipped_quad
[8],
118 int* num_vertices_in_clipped_quad
) {
119 clipped_quad
[*num_vertices_in_clipped_quad
] = new_vertex
;
120 (*num_vertices_in_clipped_quad
)++;
123 gfx::Rect
MathUtil::MapEnclosingClippedRect(const gfx::Transform
& transform
,
124 const gfx::Rect
& src_rect
) {
125 if (transform
.IsIdentityOrIntegerTranslation()) {
126 gfx::Vector2d
offset(static_cast<int>(transform
.matrix().getFloat(0, 3)),
127 static_cast<int>(transform
.matrix().getFloat(1, 3)));
128 return src_rect
+ offset
;
130 gfx::RectF mapped_rect
= MapClippedRect(transform
, gfx::RectF(src_rect
));
132 // gfx::ToEnclosingRect crashes if called on a RectF with any NaN coordinate.
133 if (std::isnan(mapped_rect
.x()) || std::isnan(mapped_rect
.y()) ||
134 std::isnan(mapped_rect
.right()) || std::isnan(mapped_rect
.bottom()))
137 return gfx::ToEnclosingRect(mapped_rect
);
140 gfx::RectF
MathUtil::MapClippedRect(const gfx::Transform
& transform
,
141 const gfx::RectF
& src_rect
) {
142 if (transform
.IsIdentityOrTranslation()) {
143 gfx::Vector2dF
offset(transform
.matrix().getFloat(0, 3),
144 transform
.matrix().getFloat(1, 3));
145 return src_rect
+ offset
;
148 // Apply the transform, but retain the result in homogeneous coordinates.
150 SkMScalar quad
[4 * 2]; // input: 4 x 2D points
151 quad
[0] = src_rect
.x();
152 quad
[1] = src_rect
.y();
153 quad
[2] = src_rect
.right();
154 quad
[3] = src_rect
.y();
155 quad
[4] = src_rect
.right();
156 quad
[5] = src_rect
.bottom();
157 quad
[6] = src_rect
.x();
158 quad
[7] = src_rect
.bottom();
160 SkMScalar result
[4 * 4]; // output: 4 x 4D homogeneous points
161 transform
.matrix().map2(quad
, 4, result
);
163 HomogeneousCoordinate
hc0(result
[0], result
[1], result
[2], result
[3]);
164 HomogeneousCoordinate
hc1(result
[4], result
[5], result
[6], result
[7]);
165 HomogeneousCoordinate
hc2(result
[8], result
[9], result
[10], result
[11]);
166 HomogeneousCoordinate
hc3(result
[12], result
[13], result
[14], result
[15]);
167 return ComputeEnclosingClippedRect(hc0
, hc1
, hc2
, hc3
);
170 gfx::Rect
MathUtil::ProjectEnclosingClippedRect(const gfx::Transform
& transform
,
171 const gfx::Rect
& src_rect
) {
172 if (transform
.IsIdentityOrIntegerTranslation()) {
173 gfx::Vector2d
offset(static_cast<int>(transform
.matrix().getFloat(0, 3)),
174 static_cast<int>(transform
.matrix().getFloat(1, 3)));
175 return src_rect
+ offset
;
177 gfx::RectF projected_rect
=
178 ProjectClippedRect(transform
, gfx::RectF(src_rect
));
180 // gfx::ToEnclosingRect crashes if called on a RectF with any NaN coordinate.
181 if (std::isnan(projected_rect
.x()) || std::isnan(projected_rect
.y()) ||
182 std::isnan(projected_rect
.right()) || std::isnan(projected_rect
.bottom()))
185 return gfx::ToEnclosingRect(projected_rect
);
188 gfx::RectF
MathUtil::ProjectClippedRect(const gfx::Transform
& transform
,
189 const gfx::RectF
& src_rect
) {
190 if (transform
.IsIdentityOrTranslation()) {
191 gfx::Vector2dF
offset(transform
.matrix().getFloat(0, 3),
192 transform
.matrix().getFloat(1, 3));
193 return src_rect
+ offset
;
196 // Perform the projection, but retain the result in homogeneous coordinates.
