Roll src/third_party/WebKit eac3800:0237a66 (svn 202606:202607)
[chromium-blink-merge.git] / chrome / browser / thumbnails / content_analysis.cc
blob96c93a030a0d5be484d9c2a3a3902224a9acd03e
1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "chrome/browser/thumbnails/content_analysis.h"
7 #include <algorithm>
8 #include <cmath>
9 #include <deque>
10 #include <functional>
11 #include <limits>
12 #include <numeric>
13 #include <vector>
15 #include "base/logging.h"
16 #include "skia/ext/convolver.h"
17 #include "skia/ext/recursive_gaussian_convolution.h"
18 #include "third_party/skia/include/core/SkBitmap.h"
19 #include "third_party/skia/include/core/SkSize.h"
20 #include "ui/gfx/color_analysis.h"
22 namespace {
24 const float kSigmaThresholdForRecursive = 1.5f;
25 const float kAspectRatioToleranceFactor = 1.02f;
27 template<class InputIterator, class OutputIterator, class Compare>
28 void SlidingWindowMinMax(InputIterator first,
29 InputIterator last,
30 OutputIterator output,
31 int window_size,
32 Compare cmp) {
33 typedef std::deque<
34 std::pair<typename std::iterator_traits<InputIterator>::value_type, int> >
35 deque_type;
36 deque_type slider;
37 int front_tail_length = window_size / 2;
38 int i = 0;
39 DCHECK_LT(front_tail_length, last - first);
40 // This min-max filter functions the way image filters do. The min/max we
41 // compute is placed in the center of the window. Thus, first we need to
42 // 'pre-load' the window with the slider with right-tail of the filter.
43 for (; first < last && i < front_tail_length; ++i, ++first)
44 slider.push_back(std::make_pair(*first, i));
46 for (; first < last; ++i, ++first, ++output) {
47 while (!slider.empty() && !cmp(slider.back().first, *first))
48 slider.pop_back();
49 slider.push_back(std::make_pair(*first, i));
51 while (slider.front().second <= i - window_size)
52 slider.pop_front();
53 *output = slider.front().first;
56 // Now at the tail-end we will simply need to use whatever value is left of
57 // the filter to compute the remaining front_tail_length taps in the output.
59 // If input shorter than window, remainder length needs to be adjusted.
60 front_tail_length = std::min(front_tail_length, i);
61 for (; front_tail_length >= 0; --front_tail_length, ++i) {
62 while (slider.front().second <= i - window_size)
63 slider.pop_front();
64 *output = slider.front().first;
68 size_t FindOtsuThresholdingIndex(const std::vector<int>& histogram) {
69 // Otsu's method seeks to maximize variance between two classes of pixels
70 // correspondng to valleys and peaks of the profile.
71 double w1 = histogram[0]; // Total weight of the first class.
72 double t1 = 0.5 * w1;
73 double w2 = 0.0;
74 double t2 = 0.0;
75 for (size_t i = 1; i < histogram.size(); ++i) {
76 w2 += histogram[i];
77 t2 += (0.5 + i) * histogram[i];
80 size_t max_index = 0;
81 double m1 = t1 / w1;
82 double m2 = t2 / w2;
83 double max_variance_score = w1 * w2 * (m1 - m2) * (m1 - m2);
84 // Iterate through all possible ways of splitting the histogram.
