1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
7 #include "base/basictypes.h"
8 #include "testing/gtest/include/gtest/gtest.h"
9 #include "ui/gfx/geometry/rect.h"
10 #include "ui/gfx/geometry/rect_conversions.h"
11 #include "ui/gfx/test/gfx_util.h"
19 TEST(RectTest
, Contains
) {
20 static const struct ContainsCase
{
28 } contains_cases
[] = {
29 {0, 0, 10, 10, 0, 0, true},
30 {0, 0, 10, 10, 5, 5, true},
31 {0, 0, 10, 10, 9, 9, true},
32 {0, 0, 10, 10, 5, 10, false},
33 {0, 0, 10, 10, 10, 5, false},
34 {0, 0, 10, 10, -1, -1, false},
35 {0, 0, 10, 10, 50, 50, false},
36 #if defined(NDEBUG) && !defined(DCHECK_ALWAYS_ON)
37 {0, 0, -10, -10, 0, 0, false},
40 for (size_t i
= 0; i
< arraysize(contains_cases
); ++i
) {
41 const ContainsCase
& value
= contains_cases
[i
];
42 Rect
rect(value
.rect_x
, value
.rect_y
, value
.rect_width
, value
.rect_height
);
43 EXPECT_EQ(value
.contained
, rect
.Contains(value
.point_x
, value
.point_y
));
47 TEST(RectTest
, Intersects
) {
59 { 0, 0, 0, 0, 0, 0, 0, 0, false },
60 { 0, 0, 0, 0, -10, -10, 20, 20, false },
61 { -10, 0, 0, 20, 0, -10, 20, 0, false },
62 { 0, 0, 10, 10, 0, 0, 10, 10, true },
63 { 0, 0, 10, 10, 10, 10, 10, 10, false },
64 { 10, 10, 10, 10, 0, 0, 10, 10, false },
65 { 10, 10, 10, 10, 5, 5, 10, 10, true },
66 { 10, 10, 10, 10, 15, 15, 10, 10, true },
67 { 10, 10, 10, 10, 20, 15, 10, 10, false },
68 { 10, 10, 10, 10, 21, 15, 10, 10, false }
70 for (size_t i
= 0; i
< arraysize(tests
); ++i
) {
71 Rect
r1(tests
[i
].x1
, tests
[i
].y1
, tests
[i
].w1
, tests
[i
].h1
);
72 Rect
r2(tests
[i
].x2
, tests
[i
].y2
, tests
[i
].w2
, tests
[i
].h2
);
73 EXPECT_EQ(tests
[i
].intersects
, r1
.Intersects(r2
));
74 EXPECT_EQ(tests
[i
].intersects
, r2
.Intersects(r1
));
78 TEST(RectTest
, Intersect
) {
88 int x3
; // rect 3: the union of rects 1 and 2
93 { 0, 0, 0, 0, // zeros
96 { 0, 0, 4, 4, // equal
99 { 0, 0, 4, 4, // neighboring
102 { 0, 0, 4, 4, // overlapping corners
105 { 0, 0, 4, 4, // T junction
112 for (size_t i
= 0; i
< arraysize(tests
); ++i
) {
113 Rect
r1(tests
[i
].x1
, tests
[i
].y1
, tests
[i
].w1
, tests
[i
].h1
);
114 Rect
r2(tests
[i
].x2
, tests
[i
].y2
, tests
[i
].w2
, tests
[i
].h2
);
115 Rect
r3(tests
[i
].x3
, tests
[i
].y3
, tests
[i
].w3
, tests
[i
].h3
);
116 Rect ir
= IntersectRects(r1
, r2
);
117 EXPECT_EQ(r3
.x(), ir
.x());
118 EXPECT_EQ(r3
.y(), ir
.y());
119 EXPECT_EQ(r3
.width(), ir
.width());
120 EXPECT_EQ(r3
.height(), ir
.height());
124 TEST(RectTest
, Union
) {
125 static const struct Test
{
134 int x3
; // rect 3: the union of rects 1 and 2
154 { 3, 3, 2, 2, // reverse r1 and r2 from previous test
157 { 0, 0, 0, 0, // union with empty rect
161 for (size_t i
= 0; i
< arraysize(tests
); ++i
) {
162 Rect
r1(tests
[i
].x1
, tests
[i
].y1
, tests
[i
].w1
, tests
[i
].h1
);
163 Rect
r2(tests
[i
].x2
, tests
[i
].y2
, tests
[i
].w2
, tests
[i
].h2
);
164 Rect
r3(tests
[i
].x3
, tests
[i
].y3
, tests
[i
].w3
, tests
[i
].h3
);
165 Rect u
= UnionRects(r1
, r2
