Roll src/third_party/WebKit eac3800:0237a66 (svn 202606:202607)
[chromium-blink-merge.git] / net / quic / quic_framer.cc
bloba04824a0684ab89a8bbeb94aa3e3990cc1f1bf6c
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/quic_framer.h"
7 #include <stdint.h>
9 #include "base/basictypes.h"
10 #include "base/compiler_specific.h"
11 #include "base/logging.h"
12 #include "base/stl_util.h"
13 #include "net/quic/crypto/crypto_framer.h"
14 #include "net/quic/crypto/crypto_handshake_message.h"
15 #include "net/quic/crypto/crypto_protocol.h"
16 #include "net/quic/crypto/quic_decrypter.h"
17 #include "net/quic/crypto/quic_encrypter.h"
18 #include "net/quic/quic_data_reader.h"
19 #include "net/quic/quic_data_writer.h"
20 #include "net/quic/quic_flags.h"
21 #include "net/quic/quic_socket_address_coder.h"
22 #include "net/quic/quic_utils.h"
24 using base::StringPiece;
25 using std::map;
26 using std::max;
27 using std::min;
28 using std::numeric_limits;
29 using std::string;
31 namespace net {
33 namespace {
35 // Mask to select the lowest 48 bits of a packet number.
36 const QuicPacketNumber k6ByteSequenceNumberMask = UINT64_C(0x0000FFFFFFFFFFFF);
37 const QuicPacketNumber k4ByteSequenceNumberMask = UINT64_C(0x00000000FFFFFFFF);
38 const QuicPacketNumber k2ByteSequenceNumberMask = UINT64_C(0x000000000000FFFF);
39 const QuicPacketNumber k1ByteSequenceNumberMask = UINT64_C(0x00000000000000FF);
41 const QuicConnectionId k1ByteConnectionIdMask = UINT64_C(0x00000000000000FF);
42 const QuicConnectionId k4ByteConnectionIdMask = UINT64_C(0x00000000FFFFFFFF);
44 // Number of bits the packet number length bits are shifted from the right
45 // edge of the public header.
46 const uint8 kPublicHeaderSequenceNumberShift = 4;
48 // New Frame Types, QUIC v. >= 10:
49 // There are two interpretations for the Frame Type byte in the QUIC protocol,
50 // resulting in two Frame Types: Special Frame Types and Regular Frame Types.
52 // Regular Frame Types use the Frame Type byte simply. Currently defined
53 // Regular Frame Types are:
54 // Padding : 0b 00000000 (0x00)
55 // ResetStream : 0b 00000001 (0x01)
56 // ConnectionClose : 0b 00000010 (0x02)
57 // GoAway : 0b 00000011 (0x03)
58 // WindowUpdate : 0b 00000100 (0x04)
59 // Blocked : 0b 00000101 (0x05)
61 // Special Frame Types encode both a Frame Type and corresponding flags
62 // all in the Frame Type byte. Currently defined Special Frame Types are:
63 // Stream : 0b 1xxxxxxx
64 // Ack : 0b 01xxxxxx
66 // Semantics of the flag bits above (the x bits) depends on the frame type.
68 // Masks to determine if the frame type is a special use
69 // and for specific special frame types.
70 const uint8 kQuicFrameTypeSpecialMask = 0xE0; // 0b 11100000
71 const uint8 kQuicFrameTypeStreamMask = 0x80;
72 const uint8 kQuicFrameTypeAckMask = 0x40;
74 // Stream frame relative shifts and masks for interpreting the stream flags.
75 // StreamID may be 1, 2, 3, or 4 bytes.
76 const uint8 kQuicStreamIdShift = 2;
77 const uint8 kQuicStreamIDLengthMask = 0x03;
79 // Offset may be 0, 2, 3, 4, 5, 6, 7, 8 bytes.
80 const uint8 kQuicStreamOffsetShift = 3;
81 const uint8 kQuicStreamOffsetMask = 0x07;
83 // Data length may be 0 or 2 bytes.
84 const uint8 kQuicStreamDataLengthShift = 1;
85 const uint8 kQuicStreamDataLengthMask = 0x01;
87 // Fin bit may be set or not.
88 const uint8 kQuicStreamFinShift = 1;
89 const uint8 kQuicStreamFinMask = 0x01;
91 // packet number size shift used in AckFrames.
92 const uint8 kQuicSequenceNumberLengthShift = 2;
94 // Acks may be truncated.
95 const uint8 kQuicAckTruncatedShift = 1;
96 const uint8 kQuicAckTruncatedMask = 0x01;
98 // Acks may not have any nacks.
99 const uint8 kQuicHasNacksMask = 0x01;
101 // Returns the absolute value of the difference between |a| and |b|.