85 for (size_t i = 1; i < histogram.size() - 1; i++) {
86 double bin_volume = (0.5 + i) * histogram[i];
87 w1 += histogram[i];
88 w2 -= histogram[i];
89 t2 -= bin_volume;
90 t1 += bin_volume;
91 m1 = t1 / w1;
92 m2 = t2 / w2;
93 double variance_score = w1 * w2 * (m1 - m2) * (m1 - m2);
94 if (variance_score >= max_variance_score) {
95 max_variance_score = variance_score;
96 max_index = i;
100 return max_index;
103 bool ComputeScaledHistogram(const std::vector<float>& source,
104 std::vector<int>* histogram,
105 std::pair<float, float>* minmax) {
106 DCHECK(histogram);
107 DCHECK(minmax);
108 histogram->clear();
109 histogram->resize(256);
110 float value_min = std::numeric_limits<float>::max();
111 float value_max = 0.0f;
113 std::vector<float>::const_iterator it;
114 for (it = source.begin(); it < source.end(); ++it) {
115 value_min = std::min(value_min, *it);
116 value_max = std::max(value_max, *it);
119 *minmax = std::make_pair(value_min, value_max);
121 if (value_max - value_min <= std::numeric_limits<float>::epsilon() * 100.0f) {
122 // Scaling won't work and there is nothing really to segment anyway.
123 return false;
126 float value_span = value_max - value_min;
127 float scale = 255.0f / value_span;
128 for (it = source.begin(); it < source.end(); ++it) {
129 float scaled_value = (*it - value_min) * scale;
130 (*histogram)[static_cast<int>(scaled_value)] += 1;
132 return true;
135 void ConstrainedProfileThresholding(const std::vector<float>& profile,
136 const std::vector<int>& histogram,
137 int current_clip_index,
138 float current_threshold,
139 const std::pair<float, float>& range,
140 int size_for_threshold,
141 int target_size,
142 std::vector<bool>* result) {
143 DCHECK(!profile.empty());
144 DCHECK_EQ(histogram.size(), 256U);
145 DCHECK(result);
147 // A subroutine performing thresholding on the |profile|.
148 if (size_for_threshold != target_size) {
149 // Find a cut-off point (on the histogram) closest to the desired size.
150 int candidate_size = profile.size();
151 int candidate_clip_index = 0;
152 for (std::vector<int>::const_iterator it = histogram.begin();
153 it != histogram.end(); ++it, ++candidate_clip_index) {
154 if (std::abs(candidate_size - target_size) <
155 std::abs(candidate_size - *it - target_size)) {
156 break;
158 candidate_size -= *it;
161 if (std::abs(candidate_size - target_size) <
162 std::abs(candidate_size -size_for_threshold)) {
163 current_clip_index = candidate_clip_index;
164 current_threshold = (range.second - range.first) *
165 current_clip_index / 255.0f + range.first;
166 // Recount, rather than assume. One-offs due to rounding can be very
167 // harmful when eroding / dilating the result.
168 size_for_threshold = std::count_if(
169 profile.begin(), profile.end(),
170 std::bind2nd(std::greater<float>(), current_threshold));
174 result->resize(profile.size());
175 for (size_t i = 0; i < profile.size(); ++i)
176 (*result)[i] = profile[i] > current_threshold;
178 while (size_for_threshold > target_size) {
179 // If the current size is larger than target size, erode exactly as needed.
180 std::vector<bool>::iterator mod_it = result->begin();
181 std::vector<bool>::const_iterator lead_it = result->begin();
182 bool prev_value = true;
183 for (++lead_it;
184 lead_it < result->end() && size_for_threshold > target_size;
185 ++lead_it, ++mod_it) {
186 bool value = *mod_it;
187 // If any neighbour is false, switch the element off.
188 if (!prev_value || !*lead_it) {
189 *mod_it = false;
190 --size_for_threshold;
192 prev_value = value;
195 if (lead_it == result->end() && !prev_value) {
196 *mod_it = false;
197 --size_for_threshold;
201 while (size_for_threshold < target_size) {
202 std::vector<bool>::iterator mod_it = result->begin();
203 std::vector<bool>::const_iterator lead_it = result->begin();
204 bool prev_value = false;
205 for (++lead_it;
206 lead_it < result->end() && size_for_threshold < target_size;
207 ++lead_it, ++mod_it) {
208 bool value = *mod_it;
209 // If any neighbour is false, switch the element off.
