Roll src/third_party/WebKit eac3800:0237a66 (svn 202606:202607)
[chromium-blink-merge.git] / base / threading / worker_pool_posix_unittest.cc
blob8d2368f37f932360d2b35a35c295602f59aa335e
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/threading/worker_pool_posix.h"
7 #include <set>
9 #include "base/bind.h"
10 #include "base/callback.h"
11 #include "base/synchronization/condition_variable.h"
12 #include "base/synchronization/lock.h"
13 #include "base/synchronization/waitable_event.h"
14 #include "base/threading/platform_thread.h"
15 #include "base/time/time.h"
16 #include "testing/gtest/include/gtest/gtest.h"
18 namespace base {
20 // Peer class to provide passthrough access to PosixDynamicThreadPool internals.
21 class PosixDynamicThreadPool::PosixDynamicThreadPoolPeer {
22 public:
23 explicit PosixDynamicThreadPoolPeer(PosixDynamicThreadPool* pool)
24 : pool_(pool) {}
26 Lock* lock() { return &pool_->lock_; }
27 ConditionVariable* pending_tasks_available_cv() {
28 return &pool_->pending_tasks_available_cv_;
30 size_t num_pending_tasks() const { return pool_->pending_tasks_.size(); }
31 size_t num_idle_threads() const { return pool_->num_idle_threads_; }
32 ConditionVariable* num_threads_cv() { return pool_->num_threads_cv_.get(); }
33 void set_num_threads_cv(ConditionVariable* cv) {
34 pool_->num_threads_cv_.reset(cv);
36 const std::vector<PlatformThreadHandle>& threads_to_cleanup() const {
37 return pool_->threads_to_cleanup_;
39 const std::vector<PlatformThreadHandle>& worker_threads() const {
40 return pool_->worker_threads_;
43 private:
44 PosixDynamicThreadPool* pool_;
46 DISALLOW_COPY_AND_ASSIGN(PosixDynamicThreadPoolPeer);
49 namespace {
51 const int64 kDefaultIdleSecondsBeforeExit = 60 * 60;
53 // IncrementingTask's main purpose is to increment a counter. It also updates a
54 // set of unique thread ids, and signals a ConditionVariable on completion.
55 // Note that since it does not block, there is no way to control the number of
56 // threads used if more than one IncrementingTask is consecutively posted to the
57 // thread pool, since the first one might finish executing before the subsequent
58 // PostTask() calls get invoked.
59 void IncrementingTask(Lock* counter_lock,
60 int* counter,
61 Lock* unique_threads_lock,
62 std::set<PlatformThreadId>* unique_threads) {
64 AutoLock locked(*unique_threads_lock);
65 unique_threads->insert(PlatformThread::CurrentId());
67 AutoLock locked(*counter_lock);
68 (*counter)++;
71 // BlockingIncrementingTask is a simple wrapper around IncrementingTask that
72 // allows for waiting at the start of Run() for a WaitableEvent to be signalled.
73 struct BlockingIncrementingTaskArgs {
74 Lock* counter_lock;
75 int* counter;
76 Lock* unique_threads_lock;
77 std::set<PlatformThreadId>* unique_threads;
78 Lock* num_waiting_to_start_lock;
79 int* num_waiting_to_start;
80 ConditionVariable* num_waiting_to_start_cv;
81 WaitableEvent* start;
84 void BlockingIncrementingTask(const BlockingIncrementingTaskArgs& args) {
86 AutoLock num_waiting_to_start_locked(*args.num_waiting_to_start_lock);
87 (*args.num_waiting_to_start)++;
89 args.num_waiting_to_start_cv->Signal();
90 args.start->Wait();
91 IncrementingTask(args.counter_lock, args.counter, args.unique_threads_lock,
92 args.unique_threads);
95 class PosixDynamicThreadPoolTest : public testing::Test {
96 protected:
97 PosixDynamicThreadPoolTest()
98 : counter_(0),
99 num_waiting_to_start_(0),
100 num_waiting_to_start_cv_(&num_waiting_to_start_lock_),
101 start_(true, false) {}
103 void TearDown() override {
104 // Wake up the idle threads so they can terminate.