102 QuicPacketNumber Delta(QuicPacketNumber a, QuicPacketNumber b) {
103 // Since these are unsigned numbers, we can't just return abs(a - b)
104 if (a < b) {
105 return b - a;
107 return a - b;
110 QuicPacketNumber ClosestTo(QuicPacketNumber target,
111 QuicPacketNumber a,
112 QuicPacketNumber b) {
113 return (Delta(target, a) < Delta(target, b)) ? a : b;
116 QuicPacketNumberLength ReadSequenceNumberLength(uint8 flags) {
117 switch (flags & PACKET_FLAGS_6BYTE_PACKET) {
118 case PACKET_FLAGS_6BYTE_PACKET:
119 return PACKET_6BYTE_PACKET_NUMBER;
120 case PACKET_FLAGS_4BYTE_PACKET:
121 return PACKET_4BYTE_PACKET_NUMBER;
122 case PACKET_FLAGS_2BYTE_PACKET:
123 return PACKET_2BYTE_PACKET_NUMBER;
124 case PACKET_FLAGS_1BYTE_PACKET:
125 return PACKET_1BYTE_PACKET_NUMBER;
126 default:
127 LOG(DFATAL) << "Unreachable case statement.";
128 return PACKET_6BYTE_PACKET_NUMBER;
132 } // namespace
134 QuicFramer::QuicFramer(const QuicVersionVector& supported_versions,
135 QuicTime creation_time,
136 Perspective perspective)
137 : visitor_(nullptr),
138 entropy_calculator_(nullptr),
139 error_(QUIC_NO_ERROR),
140 last_packet_number_(0),
141 last_serialized_connection_id_(0),
142 supported_versions_(supported_versions),
143 decrypter_level_(ENCRYPTION_NONE),
144 alternative_decrypter_level_(ENCRYPTION_NONE),
145 alternative_decrypter_latch_(false),
146 perspective_(perspective),
147 validate_flags_(true),
148 creation_time_(creation_time),
149 last_timestamp_(QuicTime::Delta::Zero()) {
150 DCHECK(!supported_versions.empty());
151 quic_version_ = supported_versions_[0];
152 decrypter_.reset(QuicDecrypter::Create(kNULL));
153 encrypter_[ENCRYPTION_NONE].reset(QuicEncrypter::Create(kNULL));
156 QuicFramer::~QuicFramer() {}
158 // static
159 size_t QuicFramer::GetMinStreamFrameSize(QuicStreamId stream_id,
160 QuicStreamOffset offset,
161 bool last_frame_in_packet,
162 InFecGroup is_in_fec_group) {
163 bool no_stream_frame_length = last_frame_in_packet &&
164 is_in_fec_group == NOT_IN_FEC_GROUP;
165 return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
166 GetStreamOffsetSize(offset) +
167 (no_stream_frame_length ? 0 : kQuicStreamPayloadLengthSize);
170 // static
171 size_t QuicFramer::GetMinAckFrameSize(
172 QuicPacketNumberLength largest_observed_length) {
173 return kQuicFrameTypeSize + kQuicEntropyHashSize +
174 largest_observed_length + kQuicDeltaTimeLargestObservedSize;
177 // static
178 size_t QuicFramer::GetStopWaitingFrameSize(
179 QuicPacketNumberLength packet_number_length) {
180 return kQuicFrameTypeSize + kQuicEntropyHashSize + packet_number_length;
183 // static
184 size_t QuicFramer::GetMinRstStreamFrameSize() {
185 return kQuicFrameTypeSize + kQuicMaxStreamIdSize +
186 kQuicMaxStreamOffsetSize + kQuicErrorCodeSize +
187 kQuicErrorDetailsLengthSize;
190 // static
191 size_t QuicFramer::GetRstStreamFrameSize() {
192 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize +
193 kQuicErrorCodeSize;
196 // static
197 size_t QuicFramer::GetMinConnectionCloseFrameSize() {
198 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize;
201 // static
202 size_t QuicFramer::GetMinGoAwayFrameSize() {
203 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
204 kQuicMaxStreamIdSize;
207 // static
208 size_t QuicFramer::GetWindowUpdateFrameSize() {
209 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize;
212 // static
213 size_t QuicFramer::GetBlockedFrameSize() {
214 return kQuicFrameTypeSize + kQuicMaxStreamIdSize;
217 // static
218 size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
219 // Sizes are 1 through 4 bytes.
220 for (int i = 1; i <= 4; ++i) {
221 stream_id >>= 8;
222 if (stream_id == 0) {
223 return i;
226 LOG(DFATAL) << "Failed to determine StreamIDSize.";
227 return 4;
230 // static
231 size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) {
232 // 0 is a special case.
233 if (offset == 0) {
234 return 0;
236 // 2 through 8 are the remaining sizes.
237 offset >>= 8;
238 for (int i = 2; i <= 8; ++i) {
239 offset >>= 8;
240 if (offset == 0) {
241 return i;
244 LOG(DFATAL) << "Failed to determine StreamOffsetSize.";
245 return 8;
248 // static
249 size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions) {
250 return kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID +
251 number_versions * kQuicVersionSize;
254 bool QuicFramer::IsSupportedVersion(const QuicVersion version) const {
255 for (size_t i = 0; i < supported_versions_.size(); ++i) {
256 if (version == supported_versions_[i]) {
257 return true;
260 return false;
263 size_t QuicFramer::GetSerializedFrameLength(
264 const QuicFrame& frame,
265 size_t free_bytes,
266 bool first_frame,
267 bool last_frame,
268 InFecGroup is_in_fec_group,
269 QuicPacketNumberLength packet_number_length) {
270 // Prevent a rare crash reported in b/19458523.