210 if (!prev_value || !*lead_it) {
211 *mod_it = true;
212 ++size_for_threshold;
214 prev_value = value;
217 if (lead_it == result->end() && !prev_value) {
218 *mod_it = true;
219 ++size_for_threshold;
224 } // namespace
226 namespace thumbnailing_utils {
228 void ApplyGaussianGradientMagnitudeFilter(SkBitmap* input_bitmap,
229 float kernel_sigma) {
230 // The purpose of this function is to highlight salient
231 // (attention-attracting?) features of the image for use in image
232 // retargeting.
233 SkAutoLockPixels source_lock(*input_bitmap);
234 DCHECK(input_bitmap);
235 DCHECK(input_bitmap->getPixels());
236 DCHECK_EQ(kAlpha_8_SkColorType, input_bitmap->colorType());
238 // To perform computations we will need one intermediate buffer. It can
239 // very well be just another bitmap.
240 const SkISize image_size = SkISize::Make(input_bitmap->width(),
241 input_bitmap->height());
242 SkBitmap intermediate;
243 intermediate.allocPixels(input_bitmap->info().makeWH(image_size.width(),
244 image_size.height()));
246 SkBitmap intermediate2;
247 intermediate2.allocPixels(input_bitmap->info().makeWH(image_size.width(),
248 image_size.height()));
250 if (kernel_sigma <= kSigmaThresholdForRecursive) {
251 // For small kernels classic implementation is faster.
252 skia::ConvolutionFilter1D smoothing_filter;
253 skia::SetUpGaussianConvolutionKernel(
254 &smoothing_filter, kernel_sigma, false);
255 skia::SingleChannelConvolveX1D(
256 input_bitmap->getAddr8(0, 0),
257 static_cast<int>(input_bitmap->rowBytes()),
258 0, input_bitmap->bytesPerPixel(),
259 smoothing_filter,
260 image_size,
261 intermediate.getAddr8(0, 0),
262 static_cast<int>(intermediate.rowBytes()),
263 0, intermediate.bytesPerPixel(), false);
264 skia::SingleChannelConvolveY1D(
265 intermediate.getAddr8(0, 0),
266 static_cast<int>(intermediate.rowBytes()),
267 0, intermediate.bytesPerPixel(),
268 smoothing_filter,
269 image_size,
270 input_bitmap->getAddr8(0, 0),
271 static_cast<int>(input_bitmap->rowBytes()),
272 0, input_bitmap->bytesPerPixel(), false);
274 skia::ConvolutionFilter1D gradient_filter;
275 skia::SetUpGaussianConvolutionKernel(&gradient_filter, kernel_sigma, true);
276 skia::SingleChannelConvolveX1D(
277 input_bitmap->getAddr8(0, 0),
278 static_cast<int>(input_bitmap->rowBytes()),
279 0, input_bitmap->bytesPerPixel(),
280 gradient_filter,
281 image_size,
282 intermediate.getAddr8(0, 0),
283 static_cast<int>(intermediate.rowBytes()),
284 0, intermediate.bytesPerPixel(), true);
285 skia::SingleChannelConvolveY1D(
286 input_bitmap->getAddr8(0, 0),
287 static_cast<int>(input_bitmap->rowBytes()),
288 0, input_bitmap->bytesPerPixel(),
289 gradient_filter,
290 image_size,
291 intermediate2.getAddr8(0, 0),
292 static_cast<int>(intermediate2.rowBytes()),
293 0, intermediate2.bytesPerPixel(), true);
294 } else {
295 // For larger sigma values use the recursive filter.
