Disable failing browser_tests on official continuous bots.
[chromium-blink-merge.git] / courgette / encoded_program.cc
blob8d45d72db2f294a009dbd51a6948c9ef0850b8f2
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "courgette/encoded_program.h"
7 #include <algorithm>
8 #include <map>
9 #include <string>
10 #include <vector>
12 #include "base/environment.h"
13 #include "base/logging.h"
14 #include "base/memory/scoped_ptr.h"
15 #include "base/strings/string_util.h"
16 #include "base/strings/utf_string_conversions.h"
17 #include "courgette/courgette.h"
18 #include "courgette/disassembler_elf_32_arm.h"
19 #include "courgette/streams.h"
20 #include "courgette/types_elf.h"
22 namespace courgette {
24 // Stream indexes.
25 const int kStreamMisc = 0;
26 const int kStreamOps = 1;
27 const int kStreamBytes = 2;
28 const int kStreamAbs32Indexes = 3;
29 const int kStreamRel32Indexes = 4;
30 const int kStreamAbs32Addresses = 5;
31 const int kStreamRel32Addresses = 6;
32 const int kStreamCopyCounts = 7;
33 const int kStreamOriginAddresses = kStreamMisc;
35 const int kStreamLimit = 9;
37 // Constructor is here rather than in the header. Although the constructor
38 // appears to do nothing it is fact quite large because of the implicit calls to
39 // field constructors. Ditto for the destructor.
40 EncodedProgram::EncodedProgram() : image_base_(0) {}
41 EncodedProgram::~EncodedProgram() {}
43 // Serializes a vector of integral values using Varint32 coding.
44 template<typename V>
45 CheckBool WriteVector(const V& items, SinkStream* buffer) {
46 size_t count = items.size();
47 bool ok = buffer->WriteSizeVarint32(count);
48 for (size_t i = 0; ok && i < count; ++i) {
49 COMPILE_ASSERT(sizeof(items[0]) <= sizeof(uint32), // NOLINT
50 T_must_fit_in_uint32);
51 ok = buffer->WriteSizeVarint32(items[i]);
53 return ok;
56 template<typename V>
57 bool ReadVector(V* items, SourceStream* buffer) {
58 uint32 count;
59 if (!buffer->ReadVarint32(&count))
60 return false;
62 items->clear();
64 bool ok = items->reserve(count);
65 for (size_t i = 0; ok && i < count; ++i) {
66 uint32 item;
67 ok = buffer->ReadVarint32(&item);
68 if (ok)
69 ok = items->push_back(static_cast<typename V::value_type>(item));
72 return ok;
75 // Serializes a vector, using delta coding followed by Varint32 coding.
76 template<typename V>
77 CheckBool WriteU32Delta(const V& set, SinkStream* buffer) {
78 size_t count = set.size();
79 bool ok = buffer->WriteSizeVarint32(count);
80 uint32 prev = 0;
81 for (size_t i = 0; ok && i < count; ++i) {
82 uint32 current = set[i];
83 uint32 delta = current - prev;
84 ok = buffer->WriteVarint32(delta);
85 prev = current;
87 return ok;
90 template <typename V>
91 static CheckBool ReadU32Delta(V* set, SourceStream* buffer) {
92 uint32 count;
94 if (!buffer->ReadVarint32(&count))
95 return false;
97 set->clear();
98 bool ok = set->reserve(count);
99 uint32 prev = 0;
101 for (size_t i = 0; ok && i < count; ++i) {
102 uint32 delta;
103 ok = buffer->ReadVarint32(&delta);
104 if (ok) {
105 uint32 current = prev + delta;
106 ok = set->push_back(current);
107 prev = current;
111 return ok;
114 // Write a vector as the byte representation of the contents.
116 // (This only really makes sense for a type T that has sizeof(T)==1, otherwise
117 // serialized representation is not endian-agnostic. But it is useful to keep
118 // the possibility of a greater size for experiments comparing Varint32 encoding
119 // of a vector of larger integrals vs a plain form.)