271 if (frame.stream_frame == nullptr) {
272 LOG(DFATAL) << "Cannot compute the length of a null frame. "
273 << "type:" << frame.type << "free_bytes:" << free_bytes
274 << " first_frame:" << first_frame
275 << " last_frame:" << last_frame
276 << " is_in_fec:" << is_in_fec_group
277 << " seq num length:" << packet_number_length;
278 set_error(QUIC_INTERNAL_ERROR);
279 visitor_->OnError(this);
280 return 0;
282 if (frame.type == PADDING_FRAME) {
283 // PADDING implies end of packet.
284 return free_bytes;
286 size_t frame_len = ComputeFrameLength(frame, last_frame, is_in_fec_group,
287 packet_number_length);
288 if (frame_len <= free_bytes) {
289 // Frame fits within packet. Note that acks may be truncated.
290 return frame_len;
292 // Only truncate the first frame in a packet, so if subsequent ones go
293 // over, stop including more frames.
294 if (!first_frame) {
295 return 0;
297 bool can_truncate =
298 frame.type == ACK_FRAME &&
299 free_bytes >= GetMinAckFrameSize(PACKET_6BYTE_PACKET_NUMBER);
300 if (can_truncate) {
301 // Truncate the frame so the packet will not exceed kMaxPacketSize.
302 // Note that we may not use every byte of the writer in this case.
303 DVLOG(1) << "Truncating large frame, free bytes: " << free_bytes;
304 return free_bytes;
306 if (!FLAGS_quic_allow_oversized_packets_for_test) {
307 return 0;
309 LOG(DFATAL) << "Packet size too small to fit frame.";
310 return frame_len;
313 QuicFramer::AckFrameInfo::AckFrameInfo() : max_delta(0) {}
315 QuicFramer::AckFrameInfo::~AckFrameInfo() {}
317 // static
318 QuicPacketEntropyHash QuicFramer::GetPacketEntropyHash(
319 const QuicPacketHeader& header) {
320 return header.entropy_flag << (header.packet_packet_number % 8);
323 QuicPacket* QuicFramer::BuildDataPacket(const QuicPacketHeader& header,
324 const QuicFrames& frames,
325 char* buffer,
326 size_t packet_length) {
327 QuicDataWriter writer(packet_length, buffer);
328 if (!AppendPacketHeader(header, &writer)) {
329 LOG(DFATAL) << "AppendPacketHeader failed";
330 return nullptr;
333 size_t i = 0;
334 for (const QuicFrame& frame : frames) {
335 // Determine if we should write stream frame length in header.
336 const bool no_stream_frame_length =
337 (header.is_in_fec_group == NOT_IN_FEC_GROUP) &&
338 (i == frames.size() - 1);
339 if (!AppendTypeByte(frame, no_stream_frame_length, &writer)) {
340 LOG(DFATAL) << "AppendTypeByte failed";
341 return nullptr;
344 switch (frame.type) {
345 case PADDING_FRAME:
346 writer.WritePadding();
347 break;
348 case STREAM_FRAME:
349 if (!AppendStreamFrame(
350 *frame.stream_frame, no_stream_frame_length, &writer)) {
351 LOG(DFATAL) << "AppendStreamFrame failed";
352 return nullptr;
354 break;
355 case ACK_FRAME:
356 if (!AppendAckFrameAndTypeByte(
357 header, *frame.ack_frame, &writer)) {
358 LOG(DFATAL) << "AppendAckFrameAndTypeByte failed";
359 return nullptr;
361 break;
362 case STOP_WAITING_FRAME:
363 if (!AppendStopWaitingFrame(
364 header, *frame.stop_waiting_frame, &writer)) {
365 LOG(DFATAL) << "AppendStopWaitingFrame failed";
366 return nullptr;
368 break;
369 case MTU_DISCOVERY_FRAME:
370 // MTU discovery frames are serialized as ping frames.
371 case PING_FRAME:
372 // Ping has no payload.