296 skia::RecursiveFilter smoothing_filter(kernel_sigma,
297 skia::RecursiveFilter::FUNCTION);
298 skia::SingleChannelRecursiveGaussianX(
299 input_bitmap->getAddr8(0, 0),
300 static_cast<int>(input_bitmap->rowBytes()),
301 0, input_bitmap->bytesPerPixel(),
302 smoothing_filter,
303 image_size,
304 intermediate.getAddr8(0, 0),
305 static_cast<int>(intermediate.rowBytes()),
306 0, intermediate.bytesPerPixel(), false);
307 unsigned char smoothed_max = skia::SingleChannelRecursiveGaussianY(
308 intermediate.getAddr8(0, 0),
309 static_cast<int>(intermediate.rowBytes()),
310 0, intermediate.bytesPerPixel(),
311 smoothing_filter,
312 image_size,
313 input_bitmap->getAddr8(0, 0),
314 static_cast<int>(input_bitmap->rowBytes()),
315 0, input_bitmap->bytesPerPixel(), false);
316 if (smoothed_max < 127) {
317 int bit_shift = 8 - static_cast<int>(
318 std::log10(static_cast<float>(smoothed_max)) / std::log10(2.0f));
319 for (int r = 0; r < image_size.height(); ++r) {
320 uint8* row = input_bitmap->getAddr8(0, r);
321 for (int c = 0; c < image_size.width(); ++c, ++row) {
322 *row <<= bit_shift;
327 skia::RecursiveFilter gradient_filter(
328 kernel_sigma, skia::RecursiveFilter::FIRST_DERIVATIVE);
329 skia::SingleChannelRecursiveGaussianX(
330 input_bitmap->getAddr8(0, 0),
331 static_cast<int>(input_bitmap->rowBytes()),
332 0, input_bitmap->bytesPerPixel(),
333 gradient_filter,
334 image_size,
335 intermediate.getAddr8(0, 0),
336 static_cast<int>(intermediate.rowBytes()),
337 0, intermediate.bytesPerPixel(), true);
338 skia::SingleChannelRecursiveGaussianY(
339 input_bitmap->getAddr8(0, 0),
340 static_cast<int>(input_bitmap->rowBytes()),
341 0, input_bitmap->bytesPerPixel(),
342 gradient_filter,
343 image_size,
344 intermediate2.getAddr8(0, 0),
345 static_cast<int>(intermediate2.rowBytes()),
346 0, intermediate2.bytesPerPixel(), true);
349 unsigned grad_max = 0;
350 for (int r = 0; r < image_size.height(); ++r) {
351 const uint8* grad_x_row = intermediate.getAddr8(0, r);
352 const uint8* grad_y_row = intermediate2.getAddr8(0, r);
353 for (int c = 0; c < image_size.width(); ++c) {
354 unsigned grad_x = grad_x_row[c];
355 unsigned grad_y = grad_y_row[c];
356 grad_max = std::max(grad_max, grad_x * grad_x + grad_y * grad_y);
360 int bit_shift = 0;
361 if (grad_max > 255)
362 bit_shift = static_cast<int>(
363 std::log10(static_cast<float>(grad_max)) / std::log10(2.0f)) - 7;
364 for (int r = 0; r < image_size.height(); ++r) {
365 const uint8* grad_x_row = intermediate.getAddr8(0, r);
366 const uint8* grad_y_row = intermediate2.getAddr8(0, r);
367 uint8* target_row = input_bitmap->getAddr8(0, r);
368 for (int c = 0; c < image_size.width(); ++c) {
369 unsigned grad_x = grad_x_row[c];
370 unsigned grad_y = grad_y_row[c];
371 target_row[c] = (grad_x * grad_x + grad_y * grad_y) >> bit_shift;
376 void ExtractImageProfileInformation(const SkBitmap& input_bitmap,
377 const gfx::Rect& area,
378 const gfx::Size& target_size,
379 bool apply_log,
380 std::vector<float>* rows,
381 std::vector<float>* columns) {
382 SkAutoLockPixels source_lock(input_bitmap);
383 DCHECK(rows);
384 DCHECK(columns);
385 DCHECK(input_bitmap.getPixels());
386 DCHECK_EQ(kAlpha_8_SkColorType, input_bitmap.colorType());
387 DCHECK_GE(area.x(), 0);
388 DCHECK_GE(area.y(), 0);
389 DCHECK_LE(area.right(), input_bitmap.width());
390 DCHECK_LE(area.bottom(), input_bitmap.height());
392 // Make sure rows and columns are allocated and initialized to 0.