197 gfx::QuadF q
= gfx::QuadF(src_rect
);
198 HomogeneousCoordinate h1
= ProjectHomogeneousPoint(transform
, q
.p1());
199 HomogeneousCoordinate h2
= ProjectHomogeneousPoint(transform
, q
.p2());
200 HomogeneousCoordinate h3
= ProjectHomogeneousPoint(transform
, q
.p3());
201 HomogeneousCoordinate h4
= ProjectHomogeneousPoint(transform
, q
.p4());
203 return ComputeEnclosingClippedRect(h1
, h2
, h3
, h4
);
206 gfx::Rect
MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
207 const gfx::Transform
& transform
,
208 const gfx::Rect
& rect
) {
209 DCHECK(transform
.Preserves2dAxisAlignment());
211 if (transform
.IsIdentityOrIntegerTranslation()) {
212 gfx::Vector2d
offset(static_cast<int>(transform
.matrix().getFloat(0, 3)),
213 static_cast<int>(transform
.matrix().getFloat(1, 3)));
214 return rect
+ offset
;
216 if (transform
.IsIdentityOrTranslation()) {
217 gfx::Vector2dF
offset(transform
.matrix().getFloat(0, 3),
218 transform
.matrix().getFloat(1, 3));
219 return gfx::ToEnclosedRect(gfx::RectF(rect
) + offset
);
222 SkMScalar quad
[2 * 2]; // input: 2 x 2D points
225 quad
[2] = rect
.right();
226 quad
[3] = rect
.bottom();
228 SkMScalar result
[4 * 2]; // output: 2 x 4D homogeneous points
229 transform
.matrix().map2(quad
, 2, result
);
231 HomogeneousCoordinate
hc0(result
[0], result
[1], result
[2], result
[3]);
232 HomogeneousCoordinate
hc1(result
[4], result
[5], result
[6], result
[7]);
233 DCHECK(!hc0
.ShouldBeClipped());
234 DCHECK(!hc1
.ShouldBeClipped());
236 gfx::PointF
top_left(hc0
.CartesianPoint2d());
237 gfx::PointF
bottom_right(hc1
.CartesianPoint2d());
238 return gfx::ToEnclosedRect(gfx::BoundingRect(top_left
, bottom_right
));
241 void MathUtil::MapClippedQuad(const gfx::Transform
& transform
,
242 const gfx::QuadF
& src_quad
,
243 gfx::PointF clipped_quad
[8],
244 int* num_vertices_in_clipped_quad
) {
245 HomogeneousCoordinate h1
=
246 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p1()));
247 HomogeneousCoordinate h2
=
248 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p2()));
249 HomogeneousCoordinate h3
=
250 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p3()));
251 HomogeneousCoordinate h4
=
252 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p4()));
254 // The order of adding the vertices to the array is chosen so that
255 // clockwise / counter-clockwise orientation is retained.
257 *num_vertices_in_clipped_quad
= 0;
259 if (!h1
.ShouldBeClipped()) {
260 AddVertexToClippedQuad(
261 h1
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
264 if (h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped()) {
265 AddVertexToClippedQuad(
266 ComputeClippedPointForEdge(h1
, h2
).CartesianPoint2d(),
268 num_vertices_in_clipped_quad
);
271 if (!h2
.ShouldBeClipped()) {
272 AddVertexToClippedQuad(
273 h2
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
276 if (h2
.ShouldBeClipped() ^ h3
.ShouldBeClipped()) {
277 AddVertexToClippedQuad(
278 ComputeClippedPointForEdge(h2
, h3
).CartesianPoint2d(),
280 num_vertices_in_clipped_quad
);
283 if (!h3
.ShouldBeClipped()) {
284 AddVertexToClippedQuad(
285 h3
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
288 if (h3
.ShouldBeClipped() ^ h4
.ShouldBeClipped()) {
289 AddVertexToClippedQuad(
290 ComputeClippedPointForEdge(h3
, h4
).CartesianPoint2d(),
292 num_vertices_in_clipped_quad
);
295 if (!h4
.ShouldBeClipped()) {
296 AddVertexToClippedQuad(
297 h4
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
300 if (h4
.ShouldBeClipped() ^ h1
.ShouldBeClipped()) {
301 AddVertexToClippedQuad(
302 ComputeClippedPointForEdge(h4
, h1
).CartesianPoint2d(),
304 num_vertices_in_clipped_quad
);
307 DCHECK_LE(*num_vertices_in_clipped_quad
, 8);
310 bool MathUtil::MapClippedQuad3d(const gfx::Transform
& transform
,
311 const gfx::QuadF
& src_quad
,
312 gfx::Point3F clipped_quad
[8],
313 int* num_vertices_in_clipped_quad
) {
314 HomogeneousCoordinate h1
=
315 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p1()));
316 HomogeneousCoordinate h2
=
317 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p2()));
318 HomogeneousCoordinate h3
=
319 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p3()));
320 HomogeneousCoordinate h4
=
321 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p4()));
323 // The order of adding the vertices to the array is chosen so that
324 // clockwise / counter-clockwise orientation is retained.
