1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "ui/gfx/geometry/quad_f.h"
9 #include "base/strings/stringprintf.h"
13 void QuadF::operator=(const RectF
& rect
) {
14 p1_
= PointF(rect
.x(), rect
.y());
15 p2_
= PointF(rect
.right(), rect
.y());
16 p3_
= PointF(rect
.right(), rect
.bottom());
17 p4_
= PointF(rect
.x(), rect
.bottom());
20 std::string
QuadF::ToString() const {
21 return base::StringPrintf("%s;%s;%s;%s",
22 p1_
.ToString().c_str(),
23 p2_
.ToString().c_str(),
24 p3_
.ToString().c_str(),
25 p4_
.ToString().c_str());
28 static inline bool WithinEpsilon(float a
, float b
) {
29 return std::abs(a
- b
) < std::numeric_limits
<float>::epsilon();
32 bool QuadF::IsRectilinear() const {
34 (WithinEpsilon(p1_
.x(), p2_
.x()) && WithinEpsilon(p2_
.y(), p3_
.y()) &&
35 WithinEpsilon(p3_
.x(), p4_
.x()) && WithinEpsilon(p4_
.y(), p1_
.y())) ||
36 (WithinEpsilon(p1_
.y(), p2_
.y()) && WithinEpsilon(p2_
.x(), p3_
.x()) &&
37 WithinEpsilon(p3_
.y(), p4_
.y()) && WithinEpsilon(p4_
.x(), p1_
.x()));
40 bool QuadF::IsCounterClockwise() const {
41 // This math computes the signed area of the quad. Positive area
42 // indicates the quad is clockwise; negative area indicates the quad is
43 // counter-clockwise. Note carefully: this is backwards from conventional
44 // math because our geometric space uses screen coordiantes with y-axis
46 // Reference: http://mathworld.wolfram.com/PolygonArea.html.
47 // The equation can be written:
48 // Signed area = determinant1 + determinant2 + determinant3 + determinant4
49 // In practise, Refactoring the computation of adding determinants so that
50 // reducing the number of operations. The equation is:
51 // Signed area = element1 + element2 - element3 - element4
53 float p24
= p2_
.y() - p4_
.y();
54 float p31
= p3_
.y() - p1_
.y();
56 // Up-cast to double so this cannot overflow.
57 double element1
= static_cast<double>(p1_
.x()) * p24
;
58 double element2
= static_cast<double>(p2_
.x()) * p31
;
59 double element3
= static_cast<double>(p3_
.x()) * p24
;
60 double element4
= static_cast<double>(p4_
.x()) * p31
;
62 return element1
+ element2
< element3
+ element4
;
65 static inline bool PointIsInTriangle(const PointF
& point
,
69 // Compute the barycentric coordinates (u, v, w) of |point| relative to the
70 // triangle (r1, r2, r3) by the solving the system of equations:
71 // 1) point = u * r1 + v * r2 + w * r3
73 // This algorithm comes from Christer Ericson's Real-Time Collision Detection.
75 Vector2dF r31
= r1
- r3
;
76 Vector2dF r32
= r2
- r3
;
77 Vector2dF r3p
= point
- r3
;
79 float denom
= r32
.y() * r31
.x() - r32
.x() * r31
.y();
80 float u
= (r32
.y() * r3p
.x() - r32
.x() * r3p
.y()) / denom
;
81 float v
= (r31
.x() * r3p
.y() - r31
.y() * r3p
.x()) / denom
;
82 float w
= 1.f
- u
- v
;
84 // Use the barycentric coordinates to test if |point| is inside the
85 // triangle (r1, r2, r2).
86 return (u
>= 0) && (v
>= 0) && (w
>= 0);
89 bool QuadF::Contains(const PointF
& point
) const {
90 return PointIsInTriangle(point
, p1_
, p2_
, p3_
)
91 || PointIsInTriangle(point
, p1_
, p3_
, p4_
);
94 void QuadF::Scale(float x_scale
, float y_scale
) {
95 p1_
.Scale(x_scale
, y_scale
);
96 p2_
.Scale(x_scale
, y_scale
);
97 p3_
.Scale(x_scale
, y_scale
);
98 p4_
.Scale(x_scale
, y_scale
);
101 void QuadF::operator+=(const Vector2dF
& rhs
) {
108 void QuadF::operator-=(const Vector2dF
& rhs
) {
115 QuadF
operator+(const QuadF
& lhs
, const Vector2dF
& rhs
) {
121 QuadF
operator-(const QuadF
& lhs
, const Vector2dF
& rhs
) {