Use "= delete" for DISALLOW_COPY and DISALLOW_ASSIGN.
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3080704 / ext / misc / fuzzer.c
blobfe41cda8c24ae3dfcd58b01f46fe075fbbcd00f9
1 /*
2 ** 2011 March 24
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** Code for a demonstration virtual table that generates variations
14 ** on an input word at increasing edit distances from the original.
16 ** A fuzzer virtual table is created like this:
18 ** CREATE VIRTUAL TABLE f USING fuzzer(<fuzzer-data-table>);
20 ** When it is created, the new fuzzer table must be supplied with the
21 ** name of a "fuzzer data table", which must reside in the same database
22 ** file as the new fuzzer table. The fuzzer data table contains the various
23 ** transformations and their costs that the fuzzer logic uses to generate
24 ** variations.
26 ** The fuzzer data table must contain exactly four columns (more precisely,
27 ** the statement "SELECT * FROM <fuzzer_data_table>" must return records
28 ** that consist of four columns). It does not matter what the columns are
29 ** named.
31 ** Each row in the fuzzer data table represents a single character
32 ** transformation. The left most column of the row (column 0) contains an
33 ** integer value - the identifier of the ruleset to which the transformation
34 ** rule belongs (see "MULTIPLE RULE SETS" below). The second column of the
35 ** row (column 0) contains the input character or characters. The third
36 ** column contains the output character or characters. And the fourth column
37 ** contains the integer cost of making the transformation. For example:
39 ** CREATE TABLE f_data(ruleset, cFrom, cTo, Cost);
40 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, '', 'a', 100);
41 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'b', '', 87);
42 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'o', 'oe', 38);
43 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'oe', 'o', 40);
45 ** The first row inserted into the fuzzer data table by the SQL script
46 ** above indicates that the cost of inserting a letter 'a' is 100. (All
47 ** costs are integers. We recommend that costs be scaled so that the
48 ** average cost is around 100.) The second INSERT statement creates a rule
49 ** saying that the cost of deleting a single letter 'b' is 87. The third
50 ** and fourth INSERT statements mean that the cost of transforming a
51 ** single letter "o" into the two-letter sequence "oe" is 38 and that the
52 ** cost of transforming "oe" back into "o" is 40.
54 ** The contents of the fuzzer data table are loaded into main memory when
55 ** a fuzzer table is first created, and may be internally reloaded by the
56 ** system at any subsequent time. Therefore, the fuzzer data table should be
57 ** populated before the fuzzer table is created and not modified thereafter.
58 ** If you do need to modify the contents of the fuzzer data table, it is
59 ** recommended that the associated fuzzer table be dropped, the fuzzer data
60 ** table edited, and the fuzzer table recreated within a single transaction.
61 ** Alternatively, the fuzzer data table can be edited then the database
62 ** connection can be closed and reopened.
64 ** Once it has been created, the fuzzer table can be queried as follows:
66 ** SELECT word, distance FROM f
67 ** WHERE word MATCH 'abcdefg'
68 ** AND distance<200;
70 ** This first query outputs the string "abcdefg" and all strings that
71 ** can be derived from that string by appling the specified transformations.
72 ** The strings are output together with their total transformation cost
73 ** (called "distance") and appear in order of increasing cost. No string
74 ** is output more than once. If there are multiple ways to transform the
75 ** target string into the output string then the lowest cost transform is
76 ** the one that is returned. In the example, the search is limited to
77 ** strings with a total distance of less than 200.
79 ** The fuzzer is a read-only table. Any attempt to DELETE, INSERT, or
80 ** UPDATE on a fuzzer table will throw an error.
82 ** It is important to put some kind of a limit on the fuzzer output. This
83 ** can be either in the form of a LIMIT clause at the end of the query,
84 ** or better, a "distance<NNN" constraint where NNN is some number. The
85 ** running time and memory requirement is exponential in the value of NNN
86 ** so you want to make sure that NNN is not too big. A value of NNN that
87 ** is about twice the average transformation cost seems to give good results.
89 ** The fuzzer table can be useful for tasks such as spelling correction.
90 ** Suppose there is a second table vocabulary(w) where the w column contains
91 ** all correctly spelled words. Let $word be a word you want to look up.
93 ** SELECT vocabulary.w FROM f, vocabulary
94 ** WHERE f.word MATCH $word
95 ** AND f.distance<=200
96 ** AND f.word=vocabulary.w
97 ** LIMIT 20
99 ** The query above gives the 20 closest words to the $word being tested.
100 ** (Note that for good performance, the vocubulary.w column should be
101 ** indexed.)
103 ** A similar query can be used to find all words in the dictionary that
104 ** begin with some prefix $prefix:
106 ** SELECT vocabulary.w FROM f, vocabulary
107 ** WHERE f.word MATCH $prefix
108 ** AND f.distance<=200
109 ** AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF')
110 ** LIMIT 50
112 ** This last query will show up to 50 words out of the vocabulary that
113 ** match or nearly match the $prefix.