121 template<typename V>
122 CheckBool WriteVectorU8(const V& items, SinkStream* buffer) {
123 size_t count = items.size();
124 bool ok = buffer->WriteSizeVarint32(count);
125 if (count != 0 && ok) {
126 size_t byte_count = count * sizeof(typename V::value_type);
127 ok = buffer->Write(static_cast<const void*>(&items[0]), byte_count);
129 return ok;
132 template<typename V>
133 bool ReadVectorU8(V* items, SourceStream* buffer) {
134 uint32 count;
135 if (!buffer->ReadVarint32(&count))
136 return false;
138 items->clear();
139 bool ok = items->resize(count, 0);
140 if (ok && count != 0) {
141 size_t byte_count = count * sizeof(typename V::value_type);
142 return buffer->Read(static_cast<void*>(&((*items)[0])), byte_count);
144 return ok;
147 ////////////////////////////////////////////////////////////////////////////////
149 CheckBool EncodedProgram::DefineRel32Label(int index, RVA value) {
150 return DefineLabelCommon(&rel32_rva_, index, value);
153 CheckBool EncodedProgram::DefineAbs32Label(int index, RVA value) {
154 return DefineLabelCommon(&abs32_rva_, index, value);
157 static const RVA kUnassignedRVA = static_cast<RVA>(-1);
159 CheckBool EncodedProgram::DefineLabelCommon(RvaVector* rvas,
160 int index,
161 RVA rva) {
162 bool ok = true;
163 if (static_cast<int>(rvas->size()) <= index)
164 ok = rvas->resize(index + 1, kUnassignedRVA);
166 if (ok) {
167 DCHECK_EQ((*rvas)[index], kUnassignedRVA)
168 << "DefineLabel double assigned " << index;
169 (*rvas)[index] = rva;
172 return ok;
175 void EncodedProgram::EndLabels() {
176 FinishLabelsCommon(&abs32_rva_);
177 FinishLabelsCommon(&rel32_rva_);
180 void EncodedProgram::FinishLabelsCommon(RvaVector* rvas) {
181 // Replace all unassigned slots with the value at the previous index so they
182 // delta-encode to zero. (There might be better values than zero. The way to
183 // get that is have the higher level assembly program assign the unassigned
184 // slots.)
185 RVA previous = 0;
186 size_t size = rvas->size();
187 for (size_t i = 0; i < size; ++i) {
188 if ((*rvas)[i] == kUnassignedRVA)
189 (*rvas)[i] = previous;
190 else
191 previous = (*rvas)[i];
195 CheckBool EncodedProgram::AddOrigin(RVA origin) {
196 return ops_.push_back(ORIGIN) && origins_.push_back(origin);
199 CheckBool EncodedProgram::AddCopy(uint32 count, const void* bytes) {
200 const uint8* source = static_cast<const uint8*>(bytes);
202 bool ok = true;
204 // Fold adjacent COPY instructions into one. This nearly halves the size of
205 // an EncodedProgram with only COPY1 instructions since there are approx plain
206 // 16 bytes per reloc. This has a working-set benefit during decompression.