105 if (pool_.get())
106 pool_->Terminate(false);
109 void Initialize(TimeDelta idle_time_before_exit) {
110 pool_ = new PosixDynamicThreadPool("dynamic_pool", idle_time_before_exit);
111 peer_.reset(
112 new PosixDynamicThreadPool::PosixDynamicThreadPoolPeer(pool_.get()));
113 peer_->set_num_threads_cv(new ConditionVariable(peer_->lock()));
116 void WaitForTasksToStart(int num_tasks) {
117 AutoLock num_waiting_to_start_locked(num_waiting_to_start_lock_);
118 while (num_waiting_to_start_ < num_tasks) {
119 num_waiting_to_start_cv_.Wait();
123 void WaitForIdleThreads(size_t num_idle_threads) {
124 AutoLock pool_locked(*peer_->lock());
125 while (peer_->num_idle_threads() != num_idle_threads) {
126 peer_->num_threads_cv()->Wait();
130 void WaitForLivingThreads(int num_living_threads) {
131 AutoLock pool_locked(*peer_->lock());
132 while (static_cast<int>(peer_->worker_threads().size()) !=
133 num_living_threads) {
134 peer_->num_threads_cv()->Wait();
138 Closure CreateNewIncrementingTaskCallback() {
139 return Bind(&IncrementingTask, &counter_lock_, &counter_,
140 &unique_threads_lock_, &unique_threads_);
143 Closure CreateNewBlockingIncrementingTaskCallback() {
144 BlockingIncrementingTaskArgs args = {
145 &counter_lock_, &counter_, &unique_threads_lock_, &unique_threads_,
146 &num_waiting_to_start_lock_, &num_waiting_to_start_,
147 &num_waiting_to_start_cv_, &start_
149 return Bind(&BlockingIncrementingTask, args);
152 scoped_refptr<PosixDynamicThreadPool> pool_;
153 scoped_ptr<PosixDynamicThreadPool::PosixDynamicThreadPoolPeer> peer_;
154 Lock counter_lock_;
155 int counter_;
156 Lock unique_threads_lock_;
157 std::set<PlatformThreadId> unique_threads_;
158 Lock num_waiting_to_start_lock_;
159 int num_waiting_to_start_;
160 ConditionVariable num_waiting_to_start_cv_;
161 WaitableEvent start_;
164 } // namespace
166 TEST_F(PosixDynamicThreadPoolTest, Basic) {
167 Initialize(TimeDelta::FromSeconds(kDefaultIdleSecondsBeforeExit));
169 EXPECT_EQ(0U, peer_->num_idle_threads());
170 EXPECT_EQ(0U, unique_threads_.size());
171 EXPECT_EQ(0U, peer_->num_pending_tasks());
173 // Add one task and wait for it to be completed.
174 pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback());
176 WaitForIdleThreads(1);
178 EXPECT_EQ(1U, unique_threads_.size()) <<
179 "There should be only one thread allocated for one task.";
180 EXPECT_EQ(1, counter_);
183 TEST_F(PosixDynamicThreadPoolTest, ReuseIdle) {
184 Initialize(TimeDelta::FromSeconds(kDefaultIdleSecondsBeforeExit));
186 // Add one task and wait for it to be completed.
187 pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback());
189 WaitForIdleThreads(1);
191 // Add another 2 tasks. One should reuse the existing worker thread.
192 pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
193 pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
195 WaitForTasksToStart(2);
196 start_.Signal();
197 WaitForIdleThreads(2);
199 EXPECT_EQ(2U, unique_threads_.size());
200 EXPECT_EQ(2U, peer_->num_idle_threads());
201 EXPECT_EQ(3, counter_);
204 TEST_F(PosixDynamicThreadPoolTest, TwoActiveTasks) {
205 Initialize(TimeDelta::FromSeconds(kDefaultIdleSecondsBeforeExit));
207 // Add two blocking tasks.
208 pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
209 pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
211 EXPECT_EQ(0, counter_) << "Blocking tasks should not have started yet.";
213 WaitForTasksToStart(2);
214 start_.Signal();
215 WaitForIdleThreads(2);
217 EXPECT_EQ(2U, unique_threads_.size());
218 EXPECT_EQ(2U, peer_->num_idle_threads()) << "Existing threads are now idle.";
219 EXPECT_EQ(2, counter_);
222 TEST_F(PosixDynamicThreadPoolTest, Complex) {
223 Initialize(TimeDelta::FromSeconds(kDefaultIdleSecondsBeforeExit));
225 // Add one non blocking tasks and wait for it to finish.