115 ** MULTIPLE RULE SETS
117 ** Normally, the "ruleset" value associated with all character transformations
118 ** in the fuzzer data table is zero. However, if required, the fuzzer table
119 ** allows multiple rulesets to be defined. Each query uses only a single
120 ** ruleset. This allows, for example, a single fuzzer table to support
121 ** multiple languages.
123 ** By default, only the rules from ruleset 0 are used. To specify an
124 ** alternative ruleset, a "ruleset = ?" expression must be added to the
125 ** WHERE clause of a SELECT, where ? is the identifier of the desired
126 ** ruleset. For example:
128 ** SELECT vocabulary.w FROM f, vocabulary
129 ** WHERE f.word MATCH $word
130 ** AND f.distance<=200
131 ** AND f.word=vocabulary.w
132 ** AND f.ruleset=1 -- Specify the ruleset to use here
133 ** LIMIT 20
135 ** If no "ruleset = ?" constraint is specified in the WHERE clause, ruleset
136 ** 0 is used.
138 ** LIMITS
140 ** The maximum ruleset number is 2147483647. The maximum length of either
141 ** of the strings in the second or third column of the fuzzer data table
142 ** is 50 bytes. The maximum cost on a rule is 1000.
144 #include "sqlite3ext.h"
145 SQLITE_EXTENSION_INIT1
147 /* If SQLITE_DEBUG is not defined, disable assert statements. */
148 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
149 # define NDEBUG
150 #endif
152 #include <stdlib.h>
153 #include <string.h>
154 #include <assert.h>
155 #include <stdio.h>
157 #ifndef SQLITE_OMIT_VIRTUALTABLE
160 ** Forward declaration of objects used by this implementation
162 typedef struct fuzzer_vtab fuzzer_vtab;
163 typedef struct fuzzer_cursor fuzzer_cursor;
164 typedef struct fuzzer_rule fuzzer_rule;
165 typedef struct fuzzer_seen fuzzer_seen;
166 typedef struct fuzzer_stem fuzzer_stem;
169 ** Various types.
171 ** fuzzer_cost is the "cost" of an edit operation.
173 ** fuzzer_len is the length of a matching string.
175 ** fuzzer_ruleid is an ruleset identifier.
177 typedef int fuzzer_cost;
178 typedef signed char fuzzer_len;
179 typedef int fuzzer_ruleid;
182 ** Limits
184 #define FUZZER_MX_LENGTH 50 /* Maximum length of a rule string */
185 #define FUZZER_MX_RULEID 2147483647 /* Maximum rule ID */
186 #define FUZZER_MX_COST 1000 /* Maximum single-rule cost */
187 #define FUZZER_MX_OUTPUT_LENGTH 100 /* Maximum length of an output string */
191 ** Each transformation rule is stored as an instance of this object.
192 ** All rules are kept on a linked list sorted by rCost.
194 struct fuzzer_rule {
195 fuzzer_rule *pNext; /* Next rule in order of increasing rCost */
196 char *zFrom; /* Transform from */
197 fuzzer_cost rCost; /* Cost of this transformation */
198 fuzzer_len nFrom, nTo; /* Length of the zFrom and zTo strings */
199 fuzzer_ruleid iRuleset; /* The rule set to which this rule belongs */
200 char zTo[4]; /* Transform to (extra space appended) */
204 ** A stem object is used to generate variants. It is also used to record
205 ** previously generated outputs.
207 ** Every stem is added to a hash table as it is output. Generation of
208 ** duplicate stems is suppressed.
210 ** Active stems (those that might generate new outputs) are kepts on a linked
211 ** list sorted by increasing cost. The cost is the sum of rBaseCost and
212 ** pRule->rCost.
214 struct fuzzer_stem {
215 char *zBasis; /* Word being fuzzed */
216 const fuzzer_rule *pRule; /* Current rule to apply */
217 fuzzer_stem *pNext; /* Next stem in rCost order */
218 fuzzer_stem *pHash; /* Next stem with same hash on zBasis */
219 fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */
220 fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */
221 fuzzer_len nBasis; /* Length of the zBasis string */
222 fuzzer_len n; /* Apply pRule at this character offset */
226 ** A fuzzer virtual-table object
228 struct fuzzer_vtab {
229 sqlite3_vtab base; /* Base class - must be first */
230 char *zClassName; /* Name of this class. Default: "fuzzer" */
231 fuzzer_rule *pRule; /* All active rules in this fuzzer */
232 int nCursor; /* Number of active cursors */
235 #define FUZZER_HASH 4001 /* Hash table size */
236 #define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */
238 /* A fuzzer cursor object */
239 struct fuzzer_cursor {
240 sqlite3_vtab_cursor base; /* Base class - must be first */
241 sqlite3_int64 iRowid; /* The rowid of the current word */
242 fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */
243 fuzzer_cost rLimit; /* Maximum cost of any term */
244 fuzzer_stem *pStem; /* Stem with smallest rCostX */
245 fuzzer_stem *pDone; /* Stems already processed to completion */
246 fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */
247 int mxQueue; /* Largest used index in aQueue[] */
248 char *zBuf; /* Temporary use buffer */
249 int nBuf; /* Bytes allocated for zBuf */
250 int nStem; /* Number of stems allocated */
251 int iRuleset; /* Only process rules from this ruleset */
252 fuzzer_rule nullRule; /* Null rule used first */
253 fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */
257 ** The two input rule lists are both sorted in order of increasing
258 ** cost. Merge them together into a single list, sorted by cost, and
259 ** return a pointer to the head of that list.