326 *num_vertices_in_clipped_quad
= 0;
328 if (!h1
.ShouldBeClipped()) {
329 AddVertexToClippedQuad3d(
330 h1
.CartesianPoint3d(), clipped_quad
, num_vertices_in_clipped_quad
);
333 if (h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped()) {
334 AddVertexToClippedQuad3d(
335 ComputeClippedPointForEdge(h1
, h2
).CartesianPoint3d(),
337 num_vertices_in_clipped_quad
);
340 if (!h2
.ShouldBeClipped()) {
341 AddVertexToClippedQuad3d(
342 h2
.CartesianPoint3d(), clipped_quad
, num_vertices_in_clipped_quad
);
345 if (h2
.ShouldBeClipped() ^ h3
.ShouldBeClipped()) {
346 AddVertexToClippedQuad3d(
347 ComputeClippedPointForEdge(h2
, h3
).CartesianPoint3d(),
349 num_vertices_in_clipped_quad
);
352 if (!h3
.ShouldBeClipped()) {
353 AddVertexToClippedQuad3d(
354 h3
.CartesianPoint3d(), clipped_quad
, num_vertices_in_clipped_quad
);
357 if (h3
.ShouldBeClipped() ^ h4
.ShouldBeClipped()) {
358 AddVertexToClippedQuad3d(
359 ComputeClippedPointForEdge(h3
, h4
).CartesianPoint3d(),
361 num_vertices_in_clipped_quad
);
364 if (!h4
.ShouldBeClipped()) {
365 AddVertexToClippedQuad3d(
366 h4
.CartesianPoint3d(), clipped_quad
, num_vertices_in_clipped_quad
);
369 if (h4
.ShouldBeClipped() ^ h1
.ShouldBeClipped()) {
370 AddVertexToClippedQuad3d(
371 ComputeClippedPointForEdge(h4
, h1
).CartesianPoint3d(),
373 num_vertices_in_clipped_quad
);
376 DCHECK_LE(*num_vertices_in_clipped_quad
, 8);
377 return (*num_vertices_in_clipped_quad
>= 4);
380 gfx::RectF
MathUtil::ComputeEnclosingRectOfVertices(
381 const gfx::PointF vertices
[],
383 if (num_vertices
< 2)
386 float xmin
= std::numeric_limits
<float>::max();
387 float xmax
= -std::numeric_limits
<float>::max();
388 float ymin
= std::numeric_limits
<float>::max();
389 float ymax
= -std::numeric_limits
<float>::max();
391 for (int i
= 0; i
< num_vertices
; ++i
)
392 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
, vertices
[i
]);
394 return gfx::RectF(gfx::PointF(xmin
, ymin
),
395 gfx::SizeF(xmax
- xmin
, ymax
- ymin
));
398 gfx::RectF
MathUtil::ComputeEnclosingClippedRect(
399 const HomogeneousCoordinate
& h1
,
400 const HomogeneousCoordinate
& h2
,
401 const HomogeneousCoordinate
& h3
,
402 const HomogeneousCoordinate
& h4
) {
403 // This function performs clipping as necessary and computes the enclosing 2d
404 // gfx::RectF of the vertices. Doing these two steps simultaneously allows us
405 // to avoid the overhead of storing an unknown number of clipped vertices.
407 // If no vertices on the quad are clipped, then we can simply return the
408 // enclosing rect directly.