226 pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback());
228 WaitForIdleThreads(1);
230 // Add two blocking tasks, start them simultaneously, and wait for them to
231 // finish.
232 pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
233 pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
235 WaitForTasksToStart(2);
236 start_.Signal();
237 WaitForIdleThreads(2);
239 EXPECT_EQ(3, counter_);
240 EXPECT_EQ(2U, peer_->num_idle_threads());
241 EXPECT_EQ(2U, unique_threads_.size());
243 // Wake up all idle threads so they can exit.
245 AutoLock locked(*peer_->lock());
246 while (peer_->worker_threads().size() > 0) {
247 peer_->pending_tasks_available_cv()->Signal();
248 peer_->num_threads_cv()->Wait();
252 // Add another non blocking task. There are no threads to reuse.
253 pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback());
254 WaitForIdleThreads(1);
256 // The POSIX implementation of PlatformThread::CurrentId() uses pthread_self()
257 // which is not guaranteed to be unique after a thread joins. The OS X
258 // implemntation of pthread_self() returns the address of the pthread_t, which
259 // is merely a malloc()ed pointer stored in the first TLS slot. When a thread
260 // joins and that structure is freed, the block of memory can be put on the
261 // OS free list, meaning the same address could be reused in a subsequent
262 // allocation. This in fact happens when allocating in a loop as this test
263 // does.
265 // Because there are two concurrent threads, there's at least the guarantee
266 // of having two unique thread IDs in the set. But after those two threads are
267 // joined, the next-created thread can get a re-used ID if the allocation of
268 // the pthread_t structure is taken from the free list. Therefore, there can
269 // be either 2 or 3 unique thread IDs in the set at this stage in the test.
270 EXPECT_TRUE(unique_threads_.size() >= 2 && unique_threads_.size() <= 3)
271 << "unique_threads_.size() = " << unique_threads_.size();
272 EXPECT_EQ(1U, peer_->num_idle_threads());
273 EXPECT_EQ(4, counter_);
276 TEST_F(PosixDynamicThreadPoolTest, NoNewThreadForCleanup) {
277 // Let worker threads quit quickly after they are idle.
278 Initialize(TimeDelta::FromMilliseconds(1));
280 for (size_t i = 0; i < 2; ++i) {
281 // This will create a worker thread.
282 pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
284 WaitForTasksToStart(1);
286 PlatformThreadHandle worker;
288 AutoLock locked(*peer_->lock());
289 ASSERT_EQ(1u, peer_->worker_threads().size());
290 worker = peer_->worker_threads()[0];
293 start_.Signal();
295 // Wait for the worker thread to quit.
296 WaitForLivingThreads(0);
299 AutoLock locked(*peer_->lock());
300 // The thread that just quit is recorded for cleanup. But we don't create
301 // a worker thread just for doing that.
302 ASSERT_EQ(1u, peer_->threads_to_cleanup().size());
303 EXPECT_TRUE(worker.is_equal(peer_->threads_to_cleanup()[0]));
304 EXPECT_TRUE(peer_->worker_threads().empty());
308 pool_->Terminate(true);
311 AutoLock locked(*peer_->lock());
312 EXPECT_TRUE(peer_->threads_to_cleanup().empty());
313 EXPECT_TRUE(peer_->worker_threads().empty());
317 TEST_F(PosixDynamicThreadPoolTest, BlockingTerminate) {
318 // Let worker threads quit quickly after they are idle.
319 Initialize(TimeDelta::FromMilliseconds(3));
321 for (size_t i = 0; i < 5; ++i) {
322 PlatformThread::Sleep(TimeDelta::FromMilliseconds(i));
323 for (size_t j = 0; j < 50; ++j)
324 pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback());
327 pool_->Terminate(true);
330 AutoLock locked(*peer_->lock());
331 EXPECT_TRUE(peer_->threads_to_cleanup().empty());
332 EXPECT_TRUE(peer_->worker_threads().empty());
335 int counter = counter_;
336 EXPECT_GE(5 * 50, counter);
337 EXPECT_GE(5 * 50u, unique_threads_.size());
339 // Make sure that no threads are still running and trying to modify
340 // |counter_|.
341 PlatformThread::Sleep(TimeDelta::FromMilliseconds(10));
342 EXPECT_EQ(counter, counter_);
345 } // namespace base