);
166 EXPECT_EQ(r3
.x(), u
.x());
167 EXPECT_EQ(r3
.y(), u
.y());
168 EXPECT_EQ(r3
.width(), u
.width());
169 EXPECT_EQ(r3
.height(), u
.height());
173 TEST(RectTest
, Equals
) {
174 ASSERT_TRUE(Rect(0, 0, 0, 0) == Rect(0, 0, 0, 0));
175 ASSERT_TRUE(Rect(1, 2, 3, 4) == Rect(1, 2, 3, 4));
176 ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(0, 0, 0, 1));
177 ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(0, 0, 1, 0));
178 ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(0, 1, 0, 0));
179 ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(1, 0, 0, 0));
182 TEST(RectTest
, AdjustToFit
) {
183 static const struct Test
{
192 int x3
; // rect 3: results of invoking AdjustToFit
213 for (size_t i
= 0; i
< arraysize(tests
); ++i
) {
214 Rect
r1(tests
[i
].x1
, tests
[i
].y1
, tests
[i
].w1
, tests
[i
].h1
);
215 Rect
r2(tests
[i
].x2
, tests
[i
].y2
, tests
[i
].w2
, tests
[i
].h2
);
216 Rect
r3(tests
[i
].x3
, tests
[i
].y3
, tests
[i
].w3
, tests
[i
].h3
);
219 EXPECT_EQ(r3
.x(), u
.x());
220 EXPECT_EQ(r3
.y(), u
.y());
221 EXPECT_EQ(r3
.width(), u
.width());
222 EXPECT_EQ(r3
.height(), u
.height());
226 TEST(RectTest
, Subtract
) {
230 result
= Rect(10, 10, 20, 20);
231 result
.Subtract(Rect(10, 10, 20, 20));
232 EXPECT_EQ(Rect(0, 0, 0, 0), result
);
235 result
= Rect(10, 10, 20, 20);
236 result
.Subtract(Rect(5, 5, 30, 30));
237 EXPECT_EQ(Rect(0, 0, 0, 0), result
);
240 result
= Rect(10, 10, 20, 20);
241 result
.Subtract(Rect(30, 30, 30, 30));
242 EXPECT_EQ(Rect(10, 10, 20, 20), result
);
244 // Not a complete intersection in either direction
245 result
= Rect(10, 10, 20, 20);
246 result
.Subtract(Rect(15, 15, 20, 20));
247 EXPECT_EQ(Rect(10, 10, 20, 20), result
);
249 // Complete intersection in the x-direction, top edge is fully covered.
250 result
= Rect(10, 10, 20, 20);
251 result
.Subtract(Rect(10, 15, 20, 20));
252 EXPECT_EQ(Rect(10, 10, 20, 5), result
);
254 // Complete intersection in the x-direction, top edge is fully covered.
255 result
= Rect(10, 10, 20, 20);
256 result
.Subtract(Rect(5, 15, 30, 20));
257 EXPECT_EQ(Rect(10, 10, 20, 5), result
);
259 // Complete intersection in the x-direction, bottom edge is fully covered.
260 result
= Rect(10, 10, 20, 20);
261 result
.Subtract(Rect(5, 5, 30, 20));
262 EXPECT_EQ(Rect(10, 25, 20, 5), result
);
264 // Complete intersection in the x-direction, none of the edges is fully
266 result
= Rect(10, 10, 20, 20);
267 result
.Subtract(Rect(5, 15, 30, 1));
268 EXPECT_EQ(Rect(10, 10, 20, 20), result
);
270 // Complete intersection in the y-direction, left edge is fully covered.
271 result
= Rect(10, 10, 20, 20);
272 result
.Subtract(Rect(10, 10, 10, 30));
273 EXPECT_EQ(Rect(20, 10, 10, 20), result
);
275 // Complete intersection in the y-direction, left edge is fully covered.
276 result
= Rect(10, 10, 20, 20);
277 result
.Subtract(Rect(5, 5, 20, 30));
278 EXPECT_EQ(Rect(25, 10, 5, 20), result
);
280 // Complete intersection in the y-direction, right edge is fully covered.