409 bool something_clipped
= h1
.ShouldBeClipped() || h2
.ShouldBeClipped() ||
410 h3
.ShouldBeClipped() || h4
.ShouldBeClipped();
411 if (!something_clipped
) {
412 gfx::QuadF mapped_quad
= gfx::QuadF(h1
.CartesianPoint2d(),
413 h2
.CartesianPoint2d(),
414 h3
.CartesianPoint2d(),
415 h4
.CartesianPoint2d());
416 return mapped_quad
.BoundingBox();
419 bool everything_clipped
= h1
.ShouldBeClipped() && h2
.ShouldBeClipped() &&
420 h3
.ShouldBeClipped() && h4
.ShouldBeClipped();
421 if (everything_clipped
)
424 float xmin
= std::numeric_limits
<float>::max();
425 float xmax
= -std::numeric_limits
<float>::max();
426 float ymin
= std::numeric_limits
<float>::max();
427 float ymax
= -std::numeric_limits
<float>::max();
429 if (!h1
.ShouldBeClipped())
430 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
431 h1
.CartesianPoint2d());
433 if (h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped())
434 ExpandBoundsToIncludePoint(&xmin
,
438 ComputeClippedPointForEdge(h1
, h2
)
439 .CartesianPoint2d());
441 if (!h2
.ShouldBeClipped())
442 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
443 h2
.CartesianPoint2d());
445 if (h2
.ShouldBeClipped() ^ h3
.ShouldBeClipped())
446 ExpandBoundsToIncludePoint(&xmin
,
450 ComputeClippedPointForEdge(h2
, h3
)
451 .CartesianPoint2d());
453 if (!h3
.ShouldBeClipped())
454 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
455 h3
.CartesianPoint2d());
457 if (h3
.ShouldBeClipped() ^ h4
.ShouldBeClipped())
458 ExpandBoundsToIncludePoint(&xmin
,
462 ComputeClippedPointForEdge(h3
, h4
)
463 .CartesianPoint2d());
465 if (!h4
.ShouldBeClipped())
466 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
467 h4
.CartesianPoint2d());
469 if (h4
.ShouldBeClipped() ^ h1
.ShouldBeClipped())
470 ExpandBoundsToIncludePoint(&xmin
,
474 ComputeClippedPointForEdge(h4
, h1
)
475 .CartesianPoint2d());
477 return gfx::RectF(gfx::PointF(xmin
, ymin
),
478 gfx::SizeF(xmax
- xmin
, ymax
- ymin
));
481 gfx::QuadF
MathUtil::MapQuad(const gfx::Transform
& transform
,
484 if (transform
.IsIdentityOrTranslation()) {
485 gfx::QuadF
mapped_quad(q
);
486 mapped_quad
+= gfx::Vector2dF(transform
.matrix().getFloat(0, 3),
487 transform
.matrix().getFloat(1, 3));
492 HomogeneousCoordinate h1
=
493 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p1()));
494 HomogeneousCoordinate h2
=
495 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p2()));
496 HomogeneousCoordinate h3
=
497 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p3()));
498 HomogeneousCoordinate h4
=
499 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p4()));
501 *clipped
= h1
.ShouldBeClipped() || h2
.ShouldBeClipped() ||
502 h3
.ShouldBeClipped() || h4
.ShouldBeClipped();
504 // Result will be invalid if clipped == true. But, compute it anyway just in
505 // case, to emulate existing behavior.
506 return gfx::QuadF(h1
.CartesianPoint2d(),
507 h2
.CartesianPoint2d(),
508 h3
.CartesianPoint2d(),
509 h4
.CartesianPoint2d());
512 gfx::QuadF
MathUtil::MapQuad3d(const gfx::Transform
& transform
,
516 if (transform
.IsIdentityOrTranslation()) {
517 gfx::QuadF
mapped_quad(q
);
518 mapped_quad
+= gfx::Vector2dF(transform
.matrix().getFloat(0, 3),
519 transform
.matrix().getFloat(1, 3));
521 p
[0] = gfx::Point3F(mapped_quad
.p1().x(), mapped_quad
.p1().y(), 0.0f
);
522 p
[1] = gfx::Point3F(mapped_quad
.p2().x(), mapped_quad
.p2().y(), 0.0f
);
523 p
[2] = gfx::Point3F(mapped_quad
.p3().x(), mapped_quad
.p3().y(), 0.0f
);
524 p
[3] = gfx::Point3F(mapped_quad
.p4().x(), mapped_quad
.p4().y(), 0.0f
);
528 HomogeneousCoordinate h1
=
529 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p1()));
530 HomogeneousCoordinate h2
=
531 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p2()));
532 HomogeneousCoordinate h3
=
533 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p3()));
534 HomogeneousCoordinate h4
=
535 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p4()));
537 *clipped
= h1
.ShouldBeClipped() || h2
.ShouldBeClipped() ||
538 h3
.ShouldBeClipped() || h4
.ShouldBeClipped();
540 // Result will be invalid if clipped == true. But, compute it anyway just in
541 // case, to emulate existing behavior.