261 static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){
262 fuzzer_rule head;
263 fuzzer_rule *pTail;
265 pTail = &head;
266 while( pA && pB ){
267 if( pA->rCost<=pB->rCost ){
268 pTail->pNext = pA;
269 pTail = pA;
270 pA = pA->pNext;
271 }else{
272 pTail->pNext = pB;
273 pTail = pB;
274 pB = pB->pNext;
277 if( pA==0 ){
278 pTail->pNext = pB;
279 }else{
280 pTail->pNext = pA;
282 return head.pNext;
286 ** Statement pStmt currently points to a row in the fuzzer data table. This
287 ** function allocates and populates a fuzzer_rule structure according to
288 ** the content of the row.
290 ** If successful, *ppRule is set to point to the new object and SQLITE_OK
291 ** is returned. Otherwise, *ppRule is zeroed, *pzErr may be set to point
292 ** to an error message and an SQLite error code returned.
294 static int fuzzerLoadOneRule(
295 fuzzer_vtab *p, /* Fuzzer virtual table handle */
296 sqlite3_stmt *pStmt, /* Base rule on statements current row */
297 fuzzer_rule **ppRule, /* OUT: New rule object */
298 char **pzErr /* OUT: Error message */
300 sqlite3_int64 iRuleset = sqlite3_column_int64(pStmt, 0);
301 const char *zFrom = (const char *)sqlite3_column_text(pStmt, 1);
302 const char *zTo = (const char *)sqlite3_column_text(pStmt, 2);
303 int nCost = sqlite3_column_int(pStmt, 3);
305 int rc = SQLITE_OK; /* Return code */
306 int nFrom; /* Size of string zFrom, in bytes */
307 int nTo; /* Size of string zTo, in bytes */
308 fuzzer_rule *pRule = 0; /* New rule object to return */
310 if( zFrom==0 ) zFrom = "";
311 if( zTo==0 ) zTo = "";
312 nFrom = (int)strlen(zFrom);
313 nTo = (int)strlen(zTo);
315 /* Silently ignore null transformations */
316 if( strcmp(zFrom, zTo)==0 ){
317 *ppRule = 0;
318 return SQLITE_OK;
321 if( nCost<=0 || nCost>FUZZER_MX_COST ){
322 *pzErr = sqlite3_mprintf("%s: cost must be between 1 and %d",
323 p->zClassName, FUZZER_MX_COST
325 rc = SQLITE_ERROR;
326 }else
327 if( nFrom>FUZZER_MX_LENGTH || nTo>FUZZER_MX_LENGTH ){
328 *pzErr = sqlite3_mprintf("%s: maximum string length is %d",
329 p->zClassName, FUZZER_MX_LENGTH
331 rc = SQLITE_ERROR;
332 }else
333 if( iRuleset<0 || iRuleset>FUZZER_MX_RULEID ){
334 *pzErr = sqlite3_mprintf("%s: ruleset must be between 0 and %d",
335 p->zClassName, FUZZER_MX_RULEID
337 rc = SQLITE_ERROR;
338 }else{
340 pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo );
341 if( pRule==0 ){
342 rc = SQLITE_NOMEM;
343 }else{
344 memset(pRule, 0, sizeof(*pRule));
345 pRule->zFrom = &pRule->zTo[nTo+1];
346 pRule->nFrom = nFrom;
347 memcpy(pRule->zFrom, zFrom, nFrom+1);
348 memcpy(pRule->zTo, zTo, nTo+1);
349 pRule->nTo = nTo;
350 pRule->rCost = nCost;
351 pRule->iRuleset = (int)iRuleset;
355 *ppRule = pRule;
356 return rc;
360 ** Load the content of the fuzzer data table into memory.
362 static int fuzzerLoadRules(
363 sqlite3 *db, /* Database handle */
364 fuzzer_vtab *p, /* Virtual fuzzer table to configure */
365 const char *zDb, /* Database containing rules data */
366 const char *zData, /* Table containing rules data */
367 char **pzErr /* OUT: Error message */
369 int rc = SQLITE_OK; /* Return code */
370 char *zSql; /* SELECT used to read from rules table */
371 fuzzer_rule *pHead = 0;
373 zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zData);
374 if( zSql==0 ){
375 rc = SQLITE_NOMEM;
376 }else{
377 int rc2; /* finalize() return code */
378 sqlite3_stmt *pStmt = 0;
379 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
380 if( rc!=SQLITE_OK ){
381 *pzErr = sqlite3_mprintf("%s: %s", p->zClassName, sqlite3_errmsg(db));
382 }else if( sqlite3_column_count(pStmt)!=4 ){
383 *pzErr = sqlite3_mprintf("%s: %s has %d columns, expected 4",
384 p->zClassName, zData, sqlite3_column_count(pStmt)
386 rc = SQLITE_ERROR;
387 }else{
388 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
389 fuzzer_rule *pRule = 0;
390 rc = fuzzerLoadOneRule(p, pStmt, &pRule, pzErr);
391 if( pRule ){
392 pRule->pNext = pHead;
393 pHead = pRule;
397 rc2 = sqlite3_finalize(pStmt);
398 if( rc==SQLITE_OK ) rc = rc2;
400 sqlite3_free(zSql);
402 /* All rules are now in a singly linked list starting at pHead. This
403 ** block sorts them by cost and then sets fuzzer_vtab.pRule to point to
404 ** point to the head of the sorted list.