393 rows->clear();
394 columns->clear();
395 rows->resize(area.height(), 0);
396 columns->resize(area.width(), 0);
398 for (int r = 0; r < area.height(); ++r) {
399 // Points to the first byte of the row in the rectangle.
400 const uint8* image_row = input_bitmap.getAddr8(area.x(), r + area.y());
401 unsigned row_sum = 0;
402 for (int c = 0; c < area.width(); ++c, ++image_row) {
403 row_sum += *image_row;
404 (*columns)[c] += *image_row;
406 (*rows)[r] = row_sum;
409 if (apply_log) {
410 // Generally for processing we will need to take logarithm of this data.
411 // The option not to apply it is left principally as a test seam.
412 std::vector<float>::iterator it;
413 for (it = columns->begin(); it < columns->end(); ++it)
414 *it = std::log(1.0f + *it);
416 for (it = rows->begin(); it < rows->end(); ++it)
417 *it = std::log(1.0f + *it);
420 if (!target_size.IsEmpty()) {
421 // If the target size is given, profiles should be further processed through
422 // morphological closing. The idea is to close valleys smaller than what
423 // can be seen after scaling down to avoid deforming noticable features
424 // when profiles are used.
425 // Morphological closing is defined as dilation followed by errosion. In
426 // normal-speak: sliding-window maximum followed by minimum.
427 int column_window_size = 1 + 2 *
428 static_cast<int>(0.5f * area.width() / target_size.width() + 0.5f);
429 int row_window_size = 1 + 2 *
430 static_cast<int>(0.5f * area.height() / target_size.height() + 0.5f);
432 // Dilate and erode each profile with the given window size.
433 if (column_window_size >= 3) {
434 SlidingWindowMinMax(columns->begin(),
435 columns->end(),
436 columns->begin(),
437 column_window_size,
438 std::greater<float>());
439 SlidingWindowMinMax(columns->begin(),
440 columns->end(),
441 columns->begin(),
442 column_window_size,
443 std::less<float>());
446 if (row_window_size >= 3) {
447 SlidingWindowMinMax(rows->begin(),
448 rows->end(),
449 rows->begin(),
450 row_window_size,
451 std::greater<float>());
452 SlidingWindowMinMax(rows->begin(),
453 rows->end(),
454 rows->begin(),
455 row_window_size,
456 std::less<float>());
461 float AutoSegmentPeaks(const std::vector<float>& input) {
462 // This is a thresholding operation based on Otsu's method.
463 std::vector<int> histogram;
464 std::pair<float, float> minmax;
465 if (!ComputeScaledHistogram(input, &histogram, &minmax))
466 return minmax.first;
468 // max_index refers to the bin *after* which we need to split. The sought
469 // threshold is the centre of this bin, scaled back to the original range.
470 size_t max_index = FindOtsuThresholdingIndex(histogram);
471 return (minmax.second - minmax.first) * (max_index + 0.5f) / 255.0f +
472 minmax.first;
475 gfx::Size AdjustClippingSizeToAspectRatio(const gfx::Size& target_size,
476 const gfx::Size& image_size,
477 const gfx::Size& computed_size) {
478 DCHECK_GT(target_size.width(), 0);
479 DCHECK_GT(target_size.height(), 0);
480 // If the computed thumbnail would be too wide or to tall, we shall attempt
481 // to fix it. Generally the idea is to re-add content to the part which has
482 // been more aggressively shrunk unless there is nothing to add there or if
483 // adding there won't fix anything. Should that be the case, we will
484 // (reluctantly) take away more from the other dimension.