373 break;
374 case RST_STREAM_FRAME:
375 if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) {
376 LOG(DFATAL) << "AppendRstStreamFrame failed";
377 return nullptr;
379 break;
380 case CONNECTION_CLOSE_FRAME:
381 if (!AppendConnectionCloseFrame(
382 *frame.connection_close_frame, &writer)) {
383 LOG(DFATAL) << "AppendConnectionCloseFrame failed";
384 return nullptr;
386 break;
387 case GOAWAY_FRAME:
388 if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) {
389 LOG(DFATAL) << "AppendGoAwayFrame failed";
390 return nullptr;
392 break;
393 case WINDOW_UPDATE_FRAME:
394 if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) {
395 LOG(DFATAL) << "AppendWindowUpdateFrame failed";
396 return nullptr;
398 break;
399 case BLOCKED_FRAME:
400 if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) {
401 LOG(DFATAL) << "AppendBlockedFrame failed";
402 return nullptr;
404 break;
405 default:
406 RaiseError(QUIC_INVALID_FRAME_DATA);
407 LOG(DFATAL) << "QUIC_INVALID_FRAME_DATA";
408 return nullptr;
410 ++i;
413 QuicPacket* packet =
414 new QuicPacket(writer.data(), writer.length(), false,
415 header.public_header.connection_id_length,
416 header.public_header.version_flag,
417 header.public_header.packet_number_length);
419 return packet;
422 QuicPacket* QuicFramer::BuildFecPacket(const QuicPacketHeader& header,
423 const QuicFecData& fec) {
424 DCHECK_EQ(IN_FEC_GROUP, header.is_in_fec_group);
425 DCHECK_NE(0u, header.fec_group);
426 size_t len = GetPacketHeaderSize(header);
427 len += fec.redundancy.length();
429 scoped_ptr<char[]> buffer(new char[len]);
430 QuicDataWriter writer(len, buffer.get());
431 if (!AppendPacketHeader(header, &writer)) {
432 LOG(DFATAL) << "AppendPacketHeader failed";
433 return nullptr;
436 if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) {
437 LOG(DFATAL) << "Failed to add FEC";
438 return nullptr;
441 return new QuicPacket(buffer.release(), len, true,
442 header.public_header.connection_id_length,
443 header.public_header.version_flag,
444 header.public_header.packet_number_length);
447 // static
448 QuicEncryptedPacket* QuicFramer::BuildPublicResetPacket(
449 const QuicPublicResetPacket& packet) {
450 DCHECK(packet.public_header.reset_flag);
452 CryptoHandshakeMessage reset;
453 reset.set_tag(kPRST);
454 reset.SetValue(kRNON, packet.nonce_proof);
455 reset.SetValue(kRSEQ, packet.rejected_packet_number);
456 if (!packet.client_address.address().empty()) {
457 // packet.client_address is non-empty.
458 QuicSocketAddressCoder address_coder(packet.client_address);
459 string serialized_address = address_coder.Encode();
460 if (serialized_address.empty()) {
461 return nullptr;
463 reset.SetStringPiece(kCADR, serialized_address);
465 const QuicData& reset_serialized = reset.GetSerialized();
467 size_t len =
468 kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID + reset_serialized.length();
469 scoped_ptr<char[]> buffer(new char[len]);
470 QuicDataWriter writer(len, buffer.get());
472 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_RST |
473 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
474 if (!writer.WriteUInt8(flags)) {
475 return nullptr;
478 if (!writer.WriteUInt64(packet.public_header.connection_id)) {
479 return nullptr;
482 if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) {
483 return nullptr;
486 return new QuicEncryptedPacket(buffer.release(), len, true);
489 QuicEncryptedPacket* QuicFramer::BuildVersionNegotiationPacket(
490 const QuicPacketPublicHeader& header,
491 const QuicVersionVector& supported_versions) {
492 DCHECK(header.version_flag);
493 size_t len = GetVersionNegotiationPacketSize(supported_versions.size());
494 scoped_ptr<char[]> buffer(new char[len]);
495 QuicDataWriter writer(len, buffer.get());
497 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_VERSION |
498 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
499 if (!writer.WriteUInt8(flags)) {
500 return nullptr;
503 if (!writer.WriteUInt64(header.connection_id)) {
504 return nullptr;
507 for (size_t i = 0; i < supported_versions.size(); ++i) {
508 if (!writer.WriteUInt32(QuicVersionToQuicTag(supported_versions[i]))) {
509 return nullptr;
513 return new QuicEncryptedPacket(buffer.release(), len, true);
516 bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
517 QuicDataReader reader(packet.data(), packet.length());
519 visitor_->OnPacket();
521 // First parse the public header.
522 QuicPacketPublicHeader public_header;
523 if (!ProcessPublicHeader(&reader, &public_header)) {
524 DLOG(WARNING) << "Unable to process public header.";
525 DCHECK_NE("", detailed_error_);
526 return RaiseError(QUIC_INVALID_PACKET_HEADER);
529 if (!visitor_->OnUnauthenticatedPublicHeader(public_header)) {
530 // The visitor suppresses further processing of the packet.
531 return true;
534 if (perspective_ == Perspective::IS_SERVER && public_header.version_flag &&
535 public_header.versions[0] != quic_version_) {
536 if (!visitor_->OnProtocolVersionMismatch(public_header.versions[0])) {
537 return true;
541 bool rv;
542 if (perspective_ == Perspective::IS_CLIENT && public_header.version_flag) {
543 rv = ProcessVersionNegotiationPacket(&reader, &public_header);
544 } else if (public_header.reset_flag) {
545 rv = ProcessPublicResetPacket(&reader, public_header);
546 } else if (packet.length() <= kMaxPacketSize) {
547 // The optimized decryption algorithm implementations run faster when
548 // operating on aligned memory.