207 // For compression of files with large differences this makes a small (4%)
208 // improvement in size. For files with small differences this degrades the
209 // compressed size by 1.3%
210 if (!ops_.empty()) {
211 if (ops_.back() == COPY1) {
212 ops_.back() = COPY;
213 ok = copy_counts_.push_back(1);
215 if (ok && ops_.back() == COPY) {
216 copy_counts_.back() += count;
217 for (uint32 i = 0; ok && i < count; ++i) {
218 ok = copy_bytes_.push_back(source[i]);
220 return ok;
224 if (ok) {
225 if (count == 1) {
226 ok = ops_.push_back(COPY1) && copy_bytes_.push_back(source[0]);
227 } else {
228 ok = ops_.push_back(COPY) && copy_counts_.push_back(count);
229 for (uint32 i = 0; ok && i < count; ++i) {
230 ok = copy_bytes_.push_back(source[i]);
235 return ok;
238 CheckBool EncodedProgram::AddAbs32(int label_index) {
239 return ops_.push_back(ABS32) && abs32_ix_.push_back(label_index);
242 CheckBool EncodedProgram::AddRel32(int label_index) {
243 return ops_.push_back(REL32) && rel32_ix_.push_back(label_index);
246 CheckBool EncodedProgram::AddRel32ARM(uint16 op, int label_index) {
247 return ops_.push_back(static_cast<OP>(op)) &&
248 rel32_ix_.push_back(label_index);
251 CheckBool EncodedProgram::AddPeMakeRelocs(ExecutableType kind) {
252 if (kind == EXE_WIN_32_X86)
253 return ops_.push_back(MAKE_PE_RELOCATION_TABLE);
254 return ops_.push_back(MAKE_PE64_RELOCATION_TABLE);
257 CheckBool EncodedProgram::AddElfMakeRelocs() {
258 return ops_.push_back(MAKE_ELF_RELOCATION_TABLE);
261 CheckBool EncodedProgram::AddElfARMMakeRelocs() {
262 return ops_.push_back(MAKE_ELF_ARM_RELOCATION_TABLE);
265 void EncodedProgram::DebuggingSummary() {
266 VLOG(1) << "EncodedProgram Summary"
267 << "\n image base " << image_base_
268 << "\n abs32 rvas " << abs32_rva_.size()
269 << "\n rel32 rvas " << rel32_rva_.size()
270 << "\n ops " << ops_.size()
271 << "\n origins " << origins_.size()
272 << "\n copy_counts " << copy_counts_.size()
273 << "\n copy_bytes " << copy_bytes_.size()
274 << "\n abs32_ix " << abs32_ix_.size()
275 << "\n rel32_ix " << rel32_ix_.size();
278 ////////////////////////////////////////////////////////////////////////////////
280 // For algorithm refinement purposes it is useful to write subsets of the file
281 // format. This gives us the ability to estimate the entropy of the
282 // differential compression of the individual streams, which can provide
283 // invaluable insights. The default, of course, is to include all the streams.
285 enum FieldSelect {
286 INCLUDE_ABS32_ADDRESSES = 0x0001,
287 INCLUDE_REL32_ADDRESSES = 0x0002,
288 INCLUDE_ABS32_INDEXES = 0x0010,
289 INCLUDE_REL32_INDEXES = 0x0020,
290 INCLUDE_OPS = 0x0100,
291 INCLUDE_BYTES = 0x0200,
292 INCLUDE_COPY_COUNTS = 0x0400,
293 INCLUDE_MISC = 0x1000
296 static FieldSelect GetFieldSelect() {
297 #if 1
298 // TODO(sra): Use better configuration.
299 scoped_ptr<base::Environment> env(base::Environment::Create());
300 std::string s;
301 env->GetVar("A_FIELDS", &s);
302 if (!s.empty()) {
303 return static_cast<FieldSelect>(wcstoul(ASCIIToWide(s).c_str(), 0, 0));
305 #endif
306 return static_cast<FieldSelect>(~0);
309 CheckBool EncodedProgram::WriteTo(SinkStreamSet* streams) {
310 FieldSelect select = GetFieldSelect();
312 // The order of fields must be consistent in WriteTo and ReadFrom, regardless
313 // of the streams used. The code can be configured with all kStreamXXX
314 // constants the same.
316 // If we change the code to pipeline reading with assembly (to avoid temporary
317 // storage vectors by consuming operands directly from the stream) then we
318 // need to read the base address and the random access address tables first,
319 // the rest can be interleaved.
321 if (select & INCLUDE_MISC) {
322 // TODO(sra): write 64 bits.