406 if( rc==SQLITE_OK ){
407 unsigned int i;
408 fuzzer_rule *pX;
409 fuzzer_rule *a[15];
410 for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0;
411 while( (pX = pHead)!=0 ){
412 pHead = pX->pNext;
413 pX->pNext = 0;
414 for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){
415 pX = fuzzerMergeRules(a[i], pX);
416 a[i] = 0;
418 a[i] = fuzzerMergeRules(a[i], pX);
420 for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){
421 pX = fuzzerMergeRules(a[i], pX);
423 p->pRule = fuzzerMergeRules(p->pRule, pX);
424 }else{
425 /* An error has occurred. Setting p->pRule to point to the head of the
426 ** allocated list ensures that the list will be cleaned up in this case.
428 assert( p->pRule==0 );
429 p->pRule = pHead;
432 return rc;
436 ** This function converts an SQL quoted string into an unquoted string
437 ** and returns a pointer to a buffer allocated using sqlite3_malloc()
438 ** containing the result. The caller should eventually free this buffer
439 ** using sqlite3_free.
441 ** Examples:
443 ** "abc" becomes abc
444 ** 'xyz' becomes xyz
445 ** [pqr] becomes pqr
446 ** `mno` becomes mno
448 static char *fuzzerDequote(const char *zIn){
449 int nIn; /* Size of input string, in bytes */
450 char *zOut; /* Output (dequoted) string */
452 nIn = (int)strlen(zIn);
453 zOut = sqlite3_malloc(nIn+1);
454 if( zOut ){
455 char q = zIn[0]; /* Quote character (if any ) */
457 if( q!='[' && q!= '\'' && q!='"' && q!='`' ){
458 memcpy(zOut, zIn, nIn+1);
459 }else{
460 int iOut = 0; /* Index of next byte to write to output */
461 int iIn; /* Index of next byte to read from input */
463 if( q=='[' ) q = ']';
464 for(iIn=1; iIn<nIn; iIn++){
465 if( zIn[iIn]==q ) iIn++;
466 zOut[iOut++] = zIn[iIn];
469 assert( (int)strlen(zOut)<=nIn );
471 return zOut;
475 ** xDisconnect/xDestroy method for the fuzzer module.
477 static int fuzzerDisconnect(sqlite3_vtab *pVtab){
478 fuzzer_vtab *p = (fuzzer_vtab*)pVtab;
479 assert( p->nCursor==0 );
480 while( p->pRule ){
481 fuzzer_rule *pRule = p->pRule;
482 p->pRule = pRule->pNext;
483 sqlite3_free(pRule);
485 sqlite3_free(p);
486 return SQLITE_OK;
490 ** xConnect/xCreate method for the fuzzer module. Arguments are:
492 ** argv[0] -> module name ("fuzzer")
493 ** argv[1] -> database name
494 ** argv[2] -> table name
495 ** argv[3] -> fuzzer rule table name
497 static int fuzzerConnect(
498 sqlite3 *db,
499 void *pAux,
500 int argc, const char *const*argv,
501 sqlite3_vtab **ppVtab,
502 char **pzErr
504 int rc = SQLITE_OK; /* Return code */
505 fuzzer_vtab *pNew = 0; /* New virtual table */
506 const char *zModule = argv[0];
507 const char *zDb = argv[1];
509 if( argc!=4 ){
510 *pzErr = sqlite3_mprintf(
511 "%s: wrong number of CREATE VIRTUAL TABLE arguments", zModule
513 rc = SQLITE_ERROR;
514 }else{
515 int nModule; /* Length of zModule, in bytes */
517 nModule = (int)strlen(zModule);
518 pNew = sqlite3_malloc( sizeof(*pNew) + nModule + 1);
519 if( pNew==0 ){
520 rc = SQLITE_NOMEM;
521 }else{
522 char *zTab; /* Dequoted name of fuzzer data table */
524 memset(pNew, 0, sizeof(*pNew));
525 pNew->zClassName = (char*)&pNew[1];
526 memcpy(pNew->zClassName, zModule, nModule+1);
528 zTab = fuzzerDequote(argv[3]);
529 if( zTab==0 ){
530 rc = SQLITE_NOMEM;
531 }else{
532 rc = fuzzerLoadRules(db, pNew, zDb, zTab, pzErr);
533 sqlite3_free(zTab);
536 if( rc==SQLITE_OK ){
537 rc = sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,ruleset)");
539 if( rc!=SQLITE_OK ){
540 fuzzerDisconnect((sqlite3_vtab *)pNew);
541 pNew = 0;
546 *ppVtab = (sqlite3_vtab *)pNew;
547 return rc;
551 ** Open a new fuzzer cursor.