550 // TODO(rtenneti): Change the default 64 alignas value (used the default
551 // value from CACHELINE_SIZE).
552 ALIGNAS(64) char buffer[kMaxPacketSize];
553 rv = ProcessDataPacket(&reader, public_header, packet, buffer,
554 kMaxPacketSize);
555 } else {
556 scoped_ptr<char[]> large_buffer(new char[packet.length()]);
557 rv = ProcessDataPacket(&reader, public_header, packet, large_buffer.get(),
558 packet.length());
559 LOG_IF(DFATAL, rv) << "QUIC should never successfully process packets "
560 << "larger than kMaxPacketSize. packet size:"
561 << packet.length();
564 return rv;
567 bool QuicFramer::ProcessVersionNegotiationPacket(
568 QuicDataReader* reader,
569 QuicPacketPublicHeader* public_header) {
570 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
571 // Try reading at least once to raise error if the packet is invalid.
572 do {
573 QuicTag version;
574 if (!reader->ReadBytes(&version, kQuicVersionSize)) {
575 set_detailed_error("Unable to read supported version in negotiation.");
576 return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
578 public_header->versions.push_back(QuicTagToQuicVersion(version));
579 } while (!reader->IsDoneReading());
581 visitor_->OnVersionNegotiationPacket(*public_header);
582 return true;
585 bool QuicFramer::ProcessDataPacket(QuicDataReader* encrypted_reader,
586 const QuicPacketPublicHeader& public_header,
587 const QuicEncryptedPacket& packet,
588 char* decrypted_buffer,
589 size_t buffer_length) {
590 QuicPacketHeader header(public_header);
591 if (!ProcessUnauthenticatedHeader(encrypted_reader, &header)) {
592 DLOG(WARNING) << "Unable to process packet header. Stopping parsing.";
593 return false;
596 size_t decrypted_length = 0;
597 if (!DecryptPayload(encrypted_reader, header, packet, decrypted_buffer,
598 buffer_length, &decrypted_length)) {
599 set_detailed_error("Unable to decrypt payload.");
600 return RaiseError(QUIC_DECRYPTION_FAILURE);
603 QuicDataReader reader(decrypted_buffer, decrypted_length);
604 if (!ProcessAuthenticatedHeader(&reader, &header)) {
605 DLOG(WARNING) << "Unable to process packet header. Stopping parsing.";
606 return false;
609 if (!visitor_->OnPacketHeader(header)) {
610 // The visitor suppresses further processing of the packet.
611 return true;
614 if (packet.length() > kMaxPacketSize) {
615 DLOG(WARNING) << "Packet too large: " << packet.length();
616 return RaiseError(QUIC_PACKET_TOO_LARGE);
619 // Handle the payload.
620 if (!header.fec_flag) {
621 if (header.is_in_fec_group == IN_FEC_GROUP) {
622 StringPiece payload = reader.PeekRemainingPayload();
623 visitor_->OnFecProtectedPayload(payload);
625 if (!ProcessFrameData(&reader, header)) {
626 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
627 DLOG(WARNING) << "Unable to process frame data.";
628 return false;
630 } else {
631 QuicFecData fec_data;
632 fec_data.fec_group = header.fec_group;
633 fec_data.redundancy = reader.ReadRemainingPayload();
634 visitor_->OnFecData(fec_data);
637 visitor_->OnPacketComplete();
638 return true;
641 bool QuicFramer::ProcessPublicResetPacket(
642 QuicDataReader* reader,
643 const QuicPacketPublicHeader& public_header) {
644 QuicPublicResetPacket packet(public_header);
646 scoped_ptr<CryptoHandshakeMessage> reset(
647 CryptoFramer::ParseMessage(reader->ReadRemainingPayload()));
648 if (!reset.get()) {
649 set_detailed_error("Unable to read reset message.");
650 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
652 if (reset->tag() != kPRST) {
653 set_detailed_error("Incorrect message tag.");
654 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
657 if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) {
658 set_detailed_error("Unable to read nonce proof.");
659 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
661 // TODO(satyamshekhar): validate nonce to protect against DoS.