281 result
= Rect(10, 10, 20, 20);
282 result
.Subtract(Rect(20, 5, 20, 30));
283 EXPECT_EQ(Rect(10, 10, 10, 20), result
);
285 // Complete intersection in the y-direction, none of the edges is fully
287 result
= Rect(10, 10, 20, 20);
288 result
.Subtract(Rect(15, 5, 1, 30));
289 EXPECT_EQ(Rect(10, 10, 20, 20), result
);
292 TEST(RectTest
, IsEmpty
) {
293 EXPECT_TRUE(Rect(0, 0, 0, 0).IsEmpty());
294 EXPECT_TRUE(Rect(0, 0, 0, 0).size().IsEmpty());
295 EXPECT_TRUE(Rect(0, 0, 10, 0).IsEmpty());
296 EXPECT_TRUE(Rect(0, 0, 10, 0).size().IsEmpty());
297 EXPECT_TRUE(Rect(0, 0, 0, 10).IsEmpty());
298 EXPECT_TRUE(Rect(0, 0, 0, 10).size().IsEmpty());
299 EXPECT_FALSE(Rect(0, 0, 10, 10).IsEmpty());
300 EXPECT_FALSE(Rect(0, 0, 10, 10).size().IsEmpty());
303 TEST(RectTest
, SplitVertically
) {
304 Rect left_half
, right_half
;
306 // Splitting when origin is (0, 0).
307 Rect(0, 0, 20, 20).SplitVertically(&left_half
, &right_half
);
308 EXPECT_TRUE(left_half
== Rect(0, 0, 10, 20));
309 EXPECT_TRUE(right_half
== Rect(10, 0, 10, 20));
311 // Splitting when origin is arbitrary.
312 Rect(10, 10, 20, 10).SplitVertically(&left_half
, &right_half
);
313 EXPECT_TRUE(left_half
== Rect(10, 10, 10, 10));
314 EXPECT_TRUE(right_half
== Rect(20, 10, 10, 10));
316 // Splitting a rectangle of zero width.
317 Rect(10, 10, 0, 10).SplitVertically(&left_half
, &right_half
);
318 EXPECT_TRUE(left_half
== Rect(10, 10, 0, 10));
319 EXPECT_TRUE(right_half
== Rect(10, 10, 0, 10));
321 // Splitting a rectangle of odd width.
322 Rect(10, 10, 5, 10).SplitVertically(&left_half
, &right_half
);
323 EXPECT_TRUE(left_half
== Rect(10, 10, 2, 10));
324 EXPECT_TRUE(right_half
== Rect(12, 10, 3, 10));
327 TEST(RectTest
, CenterPoint
) {
330 // When origin is (0, 0).
331 center
= Rect(0, 0, 20, 20).CenterPoint();
332 EXPECT_TRUE(center
== Point(10, 10));
334 // When origin is even.
335 center
= Rect(10, 10, 20, 20).CenterPoint();
336 EXPECT_TRUE(center
== Point(20, 20));
338 // When origin is odd.
339 center
= Rect(11, 11, 20, 20).CenterPoint();
340 EXPECT_TRUE(center
== Point(21, 21));
342 // When 0 width or height.
343 center
= Rect(10, 10, 0, 20).CenterPoint();
344 EXPECT_TRUE(center
== Point(10, 20));
345 center
= Rect(10, 10, 20, 0).CenterPoint();
346 EXPECT_TRUE(center
== Point(20, 10));
349 center
= Rect(10, 10, 21, 21).CenterPoint();
350 EXPECT_TRUE(center
== Point(20, 20));
352 // When an odd size and position.
353 center
= Rect(11, 11, 21, 21).CenterPoint();
354 EXPECT_TRUE(center
== Point(21, 21));
357 TEST(RectTest
, CenterPointF
) {
360 // When origin is (0, 0).
361 center
= RectF(0, 0, 20, 20).CenterPoint();
362 EXPECT_TRUE(center
== PointF(10, 10));
364 // When origin is even.
365 center
= RectF(10, 10, 20, 20).CenterPoint();
366 EXPECT_TRUE(center
== PointF(20, 20));
368 // When origin is odd.
369 center
= RectF(11, 11, 20, 20).CenterPoint();
370 EXPECT_TRUE(center
== PointF(21, 21));
372 // When 0 width or height.
373 center
= RectF(10, 10, 0, 20).CenterPoint();
374 EXPECT_TRUE(center
== PointF(10, 20));
375 center
= RectF(10, 10, 20, 0).CenterPoint();
376 EXPECT_TRUE(center
== PointF(20, 10));
379 center
= RectF(10, 10, 21, 21).CenterPoint();
380 EXPECT_TRUE(center
== PointF(20.5f
, 20.5f
));
382 // When an odd size and position.