323 if (!streams->stream(kStreamMisc)->WriteVarint32(
324 static_cast<uint32>(image_base_))) {
325 return false;
329 bool success = true;
331 if (select & INCLUDE_ABS32_ADDRESSES) {
332 success &= WriteU32Delta(abs32_rva_,
333 streams->stream(kStreamAbs32Addresses));
336 if (select & INCLUDE_REL32_ADDRESSES) {
337 success &= WriteU32Delta(rel32_rva_,
338 streams->stream(kStreamRel32Addresses));
341 if (select & INCLUDE_MISC)
342 success &= WriteVector(origins_, streams->stream(kStreamOriginAddresses));
344 if (select & INCLUDE_OPS) {
345 // 5 for length.
346 success &= streams->stream(kStreamOps)->Reserve(ops_.size() + 5);
347 success &= WriteVector(ops_, streams->stream(kStreamOps));
350 if (select & INCLUDE_COPY_COUNTS)
351 success &= WriteVector(copy_counts_, streams->stream(kStreamCopyCounts));
353 if (select & INCLUDE_BYTES)
354 success &= WriteVectorU8(copy_bytes_, streams->stream(kStreamBytes));
356 if (select & INCLUDE_ABS32_INDEXES)
357 success &= WriteVector(abs32_ix_, streams->stream(kStreamAbs32Indexes));
359 if (select & INCLUDE_REL32_INDEXES)
360 success &= WriteVector(rel32_ix_, streams->stream(kStreamRel32Indexes));
362 return success;
365 bool EncodedProgram::ReadFrom(SourceStreamSet* streams) {
366 // TODO(sra): read 64 bits.
367 uint32 temp;
368 if (!streams->stream(kStreamMisc)->ReadVarint32(&temp))
369 return false;
370 image_base_ = temp;
372 if (!ReadU32Delta(&abs32_rva_, streams->stream(kStreamAbs32Addresses)))
373 return false;
374 if (!ReadU32Delta(&rel32_rva_, streams->stream(kStreamRel32Addresses)))
375 return false;
376 if (!ReadVector(&origins_, streams->stream(kStreamOriginAddresses)))
377 return false;
378 if (!ReadVector(&ops_, streams->stream(kStreamOps)))
379 return false;
380 if (!ReadVector(&copy_counts_, streams->stream(kStreamCopyCounts)))
381 return false;
382 if (!ReadVectorU8(&copy_bytes_, streams->stream(kStreamBytes)))
383 return false;
384 if (!ReadVector(&abs32_ix_, streams->stream(kStreamAbs32Indexes)))
385 return false;
386 if (!ReadVector(&rel32_ix_, streams->stream(kStreamRel32Indexes)))
387 return false;
389 // Check that streams have been completely consumed.
390 for (int i = 0; i < kStreamLimit; ++i) {
391 if (streams->stream(i)->Remaining() > 0)
392 return false;
395 return true;
398 // Safe, non-throwing version of std::vector::at(). Returns 'true' for success,
399 // 'false' for out-of-bounds index error.