663 if (reset->GetUint64(kRSEQ, &packet.rejected_packet_number) !=
664 QUIC_NO_ERROR) {
665 set_detailed_error("Unable to read rejected packet number.");
666 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
669 StringPiece address;
670 if (reset->GetStringPiece(kCADR, &address)) {
671 QuicSocketAddressCoder address_coder;
672 if (address_coder.Decode(address.data(), address.length())) {
673 packet.client_address = IPEndPoint(address_coder.ip(),
674 address_coder.port());
678 visitor_->OnPublicResetPacket(packet);
679 return true;
682 bool QuicFramer::ProcessRevivedPacket(QuicPacketHeader* header,
683 StringPiece payload) {
684 visitor_->OnRevivedPacket();
686 header->entropy_hash = GetPacketEntropyHash(*header);
688 if (!visitor_->OnPacketHeader(*header)) {
689 return true;
692 if (payload.length() > kMaxPacketSize) {
693 set_detailed_error("Revived packet too large.");
694 return RaiseError(QUIC_PACKET_TOO_LARGE);
697 QuicDataReader reader(payload.data(), payload.length());
698 if (!ProcessFrameData(&reader, *header)) {
699 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
700 DLOG(WARNING) << "Unable to process frame data.";
701 return false;
704 visitor_->OnPacketComplete();
705 return true;
708 bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
709 QuicDataWriter* writer) {
710 DVLOG(1) << "Appending header: " << header;
711 DCHECK(header.fec_group > 0 || header.is_in_fec_group == NOT_IN_FEC_GROUP);
712 uint8 public_flags = 0;
713 if (header.public_header.reset_flag) {
714 public_flags |= PACKET_PUBLIC_FLAGS_RST;
716 if (header.public_header.version_flag) {
717 public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
720 public_flags |=
721 GetSequenceNumberFlags(header.public_header.packet_number_length)
722 << kPublicHeaderSequenceNumberShift;
724 switch (header.public_header.connection_id_length) {
725 case PACKET_0BYTE_CONNECTION_ID:
726 if (!writer->WriteUInt8(
727 public_flags | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) {
728 return false;
730 break;
731 case PACKET_1BYTE_CONNECTION_ID:
732 if (!writer->WriteUInt8(
733 public_flags | PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID)) {
734 return false;
736 if (!writer->WriteUInt8(
737 header.public_header.connection_id & k1ByteConnectionIdMask)) {
738 return false;
740 break;
741 case PACKET_4BYTE_CONNECTION_ID:
742 if (!writer->WriteUInt8(
743 public_flags | PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID)) {
744 return false;
746 if (!writer->WriteUInt32(
747 header.public_header.connection_id & k4ByteConnectionIdMask)) {
748 return false;
750 break;
751 case PACKET_8BYTE_CONNECTION_ID:
752 if (!writer->WriteUInt8(
753 public_flags | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID)) {
754 return false;
756 if (!writer->WriteUInt64(header.public_header.connection_id)) {
757 return false;
759 break;
761 last_serialized_connection_id_ = header.public_header.connection_id;
763 if (header.public_header.version_flag) {
764 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
765 QuicTag tag = QuicVersionToQuicTag(quic_version_);
766 writer->WriteUInt32(tag);
767 DVLOG(1) << "version = " << quic_version_ << ", tag = '"
768 << QuicUtils::TagToString(tag) << "'";
771 if (!AppendPacketSequenceNumber(header.public_header.packet_number_length,
772 header.packet_packet_number, writer)) {
773 return false;
776 uint8 private_flags = 0;
777 if (header.entropy_flag) {
778 private_flags |= PACKET_PRIVATE_FLAGS_ENTROPY;
780 if (header.is_in_fec_group == IN_FEC_GROUP) {
781 private_flags |= PACKET_PRIVATE_FLAGS_FEC_GROUP;
783 if (header.fec_flag) {
784 private_flags |= PACKET_PRIVATE_FLAGS_FEC;
786 if (!writer->WriteUInt8(private_flags)) {
787 return false;
790 // The FEC group number is the packet number of the first fec
791 // protected packet, or 0 if this packet is not protected.
792 if (header.is_in_fec_group == IN_FEC_GROUP) {
793 DCHECK_LE(header.fec_group, header.packet_packet_number);
794 DCHECK_LT(header.packet_packet_number - header.fec_group, 255u);
795 // Offset from the current packet number to the first fec
796 // protected packet.
797 uint8 first_fec_protected_packet_offset =
798 static_cast<uint8>(header.packet_packet_number - header.fec_group);
799 if (!writer->WriteBytes(&first_fec_protected_packet_offset, 1)) {
800 return false;
804 return true;
807 const QuicTime::Delta QuicFramer::CalculateTimestampFromWire(
808 uint32 time_delta_us) {
809 // The new time_delta might have wrapped to the next epoch, or it
810 // might have reverse wrapped to the previous epoch, or it might
811 // remain in the same epoch. Select the time closest to the previous
812 // time.
814 // epoch_delta is the delta between epochs. A delta is 4 bytes of
815 // microseconds.
816 const uint64 epoch_delta = UINT64_C(1) << 32;
817 uint64 epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1);
818 // Wrapping is safe here because a wrapped value will not be ClosestTo below.
819 uint64 prev_epoch = epoch - epoch_delta;
820 uint64 next_epoch = epoch + epoch_delta;
822 uint64 time = ClosestTo(last_timestamp_.ToMicroseconds(),
823 epoch + time_delta_us,
824 ClosestTo(last_timestamp_.ToMicroseconds(),
825 prev_epoch + time_delta_us,
826 next_epoch + time_delta_us));
828 return QuicTime::Delta::FromMicroseconds(time);
831 QuicPacketNumber QuicFramer::CalculatePacketNumberFromWire(
832 QuicPacketNumberLength packet_number_length,
833 QuicPacketNumber packet_packet_number) const {
834 // The new packet number might have wrapped to the next epoch, or
835 // it might have reverse wrapped to the previous epoch, or it might
836 // remain in the same epoch. Select the packet number closest to the
837 // next expected packet number, the previous packet number plus 1.