383 center
= RectF(11, 11, 21, 21).CenterPoint();
384 EXPECT_TRUE(center
== PointF(21.5f
, 21.5f
));
387 TEST(RectTest
, SharesEdgeWith
) {
390 // Must be non-overlapping
391 EXPECT_FALSE(r
.SharesEdgeWith(r
));
393 Rect
just_above(2, 1, 4, 2);
394 Rect
just_below(2, 8, 4, 2);
395 Rect
just_left(0, 3, 2, 5);
396 Rect
just_right(6, 3, 2, 5);
398 EXPECT_TRUE(r
.SharesEdgeWith(just_above
));
399 EXPECT_TRUE(r
.SharesEdgeWith(just_below
));
400 EXPECT_TRUE(r
.SharesEdgeWith(just_left
));
401 EXPECT_TRUE(r
.SharesEdgeWith(just_right
));
404 Rect
same_height_no_edge(0, 0, 1, 5);
405 Rect
same_width_no_edge(0, 0, 4, 1);
407 EXPECT_FALSE(r
.SharesEdgeWith(same_height_no_edge
));
408 EXPECT_FALSE(r
.SharesEdgeWith(same_width_no_edge
));
410 Rect
just_above_no_edge(2, 1, 5, 2); // too wide
411 Rect
just_below_no_edge(2, 8, 3, 2); // too narrow
412 Rect
just_left_no_edge(0, 3, 2, 6); // too tall
413 Rect
just_right_no_edge(6, 3, 2, 4); // too short
415 EXPECT_FALSE(r
.SharesEdgeWith(just_above_no_edge
));
416 EXPECT_FALSE(r
.SharesEdgeWith(just_below_no_edge
));
417 EXPECT_FALSE(r
.SharesEdgeWith(just_left_no_edge
));
418 EXPECT_FALSE(r
.SharesEdgeWith(just_right_no_edge
));
421 // Similar to EXPECT_FLOAT_EQ, but lets NaN equal NaN
422 #define EXPECT_FLOAT_AND_NAN_EQ(a, b) \
423 { if (a == a || b == b) { EXPECT_FLOAT_EQ(a, b); } }
425 TEST(RectTest
, ScaleRect
) {
426 static const struct Test
{
439 4.5f
, 4.5f
, 4.5f
, 4.5f
},
442 0.0f
, 0.0f
, 0.0f
, 0.0f
},
444 std::numeric_limits
<float>::quiet_NaN(),
445 std::numeric_limits
<float>::quiet_NaN(),
446 std::numeric_limits
<float>::quiet_NaN(),
447 std::numeric_limits
<float>::quiet_NaN(),
448 std::numeric_limits
<float>::quiet_NaN() },
450 std::numeric_limits
<float>::max(),
451 std::numeric_limits
<float>::max(),
452 std::numeric_limits
<float>::max(),
453 std::numeric_limits
<float>::max(),
454 std::numeric_limits
<float>::max() }
457 for (size_t i
= 0; i
< arraysize(tests
); ++i
) {
458 Rect
r1(tests
[i
].x1
, tests
[i
].y1
, tests
[i
].w1
, tests
[i
].h1
);
459 RectF
r2(tests
[i
].x2
, tests
[i
].y2
, tests
[i
].w2
, tests
[i
].h2
);
461 RectF scaled
= ScaleRect(r1
, tests
[i
].scale
);
462 EXPECT_FLOAT_AND_NAN_EQ(r2
.x(), scaled
.x());
463 EXPECT_FLOAT_AND_NAN_EQ(r2
.y(), scaled
.y());
464 EXPECT_FLOAT_AND_NAN_EQ(r2
.width(), scaled
.width());
465 EXPECT_FLOAT_AND_NAN_EQ(r2
.height(), scaled
.height());
469 TEST(RectTest
, ToEnclosedRect
) {
470 static const struct Test
{
480 { 0.0f
, 0.0f
, 0.0f
, 0.0f
,
482 { -1.5f
, -1.5f
, 3.0f
, 3.0f
,
484 { -1.5f
, -1.5f
, 3.5f
, 3.5f
,
486 { std::numeric_limits
<float>::max(),
487 std::numeric_limits
<float>::max(),
489 std::numeric_limits
<int>::max(),
490 std::numeric_limits
<int>::max(),
493 std::numeric_limits
<float>::max(),
494 std::numeric_limits
<float>::max(),
496 std::numeric_limits
<int>::max(),
497 std::numeric_limits
<int>::max() },
498 { 20000.5f
, 20000.5f
, 0.5f
, 0.5f
,
499 20001, 20001, 0, 0 },
500 { std::numeric_limits
<float>::quiet_NaN(),
501 std::numeric_limits
<float>::quiet_NaN(),
502 std::numeric_limits
<float>::quiet_NaN(),
503 std::numeric_limits
<float>::quiet_NaN(),
507 for (size_t i
= 0; i
< arraysize(tests
); ++i
) {
508 RectF
r1(tests
[i
].x1
, tests
[i
].y1
, tests
[i
].w1
, tests
[i
].h1
);
509 Rect
r2(tests
[i
].x2
, tests
[i
].y2
, tests