553 static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
554 fuzzer_vtab *p = (fuzzer_vtab*)pVTab;
555 fuzzer_cursor *pCur;
556 pCur = sqlite3_malloc( sizeof(*pCur) );
557 if( pCur==0 ) return SQLITE_NOMEM;
558 memset(pCur, 0, sizeof(*pCur));
559 pCur->pVtab = p;
560 *ppCursor = &pCur->base;
561 p->nCursor++;
562 return SQLITE_OK;
566 ** Free all stems in a list.
568 static void fuzzerClearStemList(fuzzer_stem *pStem){
569 while( pStem ){
570 fuzzer_stem *pNext = pStem->pNext;
571 sqlite3_free(pStem);
572 pStem = pNext;
577 ** Free up all the memory allocated by a cursor. Set it rLimit to 0
578 ** to indicate that it is at EOF.
580 static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){
581 int i;
582 fuzzerClearStemList(pCur->pStem);
583 fuzzerClearStemList(pCur->pDone);
584 for(i=0; i<FUZZER_NQUEUE; i++) fuzzerClearStemList(pCur->aQueue[i]);
585 pCur->rLimit = (fuzzer_cost)0;
586 if( clearHash && pCur->nStem ){
587 pCur->mxQueue = 0;
588 pCur->pStem = 0;
589 pCur->pDone = 0;
590 memset(pCur->aQueue, 0, sizeof(pCur->aQueue));
591 memset(pCur->apHash, 0, sizeof(pCur->apHash));
593 pCur->nStem = 0;
597 ** Close a fuzzer cursor.
599 static int fuzzerClose(sqlite3_vtab_cursor *cur){
600 fuzzer_cursor *pCur = (fuzzer_cursor *)cur;
601 fuzzerClearCursor(pCur, 0);
602 sqlite3_free(pCur->zBuf);
603 pCur->pVtab->nCursor--;
604 sqlite3_free(pCur);
605 return SQLITE_OK;
609 ** Compute the current output term for a fuzzer_stem.
611 static int fuzzerRender(
612 fuzzer_stem *pStem, /* The stem to be rendered */
613 char **pzBuf, /* Write results into this buffer. realloc if needed */
614 int *pnBuf /* Size of the buffer */
616 const fuzzer_rule *pRule = pStem->pRule;
617 int n; /* Size of output term without nul-term */
618 char *z; /* Buffer to assemble output term in */
620 n = pStem->nBasis + pRule->nTo - pRule->nFrom;
621 if( (*pnBuf)<n+1 ){
622 (*pzBuf) = sqlite3_realloc((*pzBuf), n+100);
623 if( (*pzBuf)==0 ) return SQLITE_NOMEM;
624 (*pnBuf) = n+100;
626 n = pStem->n;
627 z = *pzBuf;
628 if( n<0 ){
629 memcpy(z, pStem->zBasis, pStem->nBasis+1);
630 }else{
631 memcpy(z, pStem->zBasis, n);
632 memcpy(&z[n], pRule->zTo, pRule->nTo);
633 memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom],
634 pStem->nBasis-n-pRule->nFrom+1);
637 assert( z[pStem->nBasis + pRule->nTo - pRule->nFrom]==0 );
638 return SQLITE_OK;
642 ** Compute a hash on zBasis.
644 static unsigned int fuzzerHash(const char *z){
645 unsigned int h = 0;
646 while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); }
647 return h % FUZZER_HASH;
651 ** Current cost of a stem
653 static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){
654 return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost;
657 #if 0
659 ** Print a description of a fuzzer_stem on stderr.
661 static void fuzzerStemPrint(
662 const char *zPrefix,
663 fuzzer_stem *pStem,
664 const char *zSuffix
666 if( pStem->n<0 ){
667 fprintf(stderr, "%s[%s](%d)-->self%s",
668 zPrefix,
669 pStem->zBasis, pStem->rBaseCost,
670 zSuffix
672 }else{
673 char *zBuf = 0;
674 int nBuf = 0;
675 if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return;
676 fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s",
677 zPrefix,
678 pStem->zBasis, pStem->rBaseCost, zBuf, pStem->,
679 zSuffix
681 sqlite3_free(zBuf);
684 #endif
687 ** Return 1 if the string to which the cursor is point has already
688 ** been emitted. Return 0 if not. Return -1 on a memory allocation
689 ** failures.
691 static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){
692 unsigned int h;
693 fuzzer_stem *pLookup;
695 if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
696 return -1;
698 h = fuzzerHash(pCur->zBuf);
699 pLookup = pCur->apHash[h];
700 while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){
701 pLookup = pLookup->pHash;
703 return pLookup!=0;
707 ** If argument pRule is NULL, this function returns false.