485 float desired_aspect =
486 static_cast<float>(target_size.width()) / target_size.height();
487 int computed_width = std::max(computed_size.width(), target_size.width());
488 int computed_height = std::max(computed_size.height(), target_size.height());
489 float computed_aspect = static_cast<float>(computed_width) / computed_height;
490 float aspect_change_delta = std::abs(computed_aspect - desired_aspect);
491 float prev_aspect_change_delta = 1000.0f;
492 const float kAspectChangeEps = 0.01f;
493 const float kLargeEffect = 2.0f;
495 while ((prev_aspect_change_delta - aspect_change_delta > kAspectChangeEps) &&
496 (computed_aspect / desired_aspect > kAspectRatioToleranceFactor ||
497 desired_aspect / computed_aspect > kAspectRatioToleranceFactor)) {
498 int new_computed_width = computed_width;
499 int new_computed_height = computed_height;
500 float row_dimension_shrink =
501 static_cast<float>(image_size.height()) / computed_height;
502 float column_dimension_shrink =
503 static_cast<float>(image_size.width()) / computed_width;
505 if (computed_aspect / desired_aspect > kAspectRatioToleranceFactor) {
506 // Too wide.
507 if (row_dimension_shrink > column_dimension_shrink) {
508 // Bring the computed_height to the least of:
509 // (1) image height (2) the number of lines that would
510 // make up the desired aspect or (3) number of lines we would get
511 // at the same 'aggressivity' level as width or.
512 new_computed_height = std::min(
513 static_cast<int>(image_size.height()),
514 static_cast<int>(computed_width / desired_aspect + 0.5f));
515 new_computed_height = std::min(
516 new_computed_height,
517 static_cast<int>(
518 image_size.height() / column_dimension_shrink + 0.5f));
519 } else if (row_dimension_shrink >= kLargeEffect ||
520 new_computed_width <= target_size.width()) {
521 // Even though rows were resized less, we will generally rather add than
522 // remove (or there is nothing to remove in x already).
523 new_computed_height = std::min(
524 static_cast<int>(image_size.height()),
525 static_cast<int>(computed_width / desired_aspect + 0.5f));
526 } else {
527 // Rows were already shrunk less aggressively. This means there is
528 // simply no room left too expand. Cut columns to get the desired
529 // aspect ratio.
530 new_computed_width = desired_aspect * computed_height + 0.5f;
532 } else {
533 // Too tall.
534 if (column_dimension_shrink > row_dimension_shrink) {
535 // Columns were shrunk more aggressively. Try to relax the same way as
536 // above.
537 new_computed_width = std::min(
538 static_cast<int>(image_size.width()),
539 static_cast<int>(desired_aspect * computed_height + 0.5f));
540 new_computed_width = std::min(
541 new_computed_width,
542 static_cast<int>(
543 image_size.width() / row_dimension_shrink + 0.5f));
544 } else if (column_dimension_shrink >= kLargeEffect ||
545 new_computed_height <= target_size.height()) {
546 new_computed_width = std::min(
547 static_cast<int>(image_size.width()),
548 static_cast<int>(desired_aspect * computed_height + 0.5f));
549 } else {
550 new_computed_height = computed_width / desired_aspect + 0.5f;
554 new_computed_width = std::max(new_computed_width, target_size.width());
555 new_computed_height = std::max(new_computed_height, target_size.height());
557 // Update loop control variables.
558 float new_computed_aspect =
559 static_cast<float>(new_computed_width) / new_computed_height;
561 if (std::abs(new_computed_aspect - desired_aspect) >
562 std::abs(computed_aspect - desired_aspect)) {
563 // Do not take inferior results.