400 template<typename V, typename T>
401 bool VectorAt(const V& v, size_t index, T* output) {
402 if (index >= v.size())
403 return false;
404 *output = v[index];
405 return true;
408 CheckBool EncodedProgram::EvaluateRel32ARM(OP op,
409 size_t& ix_rel32_ix,
410 RVA& current_rva,
411 SinkStream* output) {
412 switch (op & 0x0000F000) {
413 case REL32ARM8: {
414 uint32 index;
415 if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
416 return false;
417 ++ix_rel32_ix;
418 RVA rva;
419 if (!VectorAt(rel32_rva_, index, &rva))
420 return false;
421 uint32 decompressed_op;
422 if (!DisassemblerElf32ARM::Decompress(ARM_OFF8,
423 static_cast<uint16>(op),
424 static_cast<uint32>(rva -
425 current_rva),
426 &decompressed_op)) {
427 return false;
429 uint16 op16 = decompressed_op;
430 if (!output->Write(&op16, 2))
431 return false;
432 current_rva += 2;
433 break;
435 case REL32ARM11: {
436 uint32 index;
437 if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
438 return false;
439 ++ix_rel32_ix;
440 RVA rva;
441 if (!VectorAt(rel32_rva_, index, &rva))
442 return false;
443 uint32 decompressed_op;
444 if (!DisassemblerElf32ARM::Decompress(ARM_OFF11, (uint16) op,
445 (uint32) (rva - current_rva),
446 &decompressed_op)) {
447 return false;
449 uint16 op16 = decompressed_op;
450 if (!output->Write(&op16, 2))
451 return false;
452 current_rva += 2;
453 break;
455 case REL32ARM24: {
456 uint32 index;
457 if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
458 return false;
459 ++ix_rel32_ix;
460 RVA rva;
461 if (!VectorAt(rel32_rva_, index, &rva))
462 return false;
463 uint32 decompressed_op;
464 if (!DisassemblerElf32ARM::Decompress(ARM_OFF24, (uint16) op,
465 (uint32) (rva - current_rva),
466 &decompressed_op)) {
467 return false;
469 if (!output->Write(&decompressed_op, 4))
470 return false;
471 current_rva += 4;
472 break;
474 case REL32ARM25: {
475 uint32 index;
476 if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
477 return false;
478 ++ix_rel32_ix;
479 RVA rva;
480 if (!VectorAt(rel32_rva_, index, &rva))
481 return false;
482 uint32 decompressed_op;
483 if (!DisassemblerElf32ARM::Decompress(ARM_OFF25, (uint16) op,
484 (uint32) (rva - current_rva),
485 &decompressed_op)) {
486 return false;
488 uint32 words = (decompressed_op << 16) | (decompressed_op >> 16);
489 if (!output->Write(&words, 4))
490 return false;
491 current_rva += 4;
492 break;
494 case REL32ARM21: {
495 uint32 index;
496 if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
497 return false;
498 ++ix_rel32_ix;
499 RVA rva;
500 if (!VectorAt(rel32_rva_, index, &rva))
501 return false;
502 uint32 decompressed_op;
503 if (!DisassemblerElf32ARM::Decompress(ARM_OFF21, (uint16) op,
504 (uint32) (rva - current_rva),
505 &decompressed_op)) {
506 return false;
508 uint32 words = (decompressed_op << 16) | (decompressed_op >> 16);
509 if (!output->Write(&words, 4))
510 return false;
511 current_rva += 4;
512 break;
514 default:
515 return false;
518 return true;
521 CheckBool EncodedProgram::AssembleTo(SinkStream* final_buffer) {
522 // For the most part, the assembly process walks the various tables.
523 // ix_mumble is the index into the mumble table.
524 size_t ix_origins = 0;
525 size_t ix_copy_counts = 0;
526 size_t ix_copy_bytes = 0;
527 size_t ix_abs32_ix = 0;
528 size_t ix_rel32_ix = 0;
530 RVA current_rva = 0;
532 bool pending_pe_relocation_table = false;
533 uint8 pending_pe_relocation_table_type = 0x03; // IMAGE_REL_BASED_HIGHLOW
534 Elf32_Word pending_elf_relocation_table_type = 0;
535 SinkStream bytes_following_relocation_table;
537 SinkStream* output = final_buffer;
539 for (size_t ix_ops = 0; ix_ops < ops_.size(); ++ix_ops) {
540 OP op = ops_[ix_ops];
542 switch (op) {
543 default:
544 if (!EvaluateRel32ARM(op, ix_rel32_ix, current_rva, output))
545 return false;
546 break;
548 case ORIGIN: {
549 RVA section_rva;
550 if (!VectorAt(origins_, ix_origins, &section_rva))
551 return false;
552 ++ix_origins;
553 current_rva = section_rva;