[i
].w2
, tests
[i
].h2
);
511 Rect enclosed
= ToEnclosedRect(r1
);
512 EXPECT_FLOAT_AND_NAN_EQ(r2
.x(), enclosed
.x());
513 EXPECT_FLOAT_AND_NAN_EQ(r2
.y(), enclosed
.y());
514 EXPECT_FLOAT_AND_NAN_EQ(r2
.width(), enclosed
.width());
515 EXPECT_FLOAT_AND_NAN_EQ(r2
.height(), enclosed
.height());
519 TEST(RectTest
, ToEnclosingRect
) {
520 static const struct Test
{
530 { 0.0f
, 0.0f
, 0.0f
, 0.0f
,
532 { 5.5f
, 5.5f
, 0.0f
, 0.0f
,
534 { -1.5f
, -1.5f
, 3.0f
, 3.0f
,
536 { -1.5f
, -1.5f
, 3.5f
, 3.5f
,
538 { std::numeric_limits
<float>::max(),
539 std::numeric_limits
<float>::max(),
541 std::numeric_limits
<int>::max(),
542 std::numeric_limits
<int>::max(),
545 std::numeric_limits
<float>::max(),
546 std::numeric_limits
<float>::max(),
548 std::numeric_limits
<int>::max(),
549 std::numeric_limits
<int>::max() },
550 { 20000.5f
, 20000.5f
, 0.5f
, 0.5f
,
551 20000, 20000, 1, 1 },
552 { std::numeric_limits
<float>::quiet_NaN(),
553 std::numeric_limits
<float>::quiet_NaN(),
554 std::numeric_limits
<float>::quiet_NaN(),
555 std::numeric_limits
<float>::quiet_NaN(),
559 for (size_t i
= 0; i
< arraysize(tests
); ++i
) {
560 RectF
r1(tests
[i
].x1
, tests
[i
].y1
, tests
[i
].w1
, tests
[i
].h1
);
561 Rect
r2(tests
[i
].x2
, tests
[i
].y2
, tests
[i
].w2
, tests
[i
].h2
);
563 Rect enclosed
= ToEnclosingRect(r1
);
564 EXPECT_FLOAT_AND_NAN_EQ(r2
.x(), enclosed
.x());
565 EXPECT_FLOAT_AND_NAN_EQ(r2
.y(), enclosed
.y());
566 EXPECT_FLOAT_AND_NAN_EQ(r2
.width(), enclosed
.width());
567 EXPECT_FLOAT_AND_NAN_EQ(r2
.height(), enclosed
.height());
571 TEST(RectTest
, ToNearestRect
) {
573 EXPECT_EQ(rect
, ToNearestRect(RectF(rect
)));
575 rect
= Rect(-1, -1, 3, 3);
576 EXPECT_EQ(rect
, ToNearestRect(RectF(rect
)));
578 RectF
rectf(-1.00001f
, -0.999999f
, 3.0000001f
, 2.999999f
);
579 EXPECT_EQ(rect
, ToNearestRect(rectf
));
582 TEST(RectTest
, ToFlooredRect
) {
583 static const struct Test
{
593 { 0.0f
, 0.0f
, 0.0f
, 0.0f
,
595 { -1.5f
, -1.5f
, 3.0f
, 3.0f
,
597 { -1.5f
, -1.5f
, 3.5f
, 3.5f
,
599 { 20000.5f
, 20000.5f
, 0.5f
, 0.5f
,
600 20000, 20000, 0, 0 },
603 for (size_t i
= 0; i
< arraysize(tests
); ++i
) {
604 RectF
r1(tests
[i
].x1
, tests
[i
].y1
, tests
[i
].w1
, tests
[i
].h1
);
605 Rect
r2(tests
[i
].x2
, tests
[i
].y2
, tests
[i
].w2
, tests
[i
].h2
);
607 Rect floored
= ToFlooredRectDeprecated(r1
);
608 EXPECT_FLOAT_EQ(r2
.x(), floored
.x());
609 EXPECT_FLOAT_EQ(r2
.y(), floored
.y());
610 EXPECT_FLOAT_EQ(r2
.width(), floored
.width());
611 EXPECT_FLOAT_EQ(r2
.height(), floored
.height());
615 TEST(RectTest
, ScaleToEnclosedRect
) {
616 static const struct Test
{
652 for (size_t i
= 0; i
< arraysize(tests
); ++i
) {
653 Rect result
= ScaleToEnclosedRect(tests
[i
].input_rect
,
654 tests
[i
].input_scale
);
655 EXPECT_EQ(tests
[i
].expected_rect
, result
);
659 TEST(RectTest
, ScaleToEnclosingRect
) {
660 static const struct Test
{
696 for (size_t i
= 0; i
< arraysize(tests
); ++i
) {
697 Rect result
= ScaleToEnclosingRect(tests
[i
].input_rect
,
698 tests
[i
].input_scale
);
699 EXPECT_EQ(tests
[i
].expected_rect
, result
);
704 TEST(RectTest
, ConstructAndAssign
) {
705 const RECT rect_1
= { 0, 0, 10, 10 };
706 const RECT rect_2
= { 0, 0, -10, -10 };
712 TEST(RectTest
, ToRectF
) {
713 // Check that implicit conversion from integer to float compiles.