839 // epoch_delta is the delta between epochs the packet number was serialized
840 // with, so the correct value is likely the same epoch as the last sequence
841 // number or an adjacent epoch.
842 const QuicPacketNumber epoch_delta = UINT64_C(1)
843 << (8 * packet_number_length);
844 QuicPacketNumber next_packet_number = last_packet_number_ + 1;
845 QuicPacketNumber epoch = last_packet_number_ & ~(epoch_delta - 1);
846 QuicPacketNumber prev_epoch = epoch - epoch_delta;
847 QuicPacketNumber next_epoch = epoch + epoch_delta;
849 return ClosestTo(
850 next_packet_number, epoch + packet_packet_number,
851 ClosestTo(next_packet_number, prev_epoch + packet_packet_number,
852 next_epoch + packet_packet_number));
855 bool QuicFramer::ProcessPublicHeader(QuicDataReader* reader,
856 QuicPacketPublicHeader* public_header) {
857 uint8 public_flags;
858 if (!reader->ReadBytes(&public_flags, 1)) {
859 set_detailed_error("Unable to read public flags.");
860 return false;
863 public_header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
864 public_header->version_flag =
865 (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;
867 if (validate_flags_ &&
868 !public_header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
869 set_detailed_error("Illegal public flags value.");
870 return false;
873 if (public_header->reset_flag && public_header->version_flag) {
874 set_detailed_error("Got version flag in reset packet");
875 return false;
878 switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) {
879 case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID:
880 if (!reader->ReadUInt64(&public_header->connection_id)) {
881 set_detailed_error("Unable to read ConnectionId.");
882 return false;
884 public_header->connection_id_length = PACKET_8BYTE_CONNECTION_ID;
885 break;
886 case PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID:
887 // If the connection_id is truncated, expect to read the last serialized
888 // connection_id.
889 if (!reader->ReadBytes(&public_header->connection_id,
890 PACKET_4BYTE_CONNECTION_ID)) {
891 set_detailed_error("Unable to read ConnectionId.");
892 return false;
894 if (last_serialized_connection_id_ &&
895 (public_header->connection_id & k4ByteConnectionIdMask) !=
896 (last_serialized_connection_id_ & k4ByteConnectionIdMask)) {
897 set_detailed_error("Truncated 4 byte ConnectionId does not match "
898 "previous connection_id.");
899 return false;
901 public_header->connection_id_length = PACKET_4BYTE_CONNECTION_ID;
902 public_header->connection_id = last_serialized_connection_id_;
903 break;
904 case PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID:
905 if (!reader->ReadBytes(&public_header->connection_id,
906 PACKET_1BYTE_CONNECTION_ID)) {
907 set_detailed_error("Unable to read ConnectionId.");
908 return false;
910 if (last_serialized_connection_id_ &&
911 (public_header->connection_id & k1ByteConnectionIdMask) !=
912 (last_serialized_connection_id_ & k1ByteConnectionIdMask)) {
913 set_detailed_error("Truncated 1 byte ConnectionId does not match "
914 "previous connection_id.");
915 return false;
917 public_header->connection_id_length = PACKET_1BYTE_CONNECTION_ID;
918 public_header->connection_id = last_serialized_connection_id_;
919 break;
920 case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID:
921 public_header->connection_id_length = PACKET_0BYTE_CONNECTION_ID;
922 public_header->connection_id = last_serialized_connection_id_;
923 break;
926 public_header->packet_number_length = ReadSequenceNumberLength(
927 public_flags >> kPublicHeaderSequenceNumberShift);
929 // Read the version only if the packet is from the client.
930 // version flag from the server means version negotiation packet.
931 if (public_header->version_flag && perspective_ == Perspective::IS_SERVER) {
932 QuicTag version_tag;
933 if (!reader->ReadUInt32(&version_tag)) {
934 set_detailed_error("Unable to read protocol version.");
935 return false;
938 // If the version from the new packet is the same as the version of this
939 // framer, then the public flags should be set to something we understand.
940 // If not, this raises an error.