709 ** Otherwise, it returns true if rule pRule should be skipped. A rule
710 ** should be skipped if it does not belong to rule-set iRuleset, or if
711 ** applying it to stem pStem would create a string longer than
712 ** FUZZER_MX_OUTPUT_LENGTH bytes.
714 static int fuzzerSkipRule(
715 const fuzzer_rule *pRule, /* Determine whether or not to skip this */
716 fuzzer_stem *pStem, /* Stem rule may be applied to */
717 int iRuleset /* Rule-set used by the current query */
719 return pRule && (
720 (pRule->iRuleset!=iRuleset)
721 || (pStem->nBasis + pRule->nTo - pRule->nFrom)>FUZZER_MX_OUTPUT_LENGTH
726 ** Advance a fuzzer_stem to its next value. Return 0 if there are
727 ** no more values that can be generated by this fuzzer_stem. Return
728 ** -1 on a memory allocation failure.
730 static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){
731 const fuzzer_rule *pRule;
732 while( (pRule = pStem->pRule)!=0 ){
733 assert( pRule==&pCur->nullRule || pRule->iRuleset==pCur->iRuleset );
734 while( pStem->n < pStem->nBasis - pRule->nFrom ){
735 pStem->n++;
736 if( pRule->nFrom==0
737 || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0
739 /* Found a rewrite case. Make sure it is not a duplicate */
740 int rc = fuzzerSeen(pCur, pStem);
741 if( rc<0 ) return -1;
742 if( rc==0 ){
743 fuzzerCost(pStem);
744 return 1;
748 pStem->n = -1;
750 pRule = pRule->pNext;
751 }while( fuzzerSkipRule(pRule, pStem, pCur->iRuleset) );
752 pStem->pRule = pRule;
753 if( pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0;
755 return 0;
759 ** The two input stem lists are both sorted in order of increasing
760 ** rCostX. Merge them together into a single list, sorted by rCostX, and
761 ** return a pointer to the head of that new list.
763 static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){
764 fuzzer_stem head;
765 fuzzer_stem *pTail;
767 pTail = &head;
768 while( pA && pB ){
769 if( pA->rCostX<=pB->rCostX ){
770 pTail->pNext = pA;
771 pTail = pA;
772 pA = pA->pNext;
773 }else{
774 pTail->pNext = pB;
775 pTail = pB;
776 pB = pB->pNext;
779 if( pA==0 ){
780 pTail->pNext = pB;
781 }else{
782 pTail->pNext = pA;
784 return head.pNext;
788 ** Load pCur->pStem with the lowest-cost stem. Return a pointer
789 ** to the lowest-cost stem.
791 static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){
792 fuzzer_stem *pBest, *pX;
793 int iBest;
794 int i;
796 if( pCur->pStem==0 ){
797 iBest = -1;
798 pBest = 0;
799 for(i=0; i<=pCur->mxQueue; i++){
800 pX = pCur->aQueue[i];
801 if( pX==0 ) continue;
802 if( pBest==0 || pBest->rCostX>pX->rCostX ){
803 pBest = pX;
804 iBest = i;
807 if( pBest ){
808 pCur->aQueue[iBest] = pBest->pNext;
809 pBest->pNext = 0;
810 pCur->pStem = pBest;
813 return pCur->pStem;
817 ** Insert pNew into queue of pending stems. Then find the stem
818 ** with the lowest rCostX and move it into pCur->pStem.
819 ** list. The insert is done such the pNew is in the correct order
820 ** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost.
822 static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){
823 fuzzer_stem *pX;
824 int i;
826 /* If pCur->pStem exists and is greater than pNew, then make pNew
827 ** the new pCur->pStem and insert the old pCur->pStem instead.
829 if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){
830 pNew->pNext = 0;
831 pCur->pStem = pNew;
832 pNew = pX;
835 /* Insert the new value */
836 pNew->pNext = 0;
837 pX = pNew;
838 for(i=0; i<=pCur->mxQueue; i++){
839 if( pCur->aQueue[i] ){
840 pX = fuzzerMergeStems(pX, pCur->aQueue[i]);
841 pCur->aQueue[i] = 0;
842 }else{
843 pCur->aQueue[i] = pX;
844 break;
847 if( i>pCur->mxQueue ){
848 if( i<FUZZER_NQUEUE ){
849 pCur->mxQueue = i;
850 pCur->aQueue[i] = pX;
851 }else{
852 assert( pCur->mxQueue==FUZZER_NQUEUE-1 );
853 pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]);
854 pCur->aQueue[FUZZER_NQUEUE-1] = pX;
858 return fuzzerLowestCostStem(pCur);
862 ** Allocate a new fuzzer_stem. Add it to the hash table but do not
863 ** link it into either the pCur->pStem or pCur->pDone lists.