714 Rect
a(10, 20, 30, 40);
715 RectF
b(10, 20, 30, 40);
717 RectF intersect
= IntersectRects(a
, b
);
718 EXPECT_EQ(b
, intersect
);
724 TEST(RectTest
, BoundingRect
) {
730 // If point B dominates A, then A should be the origin.
731 { Point(4, 6), Point(4, 6), Rect(4, 6, 0, 0) },
732 { Point(4, 6), Point(8, 6), Rect(4, 6, 4, 0) },
733 { Point(4, 6), Point(4, 9), Rect(4, 6, 0, 3) },
734 { Point(4, 6), Point(8, 9), Rect(4, 6, 4, 3) },
735 // If point A dominates B, then B should be the origin.
736 { Point(4, 6), Point(4, 6), Rect(4, 6, 0, 0) },
737 { Point(8, 6), Point(4, 6), Rect(4, 6, 4, 0) },
738 { Point(4, 9), Point(4, 6), Rect(4, 6, 0, 3) },
739 { Point(8, 9), Point(4, 6), Rect(4, 6, 4, 3) },
740 // If neither point dominates, then the origin is a combination of the two.
741 { Point(4, 6), Point(6, 4), Rect(4, 4, 2, 2) },
742 { Point(-4, -6), Point(-6, -4), Rect(-6, -6, 2, 2) },
743 { Point(-4, 6), Point(6, -4), Rect(-4, -4, 10, 10) },
746 for (size_t i
= 0; i
< arraysize(int_tests
); ++i
) {
747 Rect actual
= BoundingRect(int_tests
[i
].a
, int_tests
[i
].b
);
748 EXPECT_EQ(int_tests
[i
].expected
, actual
);
756 // If point B dominates A, then A should be the origin.
757 { PointF(4.2f
, 6.8f
), PointF(4.2f
, 6.8f
),
758 RectF(4.2f
, 6.8f
, 0, 0) },
759 { PointF(4.2f
, 6.8f
), PointF(8.5f
, 6.8f
),
760 RectF(4.2f
, 6.8f
, 4.3f
, 0) },
761 { PointF(4.2f
, 6.8f
), PointF(4.2f
, 9.3f
),
762 RectF(4.2f
, 6.8f
, 0, 2.5f
) },
763 { PointF(4.2f
, 6.8f
), PointF(8.5f
, 9.3f
),
764 RectF(4.2f
, 6.8f
, 4.3f
, 2.5f
) },
765 // If point A dominates B, then B should be the origin.
766 { PointF(4.2f
, 6.8f
), PointF(4.2f
, 6.8f
),
767 RectF(4.2f
, 6.8f
, 0, 0) },
768 { PointF(8.5f
, 6.8f
), PointF(4.2f
, 6.8f
),
769 RectF(4.2f
, 6.8f
, 4.3f
, 0) },
770 { PointF(4.2f
, 9.3f
), PointF(4.2f
, 6.8f
),
771 RectF(4.2f
, 6.8f
, 0, 2.5f
) },
772 { PointF(8.5f
, 9.3f
), PointF(4.2f
, 6.8f
),
773 RectF(4.2f
, 6.8f
, 4.3f
, 2.5f
) },
774 // If neither point dominates, then the origin is a combination of the two.