542 p
[0] = h1
.CartesianPoint3d();
543 p
[1] = h2
.CartesianPoint3d();
544 p
[2] = h3
.CartesianPoint3d();
545 p
[3] = h4
.CartesianPoint3d();
547 return gfx::QuadF(h1
.CartesianPoint2d(),
548 h2
.CartesianPoint2d(),
549 h3
.CartesianPoint2d(),
550 h4
.CartesianPoint2d());
553 gfx::PointF
MathUtil::MapPoint(const gfx::Transform
& transform
,
554 const gfx::PointF
& p
,
556 HomogeneousCoordinate h
= MapHomogeneousPoint(transform
, gfx::Point3F(p
));
560 return h
.CartesianPoint2d();
563 // The cartesian coordinates will be invalid after dividing by w.
566 // Avoid dividing by w if w == 0.
568 return gfx::PointF();
570 // This return value will be invalid because clipped == true, but (1) users of
571 // this code should be ignoring the return value when clipped == true anyway,
572 // and (2) this behavior is more consistent with existing behavior of WebKit
573 // transforms if the user really does not ignore the return value.
574 return h
.CartesianPoint2d();
577 gfx::Point3F
MathUtil::MapPoint(const gfx::Transform
& transform
,
578 const gfx::Point3F
& p
,
580 HomogeneousCoordinate h
= MapHomogeneousPoint(transform
, p
);
584 return h
.CartesianPoint3d();
587 // The cartesian coordinates will be invalid after dividing by w.
590 // Avoid dividing by w if w == 0.
592 return gfx::Point3F();
594 // This return value will be invalid because clipped == true, but (1) users of
595 // this code should be ignoring the return value when clipped == true anyway,
596 // and (2) this behavior is more consistent with existing behavior of WebKit
597 // transforms if the user really does not ignore the return value.
598 return h
.CartesianPoint3d();
601 gfx::QuadF
MathUtil::ProjectQuad(const gfx::Transform
& transform
,
604 gfx::QuadF projected_quad
;
606 projected_quad
.set_p1(ProjectPoint(transform
, q
.p1(), &clipped_point
));
607 *clipped
= clipped_point
;
608 projected_quad
.set_p2(ProjectPoint(transform
, q
.p2(), &clipped_point
));
609 *clipped
|= clipped_point
;
610 projected_quad
.set_p3(ProjectPoint(transform
, q
.p3(), &clipped_point
));
611 *clipped
|= clipped_point
;
612 projected_quad
.set_p4(ProjectPoint(transform
, q
.p4(), &clipped_point
));
613 *clipped
|= clipped_point
;
615 return projected_quad
;
618 gfx::PointF
MathUtil::ProjectPoint(const gfx::Transform
& transform
,
619 const gfx::PointF
& p
,
621 HomogeneousCoordinate h
= ProjectHomogeneousPoint(transform
, p
, clipped
);
622 // Avoid dividing by w if w == 0.
624 return gfx::PointF();
626 // This return value will be invalid if clipped == true, but (1) users of
627 // this code should be ignoring the return value when clipped == true anyway,
628 // and (2) this behavior is more consistent with existing behavior of WebKit
629 // transforms if the user really does not ignore the return value.
630 return h
.CartesianPoint2d();
633 gfx::Point3F
MathUtil::ProjectPoint3D(const gfx::Transform
& transform
,
634 const gfx::PointF
& p
,
636 HomogeneousCoordinate h
= ProjectHomogeneousPoint(transform
, p
, clipped
);
638 return gfx::Point3F();
639 return h
.CartesianPoint3d();
642 gfx::RectF
MathUtil::ScaleRectProportional(const gfx::RectF
& input_outer_rect
,
643 const gfx::RectF
& scale_outer_rect
,
644 const gfx::RectF
& scale_inner_rect
) {
645 gfx::RectF output_inner_rect
= input_outer_rect
;
646 float scale_rect_to_input_scale_x
=
647 scale_outer_rect
.width() / input_outer_rect
.width();
648 float scale_rect_to_input_scale_y
=
649 scale_outer_rect
.height() / input_outer_rect
.height();
651 gfx::Vector2dF top_left_diff
=
652 scale_inner_rect
.origin() - scale_outer_rect
.origin();
653 gfx::Vector2dF bottom_right_diff
=
654 scale_inner_rect
.bottom_right() - scale_outer_rect
.bottom_right();
655 output_inner_rect
.Inset(top_left_diff
.x() / scale_rect_to_input_scale_x
,
656 top_left_diff
.y() / scale_rect_to_input_scale_y
,
657 -bottom_right_diff
.x() / scale_rect_to_input_scale_x
,
658 -bottom_right_diff
.y() / scale_rect_to_input_scale_y
);
659 return output_inner_rect
;
662 static inline bool NearlyZero(double value
) {
663 return std::abs(value
) < std::numeric_limits
<double>::epsilon();
666 static inline float ScaleOnAxis(double a
, double b
, double c
) {
667 if (NearlyZero(b
) && NearlyZero(c
))
669 if (NearlyZero(a
) && NearlyZero(c
))
671 if (NearlyZero(a
) && NearlyZero(b
))
674 // Do the sqrt as a double to not lose precision.
