Roll src/third_party/WebKit eac3800:0237a66 (svn 202606:202607)
[chromium-blink-merge.git] / net / quic / congestion_control / cubic.cc
bloba0ad51a7364cd3a849f4cfb0d20d263fd1587acf
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/congestion_control/cubic.h"
7 #include <stdint.h>
8 #include <algorithm>
9 #include <cmath>
11 #include "base/basictypes.h"
12 #include "base/logging.h"
13 #include "net/quic/quic_flags.h"
14 #include "net/quic/quic_protocol.h"
15 #include "net/quic/quic_time.h"
17 using std::max;
19 namespace net {
21 namespace {
23 // Constants based on TCP defaults.
24 // The following constants are in 2^10 fractions of a second instead of ms to
25 // allow a 10 shift right to divide.
26 const int kCubeScale = 40; // 1024*1024^3 (first 1024 is from 0.100^3)
27 // where 0.100 is 100 ms which is the scaling
28 // round trip time.
29 const int kCubeCongestionWindowScale = 410;
30 const uint64 kCubeFactor = (UINT64_C(1) << kCubeScale) /
31 kCubeCongestionWindowScale;
33 const uint32 kDefaultNumConnections = 2;
34 const float kBeta = 0.7f; // Default Cubic backoff factor.
35 // Additional backoff factor when loss occurs in the concave part of the Cubic
36 // curve. This additional backoff factor is expected to give up bandwidth to
37 // new concurrent flows and speed up convergence.
38 const float kBetaLastMax = 0.85f;
40 } // namespace
42 Cubic::Cubic(const QuicClock* clock)
43 : clock_(clock),
44 num_connections_(kDefaultNumConnections),
45 epoch_(QuicTime::Zero()),
46 last_update_time_(QuicTime::Zero()) {
47 Reset();
50 void Cubic::SetNumConnections(int num_connections) {
51 num_connections_ = num_connections;
54 float Cubic::Alpha() const {
55 // TCPFriendly alpha is described in Section 3.3 of the CUBIC paper. Note that
56 // beta here is a cwnd multiplier, and is equal to 1-beta from the paper.
57 // We derive the equivalent alpha for an N-connection emulation as:
58 const float beta = Beta();
59 return 3 * num_connections_ * num_connections_ * (1 - beta) / (1 + beta);
62 float Cubic::Beta() const {
63 // kNConnectionBeta is the backoff factor after loss for our N-connection
64 // emulation, which emulates the effective backoff of an ensemble of N
65 // TCP-Reno connections on a single loss event. The effective multiplier is
66 // computed as:
67 return (num_connections_ - 1 + kBeta) / num_connections_;
70 void Cubic::Reset() {
71 epoch_ = QuicTime::Zero(); // Reset time.
72 last_update_time_ = QuicTime::Zero(); // Reset time.
73 last_congestion_window_ = 0;
74 last_max_congestion_window_ = 0;
75 acked_packets_count_ = 0;
76 estimated_tcp_congestion_window_ = 0;
77 origin_point_congestion_window_ = 0;
78 time_to_origin_point_ = 0;
79 last_target_congestion_window_ = 0;
82 void Cubic::OnApplicationLimited() {
83 // When sender is not using the available congestion window, the window does
84 // not grow. But to be RTT-independent, Cubic assumes that the sender has been
85 // using the entire window during the time since the beginning of the current
86 // "epoch" (the end of the last loss recovery period). Since
87 // application-limited periods break this assumption, we reset the epoch when
88 // in such a period. This reset effectively freezes congestion window growth
89 // through application-limited periods and allows Cubic growth to continue
90 // when the entire window is being used.
91 epoch_ = QuicTime::Zero();
94 QuicPacketCount Cubic::CongestionWindowAfterPacketLoss(
95 QuicPacketCount current_congestion_window) {
96 if (current_congestion_window < last_max_congestion_window_) {
97 // We never reached the old max, so assume we are competing with another
98 // flow. Use our extra back off factor to allow the other flow to go up.
99 last_max_congestion_window_ =
100 static_cast<int>(kBetaLastMax * current_congestion_window);
101 } else {
102 last_max_congestion_window_ = current_congestion_window;
104 epoch_ = QuicTime::Zero(); // Reset time.
105 return static_cast<int>(current_congestion_window * Beta());
108 QuicPacketCount Cubic::CongestionWindowAfterAck(
109 QuicPacketCount current_congestion_window,
110 QuicTime::Delta delay_min) {
111 acked_packets_count_ += 1; // Packets acked.
112 QuicTime current_time = clock_->ApproximateNow();
114 // Cubic is "independent" of RTT, the update is limited by the time elapsed.
115 if (last_congestion_window_ == current_congestion_window &&
116 (current_time.Subtract(last_update_time_) <= MaxCubicTimeInterval())) {
117 return max(last_target_congestion_window_,
118 estimated_tcp_congestion_window_);
120 last_congestion_window_ = current_congestion_window;
121 last_update_time_ = current_time;
123 if (!epoch_.IsInitialized()) {
124 // First ACK after a loss event.
125 DVLOG(1) << "Start of epoch";
126 epoch_ = current_time; // Start of epoch.
127 acked_packets_count_ = 1; // Reset count.
128 // Reset estimated_tcp_congestion_window_ to be in sync with cubic.
129 estimated_tcp_congestion_window_ = current_congestion_window;
130 if (last_max_congestion_window_ <= current_congestion_window) {
131 time_to_origin_point_ = 0;
132 origin_point_congestion_window_ = current_congestion_window;
133 } else {
134 time_to_origin_point_ =
135 static_cast<uint32>(cbrt(kCubeFactor * (last_max_congestion_window_ -
136 current_congestion_window)));
137 origin_point_congestion_window_ = last_max_congestion_window_;
140 // Change the time unit from microseconds to 2^10 fractions per second. Take
141 // the round trip time in account. This is done to allow us to use shift as a
142 // divide operator.
143 int64 elapsed_time =
144 (current_time.Add(delay_min).Subtract(epoch_).ToMicroseconds() << 10) /
145 kNumMicrosPerSecond;
147 int64 offset = time_to_origin_point_ - elapsed_time;
148 QuicPacketCount delta_congestion_window = (kCubeCongestionWindowScale
149 * offset * offset * offset) >> kCubeScale;
151 QuicPacketCount target_congestion_window =
152 origin_point_congestion_window_ - delta_congestion_window;
154 DCHECK_LT(0u, estimated_tcp_congestion_window_);
155 // With dynamic beta/alpha based on number of active streams, it is possible
156 // for the required_ack_count to become much lower than acked_packets_count_
157 // suddenly, leading to more than one iteration through the following loop.
158 while (true) {
159 // Update estimated TCP congestion_window.
160 QuicPacketCount required_ack_count = static_cast<QuicPacketCount>(
161 estimated_tcp_congestion_window_ / Alpha());
162 if (acked_packets_count_ < required_ack_count) {
163 break;
165 acked_packets_count_ -= required_ack_count;
166 estimated_tcp_congestion_window_++;
169 // We have a new cubic congestion window.
170 last_target_congestion_window_ = target_congestion_window;
172 // Compute target congestion_window based on cubic target and estimated TCP
173 // congestion_window, use highest (fastest).
174 if (target_congestion_window < estimated_tcp_congestion_window_) {
175 target_congestion_window = estimated_tcp_congestion_window_;
178 DVLOG(1) << "Final target congestion_window: " << target_congestion_window;
179 return target_congestion_window;
182 } // namespace net