865 static fuzzer_stem *fuzzerNewStem(
866 fuzzer_cursor *pCur,
867 const char *zWord,
868 fuzzer_cost rBaseCost
870 fuzzer_stem *pNew;
871 fuzzer_rule *pRule;
872 unsigned int h;
874 pNew = sqlite3_malloc( sizeof(*pNew) + (int)strlen(zWord) + 1 );
875 if( pNew==0 ) return 0;
876 memset(pNew, 0, sizeof(*pNew));
877 pNew->zBasis = (char*)&pNew[1];
878 pNew->nBasis = (int)strlen(zWord);
879 memcpy(pNew->zBasis, zWord, pNew->nBasis+1);
880 pRule = pCur->pVtab->pRule;
881 while( fuzzerSkipRule(pRule, pNew, pCur->iRuleset) ){
882 pRule = pRule->pNext;
884 pNew->pRule = pRule;
885 pNew->n = -1;
886 pNew->rBaseCost = pNew->rCostX = rBaseCost;
887 h = fuzzerHash(pNew->zBasis);
888 pNew->pHash = pCur->apHash[h];
889 pCur->apHash[h] = pNew;
890 pCur->nStem++;
891 return pNew;
896 ** Advance a cursor to its next row of output
898 static int fuzzerNext(sqlite3_vtab_cursor *cur){
899 fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
900 int rc;
901 fuzzer_stem *pStem, *pNew;
903 pCur->iRowid++;
905 /* Use the element the cursor is currently point to to create
906 ** a new stem and insert the new stem into the priority queue.
908 pStem = pCur->pStem;
909 if( pStem->rCostX>0 ){
910 rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf);
911 if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM;
912 pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX);
913 if( pNew ){
914 if( fuzzerAdvance(pCur, pNew)==0 ){
915 pNew->pNext = pCur->pDone;
916 pCur->pDone = pNew;
917 }else{
918 if( fuzzerInsert(pCur, pNew)==pNew ){
919 return SQLITE_OK;
922 }else{
923 return SQLITE_NOMEM;
927 /* Adjust the priority queue so that the first element of the
928 ** stem list is the next lowest cost word.
930 while( (pStem = pCur->pStem)!=0 ){
931 int res = fuzzerAdvance(pCur, pStem);
932 if( res<0 ){
933 return SQLITE_NOMEM;
934 }else if( res>0 ){
935 pCur->pStem = 0;
936 pStem = fuzzerInsert(pCur, pStem);
937 if( (rc = fuzzerSeen(pCur, pStem))!=0 ){
938 if( rc<0 ) return SQLITE_NOMEM;
939 continue;
941 return SQLITE_OK; /* New word found */
943 pCur->pStem = 0;
944 pStem->pNext = pCur->pDone;
945 pCur->pDone = pStem;
946 if( fuzzerLowestCostStem(pCur) ){
947 rc = fuzzerSeen(pCur, pCur->pStem);
948 if( rc<0 ) return SQLITE_NOMEM;
949 if( rc==0 ){
950 return SQLITE_OK;
955 /* Reach this point only if queue has been exhausted and there is
956 ** nothing left to be output. */
957 pCur->rLimit = (fuzzer_cost)0;
958 return SQLITE_OK;
962 ** Called to "rewind" a cursor back to the beginning so that
963 ** it starts its output over again. Always called at least once
964 ** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call.
966 static int fuzzerFilter(
967 sqlite3_vtab_cursor *pVtabCursor,
968 int idxNum, const char *idxStr,
969 int argc, sqlite3_value **argv
971 fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor;
972 const char *zWord = "";
973 fuzzer_stem *pStem;
974 int idx;
976 fuzzerClearCursor(pCur, 1);
977 pCur->rLimit = 2147483647;
978 idx = 0;
979 if( idxNum & 1 ){
980 zWord = (const char*)sqlite3_value_text(argv[0]);
981 idx++;
983 if( idxNum & 2 ){
984 pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[idx]);
985 idx++;
987 if( idxNum & 4 ){
988 pCur->iRuleset = (fuzzer_cost)sqlite3_value_int(argv[idx]);
989 idx++;
991 pCur->nullRule.pNext = pCur->pVtab->pRule;
992 pCur->nullRule.rCost = 0;
993 pCur->nullRule.nFrom = 0;
994 pCur->nullRule.nTo = 0;
995 pCur->nullRule.zFrom = "";
996 pCur->iRowid = 1;
997 assert( pCur->pStem==0 );
999 /* If the query term is longer than FUZZER_MX_OUTPUT_LENGTH bytes, this
1000 ** query will return zero rows. */
1001 if( (int)strlen(zWord)<FUZZER_MX_OUTPUT_LENGTH ){
1002 pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0);
1003 if( pStem==0 ) return SQLITE_NOMEM;
1004 pStem->pRule = &pCur->nullRule;
1005 pStem->n = pStem->nBasis;
1006 }else{
1007 pCur->rLimit = 0;
1010 return SQLITE_OK;
1014 ** Only the word and distance columns have values. All other columns
1015 ** return NULL
1017 static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
1018 fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
1019 if( i==0 ){
1020 /* the "word" column */
1021 if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
1022 return SQLITE_NOMEM;
1024 sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT);
1025 }else if( i==1 ){
1026 /* the "distance" column */
1027 sqlite3_result_int(ctx, pCur->pStem->rCostX);
1028 }else{
1029 /* All other columns are NULL */
1030 sqlite3_result_null(ctx);
1032 return SQLITE_OK;
1036 ** The rowid.