675 return static_cast<float>(std::sqrt(a
* a
+ b
* b
+ c
* c
));
678 gfx::Vector2dF
MathUtil::ComputeTransform2dScaleComponents(
679 const gfx::Transform
& transform
,
680 float fallback_value
) {
681 if (transform
.HasPerspective())
682 return gfx::Vector2dF(fallback_value
, fallback_value
);
683 float x_scale
= ScaleOnAxis(transform
.matrix().getDouble(0, 0),
684 transform
.matrix().getDouble(1, 0),
685 transform
.matrix().getDouble(2, 0));
686 float y_scale
= ScaleOnAxis(transform
.matrix().getDouble(0, 1),
687 transform
.matrix().getDouble(1, 1),
688 transform
.matrix().getDouble(2, 1));
689 return gfx::Vector2dF(x_scale
, y_scale
);
692 float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF
& v1
,
693 const gfx::Vector2dF
& v2
) {
694 double dot_product
= gfx::DotProduct(v1
, v2
) / v1
.Length() / v2
.Length();
695 // Clamp to compensate for rounding errors.
696 dot_product
= std::max(-1.0, std::min(1.0, dot_product
));
697 return static_cast<float>(Rad2Deg(std::acos(dot_product
)));
700 gfx::Vector2dF
MathUtil::ProjectVector(const gfx::Vector2dF
& source
,
701 const gfx::Vector2dF
& destination
) {
702 float projected_length
=
703 gfx::DotProduct(source
, destination
) / destination
.LengthSquared();
704 return gfx::Vector2dF(projected_length
* destination
.x(),
705 projected_length
* destination
.y());
708 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::Size
& s
) {
709 scoped_ptr
<base::DictionaryValue
> res(new base::DictionaryValue());
710 res
->SetDouble("width", s
.width());
711 res
->SetDouble("height", s
.height());
715 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::Rect
& r
) {
716 scoped_ptr
<base::ListValue
> res(new base::ListValue());
717 res
->AppendInteger(r
.x());
718 res
->AppendInteger(r
.y());
719 res
->AppendInteger(r
.width());
720 res
->AppendInteger(r
.height());
724 bool MathUtil::FromValue(const base::Value
* raw_value
, gfx::Rect
* out_rect
) {
725 const base::ListValue
* value
= nullptr;
726 if (!raw_value
->GetAsList(&value
))
729 if (value
->GetSize() != 4)
734 ok
&= value
->GetInteger(0, &x
);
735 ok
&= value
->GetInteger(1, &y
);
736 ok
&= value
->GetInteger(2, &w
);
737 ok
&= value
->GetInteger(3, &h
);
741 *out_rect
= gfx::Rect(x
, y
, w
, h
);
745 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::PointF
& pt
) {
746 scoped_ptr
<base::ListValue
> res(new base::ListValue());
747 res
->AppendDouble(pt
.x());
748 res
->AppendDouble(pt
.y());
752 void MathUtil::AddToTracedValue(const char* name
,
754 base::trace_event::TracedValue
* res
) {
755 res
->BeginDictionary(name
);
756 res
->SetDouble("width", s
.width());
757 res
->SetDouble("height", s
.height());
758 res
->EndDictionary();
761 void MathUtil::AddToTracedValue(const char* name
,
763 base::trace_event::TracedValue
* res
) {
764 res
->BeginDictionary(name
);
765 res
->SetDouble("width", s
.width());
766 res
->SetDouble("height", s
.height());
767 res
->EndDictionary();
770 void MathUtil::AddToTracedValue(const char* name
,
772 base::trace_event::TracedValue
* res
) {
773 res
->BeginArray(name
);
774 res
->AppendInteger(r
.x());
775 res
->AppendInteger(r
.y());
776 res
->AppendInteger(r
.width());
777 res
->AppendInteger(r
.height());
781 void MathUtil::AddToTracedValue(const char* name