564 break;
567 computed_width = new_computed_width;
568 computed_height = new_computed_height;
569 computed_aspect = new_computed_aspect;
570 prev_aspect_change_delta = aspect_change_delta;
571 aspect_change_delta = std::abs(new_computed_aspect - desired_aspect);
574 return gfx::Size(computed_width, computed_height);
577 void ConstrainedProfileSegmentation(const std::vector<float>& row_profile,
578 const std::vector<float>& column_profile,
579 const gfx::Size& target_size,
580 std::vector<bool>* included_rows,
581 std::vector<bool>* included_columns) {
582 DCHECK(included_rows);
583 DCHECK(included_columns);
585 std::vector<int> histogram_rows;
586 std::pair<float, float> minmax_rows;
587 bool rows_well_behaved = ComputeScaledHistogram(
588 row_profile, &histogram_rows, &minmax_rows);
590 float row_threshold = minmax_rows.first;
591 size_t clip_index_rows = 0;
593 if (rows_well_behaved) {
594 clip_index_rows = FindOtsuThresholdingIndex(histogram_rows);
595 row_threshold = (minmax_rows.second - minmax_rows.first) *
596 (clip_index_rows + 0.5f) / 255.0f + minmax_rows.first;
599 std::vector<int> histogram_columns;
600 std::pair<float, float> minmax_columns;
601 bool columns_well_behaved = ComputeScaledHistogram(column_profile,
602 &histogram_columns,
603 &minmax_columns);
604 float column_threshold = minmax_columns.first;
605 size_t clip_index_columns = 0;
607 if (columns_well_behaved) {
608 clip_index_columns = FindOtsuThresholdingIndex(histogram_columns);
609 column_threshold = (minmax_columns.second - minmax_columns.first) *
610 (clip_index_columns + 0.5f) / 255.0f + minmax_columns.first;
613 int auto_segmented_width = count_if(
614 column_profile.begin(), column_profile.end(),
615 std::bind2nd(std::greater<float>(), column_threshold));
616 int auto_segmented_height = count_if(
617 row_profile.begin(), row_profile.end(),
618 std::bind2nd(std::greater<float>(), row_threshold));
620 gfx::Size computed_size = AdjustClippingSizeToAspectRatio(
621 target_size,
622 gfx::Size(column_profile.size(), row_profile.size()),
623 gfx::Size(auto_segmented_width, auto_segmented_height));
625 // Apply thresholding.
626 if (rows_well_behaved) {
627 ConstrainedProfileThresholding(row_profile,
628 histogram_rows,
629 clip_index_rows,
630 row_threshold,
631 minmax_rows,
632 auto_segmented_height,
633 computed_size.height(),
634 included_rows);
635 } else {
636 // This is essentially an error condition, invoked when no segmentation was
637 // possible. This will result in applying a very low threshold and likely
638 // in producing a thumbnail which should get rejected.
639 included_rows->resize(row_profile.size());
640 for (size_t i = 0; i < row_profile.size(); ++i)
641 (*included_rows)[i] = row_profile[i] > row_threshold;
644 if (columns_well_behaved) {
645 ConstrainedProfileThresholding(column_profile,
646 histogram_columns,
647 clip_index_columns,
648 column_threshold,
649 minmax_columns,
650 auto_segmented_width,
651 computed_size.width(),
652 included_columns);
653 } else {
654 included_columns->resize(column_profile.size());
655 for (size_t i = 0; i < column_profile.size(); ++i)
656 (*included_columns)[i] = column_profile[i] > column_threshold;
660 SkBitmap ComputeDecimatedImage(const SkBitmap& bitmap,
661 const std::vector<bool>& rows,
662 const std::vector<bool>& columns) {
663 SkAutoLockPixels source_lock(bitmap);
664 DCHECK(bitmap.getPixels());
665 DCHECK_GT(bitmap.bytesPerPixel(), 0);
666 DCHECK_EQ(bitmap.width(), static_cast<int>(columns.size()));
667 DCHECK_EQ(bitmap.height(), static_cast<int>(rows.size()));
669 unsigned target_row_count = std::count(rows.begin(), rows.end(), true);
670 unsigned target_column_count = std::count(
671 columns.begin(), columns.end(), true);
673 if (target_row_count == 0 || target_column_count == 0)
674 return SkBitmap(); // Not quite an error, so no DCHECK. Just return empty.