1038 static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
1039 fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
1040 *pRowid = pCur->iRowid;
1041 return SQLITE_OK;
1045 ** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal
1046 ** that the cursor has nothing more to output.
1048 static int fuzzerEof(sqlite3_vtab_cursor *cur){
1049 fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
1050 return pCur->rLimit<=(fuzzer_cost)0;
1054 ** Search for terms of these forms:
1056 ** (A) word MATCH $str
1057 ** (B1) distance < $value
1058 ** (B2) distance <= $value
1059 ** (C) ruleid == $ruleid
1061 ** The distance< and distance<= are both treated as distance<=.
1062 ** The query plan number is a bit vector:
1064 ** bit 1: Term of the form (A) found
1065 ** bit 2: Term like (B1) or (B2) found
1066 ** bit 3: Term like (C) found
1068 ** If bit-1 is set, $str is always in filter.argv[0]. If bit-2 is set
1069 ** then $value is in filter.argv[0] if bit-1 is clear and is in
1070 ** filter.argv[1] if bit-1 is set. If bit-3 is set, then $ruleid is
1071 ** in filter.argv[0] if bit-1 and bit-2 are both zero, is in
1072 ** filter.argv[1] if exactly one of bit-1 and bit-2 are set, and is in
1073 ** filter.argv[2] if both bit-1 and bit-2 are set.
1075 static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
1076 int iPlan = 0;
1077 int iDistTerm = -1;
1078 int iRulesetTerm = -1;
1079 int i;
1080 int seenMatch = 0;
1081 const struct sqlite3_index_constraint *pConstraint;
1082 double rCost = 1e12;
1084 pConstraint = pIdxInfo->aConstraint;
1085 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
1086 if( pConstraint->iColumn==0
1087 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
1088 seenMatch = 1;
1090 if( pConstraint->usable==0 ) continue;
1091 if( (iPlan & 1)==0
1092 && pConstraint->iColumn==0
1093 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
1095 iPlan |= 1;
1096 pIdxInfo->aConstraintUsage[i].argvIndex = 1;
1097 pIdxInfo->aConstraintUsage[i].omit = 1;
1098 rCost /= 1e6;
1100 if( (iPlan & 2)==0
1101 && pConstraint->iColumn==1
1102 && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
1103 || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE)
1105 iPlan |= 2;
1106 iDistTerm = i;
1107 rCost /= 10.0;
1109 if( (iPlan & 4)==0
1110 && pConstraint->iColumn==2
1111 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
1113 iPlan |= 4;
1114 pIdxInfo->aConstraintUsage[i].omit = 1;
1115 iRulesetTerm = i;
1116 rCost /= 10.0;
1119 if( iPlan & 2 ){
1120 pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0);
1122 if( iPlan & 4 ){
1123 int idx = 1;
1124 if( iPlan & 1 ) idx++;
1125 if( iPlan & 2 ) idx++;
1126 pIdxInfo->aConstraintUsage[iRulesetTerm].argvIndex = idx;
1128 pIdxInfo->idxNum = iPlan;
1129 if( pIdxInfo->nOrderBy==1
1130 && pIdxInfo->aOrderBy[0].iColumn==1
1131 && pIdxInfo->aOrderBy[0].desc==0
1133 pIdxInfo->orderByConsumed = 1;
1135 if( seenMatch && (iPlan&1)==0 ) rCost = 1e99;
1136 pIdxInfo->estimatedCost = rCost;
1138 return SQLITE_OK;
1142 ** A virtual table module that implements the "fuzzer".
1144 static sqlite3_module fuzzerModule = {
1145 0, /* iVersion */
1146 fuzzerConnect,
1147 fuzzerConnect,
1148 fuzzerBestIndex,
1149 fuzzerDisconnect,
1150 fuzzerDisconnect,
1151 fuzzerOpen, /* xOpen - open a cursor */
1152 fuzzerClose, /* xClose - close a cursor */
1153 fuzzerFilter, /* xFilter - configure scan constraints */
1154 fuzzerNext, /* xNext - advance a cursor */
1155 fuzzerEof, /* xEof - check for end of scan */
1156 fuzzerColumn, /* xColumn - read data */
1157 fuzzerRowid, /* xRowid - read data */
1158 0, /* xUpdate */
1159 0, /* xBegin */
1160 0, /* xSync */
1161 0, /* xCommit */
1162 0, /* xRollback */
1163 0, /* xFindMethod */
1164 0, /* xRename */
1167 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1170 #ifdef _WIN32
1171 __declspec(dllexport)
1172 #endif
1173 int sqlite3_fuzzer_init(
1174 sqlite3 *db,
1175 char **pzErrMsg,
1176 const sqlite3_api_routines *pApi
1178 int rc = SQLITE_OK;
1179 SQLITE_EXTENSION_INIT2(pApi);
1180 #ifndef SQLITE_OMIT_VIRTUALTABLE
1181 rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0);
1182 #endif
1183 return rc;