554 break;
557 case COPY: {
558 uint32 count;
559 if (!VectorAt(copy_counts_, ix_copy_counts, &count))
560 return false;
561 ++ix_copy_counts;
562 for (uint32 i = 0; i < count; ++i) {
563 uint8 b;
564 if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
565 return false;
566 ++ix_copy_bytes;
567 if (!output->Write(&b, 1))
568 return false;
570 current_rva += count;
571 break;
574 case COPY1: {
575 uint8 b;
576 if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
577 return false;
578 ++ix_copy_bytes;
579 if (!output->Write(&b, 1))
580 return false;
581 current_rva += 1;
582 break;
585 case REL32: {
586 uint32 index;
587 if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
588 return false;
589 ++ix_rel32_ix;
590 RVA rva;
591 if (!VectorAt(rel32_rva_, index, &rva))
592 return false;
593 uint32 offset = (rva - (current_rva + 4));
594 if (!output->Write(&offset, 4))
595 return false;
596 current_rva += 4;
597 break;
600 case ABS32: {
601 uint32 index;
602 if (!VectorAt(abs32_ix_, ix_abs32_ix, &index))
603 return false;
604 ++ix_abs32_ix;
605 RVA rva;
606 if (!VectorAt(abs32_rva_, index, &rva))
607 return false;
608 uint32 abs32 = static_cast<uint32>(rva + image_base_);
609 if (!abs32_relocs_.push_back(current_rva) || !output->Write(&abs32, 4))
610 return false;
611 current_rva += 4;
612 break;
615 case MAKE_PE_RELOCATION_TABLE: {
616 // We can see the base relocation anywhere, but we only have the
617 // information to generate it at the very end. So we divert the bytes
618 // we are generating to a temporary stream.
619 if (pending_pe_relocation_table)
620 return false; // Can't have two base relocation tables.
622 pending_pe_relocation_table = true;
623 output = &bytes_following_relocation_table;
624 break;
625 // There is a potential problem *if* the instruction stream contains
626 // some REL32 relocations following the base relocation and in the same
627 // section. We don't know the size of the table, so 'current_rva' will
628 // be wrong, causing REL32 offsets to be miscalculated. This never
629 // happens; the base relocation table is usually in a section of its
630 // own, a data-only section, and following everything else in the
631 // executable except some padding zero bytes. We could fix this by
632 // emitting an ORIGIN after the MAKE_BASE_RELOCATION_TABLE.
635 case MAKE_PE64_RELOCATION_TABLE: {
636 if (pending_pe_relocation_table)
637 return false; // Can't have two base relocation tables.
639 pending_pe_relocation_table = true;
640 pending_pe_relocation_table_type = 0x0A; // IMAGE_REL_BASED_DIR64
641 output = &bytes_following_relocation_table;
642 break;
645 case MAKE_ELF_ARM_RELOCATION_TABLE: {
646 // We can see the base relocation anywhere, but we only have the
647 // information to generate it at the very end. So we divert the bytes
648 // we are generating to a temporary stream.
649 if (pending_elf_relocation_table_type)
650 return false; // Can't have two base relocation tables.
652 pending_elf_relocation_table_type = R_ARM_RELATIVE;
653 output = &bytes_following_relocation_table;
654 break;
657 case MAKE_ELF_RELOCATION_TABLE: {
658 // We can see the base relocation anywhere, but we only have the
659 // information to generate it at the very end. So we divert the bytes
660 // we are generating to a temporary stream.
661 if (pending_elf_relocation_table_type)
662 return false; // Can't have two base relocation tables.
664 pending_elf_relocation_table_type = R_386_RELATIVE;
665 output = &bytes_following_relocation_table;
666 break;
671 if (pending_pe_relocation_table) {
672 if (!GeneratePeRelocations(final_buffer,
673 pending_pe_relocation_table_type) ||
674 !final_buffer->Append(&bytes_following_relocation_table))
675 return false;
678 if (pending_elf_relocation_table_type) {
679 if (!GenerateElfRelocations(pending_elf_relocation_table_type,
680 final_buffer) ||
681 !final_buffer->Append(&bytes_following_relocation_table))
682 return false;
685 // Final verification check: did we consume all lists?