775 { PointF(4.2f
, 6.8f
), PointF(6.8f
, 4.2f
),
776 RectF(4.2f
, 4.2f
, 2.6f
, 2.6f
) },
777 { PointF(-4.2f
, -6.8f
), PointF(-6.8f
, -4.2f
),
778 RectF(-6.8f
, -6.8f
, 2.6f
, 2.6f
) },
779 { PointF(-4.2f
, 6.8f
), PointF(6.8f
, -4.2f
),
780 RectF(-4.2f
, -4.2f
, 11.0f
, 11.0f
) }
783 for (size_t i
= 0; i
< arraysize(float_tests
); ++i
) {
784 RectF actual
= BoundingRect(float_tests
[i
].a
, float_tests
[i
].b
);
785 EXPECT_RECTF_EQ(float_tests
[i
].expected
, actual
);
789 TEST(RectTest
, IsExpressibleAsRect
) {
790 EXPECT_TRUE(RectF().IsExpressibleAsRect());
792 float min
= std::numeric_limits
<int>::min();
793 float max
= std::numeric_limits
<int>::max();
794 float infinity
= std::numeric_limits
<float>::infinity();
797 min
+ 200, min
+ 200, max
- 200, max
- 200).IsExpressibleAsRect());
799 min
- 200, min
+ 200, max
+ 200, max
+ 200).IsExpressibleAsRect());
801 min
+ 200 , min
- 200, max
+ 200, max
+ 200).IsExpressibleAsRect());
803 min
+ 200, min
+ 200, max
+ 200, max
- 200).IsExpressibleAsRect());
805 min
+ 200, min
+ 200, max
- 200, max
+ 200).IsExpressibleAsRect());
807 EXPECT_TRUE(RectF(0, 0, max
- 200, max
- 200).IsExpressibleAsRect());
808 EXPECT_FALSE(RectF(200, 0, max
+ 200, max
- 200).IsExpressibleAsRect());
809 EXPECT_FALSE(RectF(0, 200, max
- 200, max
+ 200).IsExpressibleAsRect());
810 EXPECT_FALSE(RectF(0, 0, max
+ 200, max
- 200).IsExpressibleAsRect());
811 EXPECT_FALSE(RectF(0, 0, max
- 200, max
+ 200).IsExpressibleAsRect());
813 EXPECT_FALSE(RectF(infinity
, 0, 1, 1).IsExpressibleAsRect());
814 EXPECT_FALSE(RectF(0, infinity
, 1, 1).IsExpressibleAsRect());
815 EXPECT_FALSE(RectF(0, 0, infinity
, 1).IsExpressibleAsRect());
816 EXPECT_FALSE(RectF(0, 0, 1, infinity
).IsExpressibleAsRect());
819 TEST(RectTest
, Offset
) {
822 EXPECT_EQ(Rect(2, 1, 3, 4), (i
+ Vector2d(1, -1)));
823 EXPECT_EQ(Rect(2, 1, 3, 4), (Vector2d(1, -1) + i
));
824 i
+= Vector2d(1, -1);
825 EXPECT_EQ(Rect(2, 1, 3, 4), i
);
826 EXPECT_EQ(Rect(1, 2, 3, 4), (i
- Vector2d(1, -1)));
827 i
-= Vector2d(1, -1);
828 EXPECT_EQ(Rect(1, 2, 3, 4), i
);
830 RectF
f(1.1f
, 2.2f
, 3.3f
, 4.4f
);
831 EXPECT_EQ(RectF(2.2f
, 1.1f
, 3.3f
, 4.4f
), (f
+ Vector2dF(1.1f
, -1.1f
)));
832 EXPECT_EQ(RectF(2.2f
, 1.1f
, 3.3f
, 4.4f
), (Vector2dF(1.1f
, -1.1f
) + f
));
833 f
+= Vector2dF(1.1f
, -1.1f
);
834 EXPECT_EQ(RectF(2.2f
, 1.1f
, 3.3f
, 4.4f
), f
);
835 EXPECT_EQ(RectF(1.1f
, 2.2f
, 3.3f
, 4.4f
), (f
- Vector2dF(1.1f
, -1.1f
)));
836 f
-= Vector2dF(1.1f
, -1.1f
);
837 EXPECT_EQ(RectF(1.1f
, 2.2f
, 3.3f
, 4.4f
), f
);
840 TEST(RectTest
, Corners
) {
842 RectF
f(1.1f
, 2.1f
, 3.1f
, 4.1f
);
844 EXPECT_EQ(Point(1, 2), i
.origin());
845 EXPECT_EQ(Point(4, 2), i
.top_right());
846 EXPECT_EQ(Point(1, 6), i
.bottom_left());
847 EXPECT_EQ(Point(4, 6), i
.bottom_right());
849 EXPECT_EQ(PointF(1.1f
, 2.1f
), f
.origin());
850 EXPECT_EQ(PointF(4.2f
, 2.1f
), f
.top_right());
851 EXPECT_EQ(PointF(1.1f
, 6.2f
), f
.bottom_left());
852 EXPECT_EQ(PointF(4.2f
, 6.2f
), f
.bottom_right());
855 TEST(RectTest
, ManhattanDistanceToPoint
) {
857 EXPECT_EQ(0, i