,
782 const gfx::PointF
& pt
,
783 base::trace_event::TracedValue
* res
) {
784 res
->BeginArray(name
);
785 res
->AppendDouble(pt
.x());
786 res
->AppendDouble(pt
.y());
790 void MathUtil::AddToTracedValue(const char* name
,
791 const gfx::Point3F
& pt
,
792 base::trace_event::TracedValue
* res
) {
793 res
->BeginArray(name
);
794 res
->AppendDouble(pt
.x());
795 res
->AppendDouble(pt
.y());
796 res
->AppendDouble(pt
.z());
800 void MathUtil::AddToTracedValue(const char* name
,
801 const gfx::Vector2d
& v
,
802 base::trace_event::TracedValue
* res
) {
803 res
->BeginArray(name
);
804 res
->AppendInteger(v
.x());
805 res
->AppendInteger(v
.y());
809 void MathUtil::AddToTracedValue(const char* name
,
810 const gfx::Vector2dF
& v
,
811 base::trace_event::TracedValue
* res
) {
812 res
->BeginArray(name
);
813 res
->AppendDouble(v
.x());
814 res
->AppendDouble(v
.y());
818 void MathUtil::AddToTracedValue(const char* name
,
819 const gfx::ScrollOffset
& v
,
820 base::trace_event::TracedValue
* res
) {
821 res
->BeginArray(name
);
822 res
->AppendDouble(v
.x());
823 res
->AppendDouble(v
.y());
827 void MathUtil::AddToTracedValue(const char* name
,
829 base::trace_event::TracedValue
* res
) {
830 res
->BeginArray(name
);
831 res
->AppendDouble(q
.p1().x());
832 res
->AppendDouble(q
.p1().y());
833 res
->AppendDouble(q
.p2().x());
834 res
->AppendDouble(q
.p2().y());
835 res
->AppendDouble(q
.p3().x());
836 res
->AppendDouble(q
.p3().y());
837 res
->AppendDouble(q
.p4().x());
838 res
->AppendDouble(q
.p4().y());
842 void MathUtil::AddToTracedValue(const char* name
,
843 const gfx::RectF
& rect
,
844 base::trace_event::TracedValue
* res
) {
845 res
->BeginArray(name
);
846 res
->AppendDouble(rect
.x());
847 res
->AppendDouble(rect
.y());
848 res
->AppendDouble(rect
.width());
849 res
->AppendDouble(rect
.height());
853 void MathUtil::AddToTracedValue(const char* name
,
854 const gfx::Transform
& transform
,
855 base::trace_event::TracedValue
* res
) {
856 res
->BeginArray(name
);
857 const SkMatrix44
& m
= transform
.matrix();
858 for (int row
= 0; row
< 4; ++row
) {
859 for (int col
= 0; col
< 4; ++col
)
860 res
->AppendDouble(m
.getDouble(row
, col
));
865 void MathUtil::AddToTracedValue(const char* name
,
866 const gfx::BoxF
& box
,
867 base::trace_event::TracedValue
* res
) {
868 res
->BeginArray(name
);
869 res
->AppendInteger(box
.x());
870 res
->AppendInteger(box
.y());
871 res
->AppendInteger(box
.z());
872 res
->AppendInteger(box
.width());
873 res
->AppendInteger(box
.height());
874 res
->AppendInteger(box
.depth());
878 double MathUtil::AsDoubleSafely(double value
) {
879 return std::min(value
, std::numeric_limits
<double>::max());
882 float MathUtil::AsFloatSafely(float value
) {
883 return std::min(value
, std::numeric_limits
<float>::max());
886 gfx::Vector3dF
MathUtil::GetXAxis(const gfx::Transform
& transform
) {
887 return gfx::Vector3dF(transform
.matrix().getFloat(0, 0),
888 transform
.matrix().getFloat(1, 0),
889 transform
.matrix().getFloat(2, 0));
892 gfx::Vector3dF
MathUtil::GetYAxis(const gfx::Transform
& transform
) {
893 return gfx::Vector3dF(transform
.matrix().getFloat(0, 1),
894 transform
.matrix().getFloat(1, 1),
895 transform
.matrix().getFloat(2, 1));