686 if (ix_copy_counts != copy_counts_.size())
687 return false;
688 if (ix_copy_bytes != copy_bytes_.size())
689 return false;
690 if (ix_abs32_ix != abs32_ix_.size())
691 return false;
692 if (ix_rel32_ix != rel32_ix_.size())
693 return false;
695 return true;
698 // RelocBlock has the layout of a block of relocations in the base relocation
699 // table file format.
701 struct RelocBlockPOD {
702 uint32 page_rva;
703 uint32 block_size;
704 uint16 relocs[4096]; // Allow up to one relocation per byte of a 4k page.
707 COMPILE_ASSERT(offsetof(RelocBlockPOD, relocs) == 8, reloc_block_header_size);
709 class RelocBlock {
710 public:
711 RelocBlock() {
712 pod.page_rva = ~0;
713 pod.block_size = 8;
716 void Add(uint16 item) {
717 pod.relocs[(pod.block_size-8)/2] = item;
718 pod.block_size += 2;
721 CheckBool Flush(SinkStream* buffer) WARN_UNUSED_RESULT {
722 bool ok = true;
723 if (pod.block_size != 8) {
724 if (pod.block_size % 4 != 0) { // Pad to make size multiple of 4 bytes.
725 Add(0);
727 ok = buffer->Write(&pod, pod.block_size);
728 pod.block_size = 8;
730 return ok;
732 RelocBlockPOD pod;
735 CheckBool EncodedProgram::GeneratePeRelocations(SinkStream* buffer,
736 uint8 type) {
737 std::sort(abs32_relocs_.begin(), abs32_relocs_.end());
739 RelocBlock block;
741 bool ok = true;
742 for (size_t i = 0; ok && i < abs32_relocs_.size(); ++i) {
743 uint32 rva = abs32_relocs_[i];
744 uint32 page_rva = rva & ~0xFFF;
745 if (page_rva != block.pod.page_rva) {
746 ok &= block.Flush(buffer);
747 block.pod.page_rva = page_rva;
749 if (ok)
750 block.Add(((static_cast<uint16>(type)) << 12 ) | (rva & 0xFFF));
752 ok &= block.Flush(buffer);
753 return ok;
756 CheckBool EncodedProgram::GenerateElfRelocations(Elf32_Word r_info,
757 SinkStream* buffer) {
758 std::sort(abs32_relocs_.begin(), abs32_relocs_.end());
760 Elf32_Rel relocation_block;
762 relocation_block.r_info = r_info;
764 bool ok = true;
765 for (size_t i = 0; ok && i < abs32_relocs_.size(); ++i) {
766 relocation_block.r_offset = abs32_relocs_[i];
767 ok = buffer->Write(&relocation_block, sizeof(Elf32_Rel));
770 return ok;
772 ////////////////////////////////////////////////////////////////////////////////
774 Status WriteEncodedProgram(EncodedProgram* encoded, SinkStreamSet* sink) {
775 if (!encoded->WriteTo(sink))
776 return C_STREAM_ERROR;
777 return C_OK;
780 Status ReadEncodedProgram(SourceStreamSet* streams, EncodedProgram** output) {
781 EncodedProgram* encoded = new EncodedProgram();
782 if (encoded->ReadFrom(streams)) {
783 *output = encoded;
784 return C_OK;
786 delete encoded;
787 return C_DESERIALIZATION_FAILED;
790 Status Assemble(EncodedProgram* encoded, SinkStream* buffer) {
791 bool assembled = encoded->AssembleTo(buffer);
792 if (assembled)
793 return C_OK;
794 return C_ASSEMBLY_FAILED;
797 void DeleteEncodedProgram(EncodedProgram* encoded) {
798 delete encoded;
801 } // end namespace