676 if (target_row_count == rows.size() && target_column_count == columns.size())
677 return SkBitmap(); // Equivalent of the situation above (empty target).
679 // Allocate the target image.
680 SkBitmap target;
681 target.allocPixels(bitmap.info().makeWH(target_column_count,
682 target_row_count));
684 int target_row = 0;
685 for (int r = 0; r < bitmap.height(); ++r) {
686 if (!rows[r])
687 continue; // We can just skip this one.
688 uint8* src_row =
689 static_cast<uint8*>(bitmap.getPixels()) + r * bitmap.rowBytes();
690 uint8* insertion_target = static_cast<uint8*>(target.getPixels()) +
691 target_row * target.rowBytes();
692 int left_copy_pixel = -1;
693 for (int c = 0; c < bitmap.width(); ++c) {
694 if (left_copy_pixel < 0 && columns[c]) {
695 left_copy_pixel = c; // Next time we will start copying from here.
696 } else if (left_copy_pixel >= 0 && !columns[c]) {
697 // This closes a fragment we want to copy. We do it now.
698 size_t bytes_to_copy = (c - left_copy_pixel) * bitmap.bytesPerPixel();
699 memcpy(insertion_target,
700 src_row + left_copy_pixel * bitmap.bytesPerPixel(),
701 bytes_to_copy);
702 left_copy_pixel = -1;
703 insertion_target += bytes_to_copy;
706 // We can still have the tail end to process here.
707 if (left_copy_pixel >= 0) {
708 size_t bytes_to_copy =
709 (bitmap.width() - left_copy_pixel) * bitmap.bytesPerPixel();
710 memcpy(insertion_target,
711 src_row + left_copy_pixel * bitmap.bytesPerPixel(),
712 bytes_to_copy);
714 target_row++;
717 return target;
720 SkBitmap CreateRetargetedThumbnailImage(
721 const SkBitmap& source_bitmap,
722 const gfx::Size& target_size,
723 float kernel_sigma) {
724 // First thing we need for this method is to color-reduce the source_bitmap.
725 SkBitmap reduced_color;
726 reduced_color.allocPixels(SkImageInfo::MakeA8(source_bitmap.width(),
727 source_bitmap.height()));
729 if (!color_utils::ComputePrincipalComponentImage(source_bitmap,
730 &reduced_color)) {
731 // CCIR601 luminance conversion vector.
732 gfx::Vector3dF transform(0.299f, 0.587f, 0.114f);
733 if (!color_utils::ApplyColorReduction(
734 source_bitmap, transform, true, &reduced_color)) {
735 DLOG(WARNING) << "Failed to compute luminance image from a screenshot. "
736 << "Cannot compute retargeted thumbnail.";
737 return SkBitmap();
739 DLOG(WARNING) << "Could not compute principal color image for a thumbnail. "
740 << "Using luminance instead.";
743 // Turn 'color-reduced' image into the 'energy' image.
744 ApplyGaussianGradientMagnitudeFilter(&reduced_color, kernel_sigma);
746 // Extract vertical and horizontal projection of image features.
747 std::vector<float> row_profile;
748 std::vector<float> column_profile;
749 ExtractImageProfileInformation(reduced_color,
750 gfx::Rect(reduced_color.width(),
751 reduced_color.height()),
752 target_size,
753 true,
754 &row_profile,
755 &column_profile);
757 std::vector<bool> included_rows, included_columns;
758 ConstrainedProfileSegmentation(row_profile,
759 column_profile,
760 target_size,
761 &included_rows,
762 &included_columns);
764 // Use the original image and computed inclusion vectors to create a resized
765 // image.
766 return ComputeDecimatedImage(source_bitmap, included_rows, included_columns);
769 } // thumbnailing_utils