.ManhattanDistanceToPoint(Point(1, 2)));
858 EXPECT_EQ(0, i
.ManhattanDistanceToPoint(Point(4, 6)));
859 EXPECT_EQ(0, i
.ManhattanDistanceToPoint(Point(2, 4)));
860 EXPECT_EQ(3, i
.ManhattanDistanceToPoint(Point(0, 0)));
861 EXPECT_EQ(2, i
.ManhattanDistanceToPoint(Point(2, 0)));
862 EXPECT_EQ(3, i
.ManhattanDistanceToPoint(Point(5, 0)));
863 EXPECT_EQ(1, i
.ManhattanDistanceToPoint(Point(5, 4)));
864 EXPECT_EQ(3, i
.ManhattanDistanceToPoint(Point(5, 8)));
865 EXPECT_EQ(2, i
.ManhattanDistanceToPoint(Point(3, 8)));
866 EXPECT_EQ(2, i
.ManhattanDistanceToPoint(Point(0, 7)));
867 EXPECT_EQ(1, i
.ManhattanDistanceToPoint(Point(0, 3)));
869 RectF
f(1.1f
, 2.1f
, 3.1f
, 4.1f
);
870 EXPECT_FLOAT_EQ(0.f
, f
.ManhattanDistanceToPoint(PointF(1.1f
, 2.1f
)));
871 EXPECT_FLOAT_EQ(0.f
, f
.ManhattanDistanceToPoint(PointF(4.2f
, 6.f
)));
872 EXPECT_FLOAT_EQ(0.f
, f
.ManhattanDistanceToPoint(PointF(2.f
, 4.f
)));
873 EXPECT_FLOAT_EQ(3.2f
, f
.ManhattanDistanceToPoint(PointF(0.f
, 0.f
)));
874 EXPECT_FLOAT_EQ(2.1f
, f
.ManhattanDistanceToPoint(PointF(2.f
, 0.f
)));
875 EXPECT_FLOAT_EQ(2.9f
, f
.ManhattanDistanceToPoint(PointF(5.f
, 0.f
)));
876 EXPECT_FLOAT_EQ(.8f
, f
.ManhattanDistanceToPoint(PointF(5.f
, 4.f
)));
877 EXPECT_FLOAT_EQ(2.6f
, f
.ManhattanDistanceToPoint(PointF(5.f
, 8.f
)));
878 EXPECT_FLOAT_EQ(1.8f
, f
.ManhattanDistanceToPoint(PointF(3.f
, 8.f
)));
879 EXPECT_FLOAT_EQ(1.9f
, f
.ManhattanDistanceToPoint(PointF(0.f
, 7.f
)));
880 EXPECT_FLOAT_EQ(1.1f
, f
.ManhattanDistanceToPoint(PointF(0.f
, 3.f
)));
883 TEST(RectTest
, ManhattanInternalDistance
) {
884 Rect
i(0, 0, 400, 400);
885 EXPECT_EQ(0, i
.ManhattanInternalDistance(gfx::Rect(-1, 0, 2, 1)));
886 EXPECT_EQ(1, i
.ManhattanInternalDistance(gfx::Rect(400, 0, 1, 400)));
887 EXPECT_EQ(2, i
.ManhattanInternalDistance(gfx::Rect(-100, -100, 100, 100)));
888 EXPECT_EQ(2, i
.ManhattanInternalDistance(gfx::Rect(-101, 100, 100, 100)));
889 EXPECT_EQ(4, i
.ManhattanInternalDistance(gfx::Rect(-101, -101, 100, 100)));
890 EXPECT_EQ(435, i
.ManhattanInternalDistance(gfx::Rect(630, 603, 100, 100)));
892 RectF
f(0.0f
, 0.0f
, 400.0f
, 400.0f
);
893 static const float kEpsilon
= std::numeric_limits
<float>::epsilon();
896 0.0f
, f
.ManhattanInternalDistance(gfx::RectF(-1.0f
, 0.0f
, 2.0f
, 1.0f
)));
899 f
.ManhattanInternalDistance(gfx::RectF(400.0f
, 0.0f
, 1.0f
, 400.0f
)));
900 EXPECT_FLOAT_EQ(2.0f
* kEpsilon
,
901 f
.ManhattanInternalDistance(
902 gfx::RectF(-100.0f
, -100.0f
, 100.0f
, 100.0f
)));
905 f
.ManhattanInternalDistance(gfx::RectF(-101.0f
, 100.0f
, 100.0f
, 100.0f
)));
906 EXPECT_FLOAT_EQ(2.0f
+ 2.0f
* kEpsilon
,
907 f
.ManhattanInternalDistance(
908 gfx::RectF(-101.0f
, -101.0f
, 100.0f
, 100.0f
)));
910 433.0f
+ 2.0f
* kEpsilon
,
911 f
.ManhattanInternalDistance(gfx::RectF(630.0f
, 603.0f
, 100.0f
, 100.0f
)));
914 0.0f
, f
.ManhattanInternalDistance(gfx::RectF(-1.0f
, 0.0f
, 1.1f
, 1.0f
)));
917 f
.ManhattanInternalDistance(gfx::RectF(-1.5f
, 0.0f
, 1.4f
, 1.0f
)));
920 f
.ManhattanInternalDistance(gfx::RectF(-1.5f
, 0.0f
, 1.5f
, 1.0f
)));