941 QuicVersion version = QuicTagToQuicVersion(version_tag);
942 if (version == quic_version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
943 set_detailed_error("Illegal public flags value.");
944 return false;
946 public_header->versions.push_back(version);
948 return true;
951 // static
952 QuicPacketNumberLength QuicFramer::GetMinSequenceNumberLength(
953 QuicPacketNumber packet_number) {
954 if (packet_number < 1 << (PACKET_1BYTE_PACKET_NUMBER * 8)) {
955 return PACKET_1BYTE_PACKET_NUMBER;
956 } else if (packet_number < 1 << (PACKET_2BYTE_PACKET_NUMBER * 8)) {
957 return PACKET_2BYTE_PACKET_NUMBER;
958 } else if (packet_number < UINT64_C(1) << (PACKET_4BYTE_PACKET_NUMBER * 8)) {
959 return PACKET_4BYTE_PACKET_NUMBER;
960 } else {
961 return PACKET_6BYTE_PACKET_NUMBER;
965 // static
966 uint8 QuicFramer::GetSequenceNumberFlags(
967 QuicPacketNumberLength packet_number_length) {
968 switch (packet_number_length) {
969 case PACKET_1BYTE_PACKET_NUMBER:
970 return PACKET_FLAGS_1BYTE_PACKET;
971 case PACKET_2BYTE_PACKET_NUMBER:
972 return PACKET_FLAGS_2BYTE_PACKET;
973 case PACKET_4BYTE_PACKET_NUMBER:
974 return PACKET_FLAGS_4BYTE_PACKET;
975 case PACKET_6BYTE_PACKET_NUMBER:
976 return PACKET_FLAGS_6BYTE_PACKET;
977 default:
978 LOG(DFATAL) << "Unreachable case statement.";
979 return PACKET_FLAGS_6BYTE_PACKET;
983 // static
984 QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
985 const QuicAckFrame& frame) {
986 AckFrameInfo ack_info;
987 if (frame.missing_packets.Empty()) {
988 return ack_info;
990 DCHECK_GE(frame.largest_observed, frame.missing_packets.Max());
991 size_t cur_range_length = 0;
992 PacketNumberQueue::const_iterator iter = frame.missing_packets.begin();
993 // TODO(jdorfman): Switch this logic to use the intervals in PacketNumberQueue
994 // instead of reconstructing them from the sequence.
995 QuicPacketNumber last_missing = *iter;
996 ++iter;
997 for (; iter != frame.missing_packets.end(); ++iter) {
998 if (cur_range_length < numeric_limits<uint8>::max() &&
999 *iter == (last_missing + 1)) {
1000 ++cur_range_length;
1001 } else {
1002 ack_info.nack_ranges[last_missing - cur_range_length] =
1003 static_cast<uint8>(cur_range_length);
1004 cur_range_length = 0;
1006 ack_info.max_delta = max(ack_info.max_delta, *iter - last_missing);
1007 last_missing = *iter;
1009 // Include the last nack range.
1010 ack_info.nack_ranges[last_missing - cur_range_length] =
1011 static_cast<uint8>(cur_range_length);
1012 // Include the range to the largest observed.
1013 ack_info.max_delta =
1014 max(ack_info.max_delta, frame.largest_observed - last_missing);
1015 return ack_info;
1018 bool QuicFramer::ProcessUnauthenticatedHeader(QuicDataReader* encrypted_reader,
1019 QuicPacketHeader* header) {
1020 if (!ProcessPacketSequenceNumber(encrypted_reader,
1021 header->public_header.packet_number_length,
1022 &header->packet_packet_number)) {
1023 set_detailed_error("Unable to read packet number.");
1024 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1027 if (header->packet_packet_number == 0u) {
1028 set_detailed_error("packet numbers cannot be 0.");
1029 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1032 if (!visitor_->OnUnauthenticatedHeader(*header)) {
1033 return false;
1035 return true;
1038 bool QuicFramer::ProcessAuthenticatedHeader(QuicDataReader* reader,
1039 QuicPacketHeader* header) {
1040 uint8 private_flags;
1041 if (!reader->ReadBytes(&private_flags, 1)) {
1042 set_detailed_error("Unable to read private flags.");
1043 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1046 if (private_flags > PACKET_PRIVATE_FLAGS_MAX) {
1047 set_detailed_error("Illegal private flags value.");
1048 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1051 header->entropy_flag = (private_flags & PACKET_PRIVATE_FLAGS_ENTROPY) != 0;
1052 header->fec_flag = (private_flags & PACKET_PRIVATE_FLAGS_FEC) != 0;
1054 if ((private_flags & PACKET_PRIVATE_FLAGS_FEC_GROUP) != 0) {
1055 header->is_in_fec_group = IN_FEC_GROUP;
1056 uint8 first_fec_protected_packet_offset;
1057 if (!reader->ReadBytes(&first_fec_protected_packet_offset, 1)) {
1058 set_detailed_error("Unable to read first fec protected packet offset.");
1059 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1061 if (first_fec_protected_packet_offset >= header->packet_packet_number) {
1062 set_detailed_error(
1063 "First fec protected packet offset must be less "
1064 "than the packet number.");
1065 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1067 header->fec_group =
1068 header->packet_packet_number - first_fec_protected_packet_offset;
1071 header->entropy_hash = GetPacketEntropyHash(*header);
1072 // Set the last packet number after we have decrypted the packet
1073 // so we are confident is not attacker controlled.
1074 last_packet_number_ = header->packet_packet_number;
1075 return true;
1078 bool QuicFramer::ProcessPacketSequenceNumber(
1079 QuicDataReader* reader,
1080 QuicPacketNumberLength packet_number_length,
1081 QuicPacketNumber* packet_number) {
1082 QuicPacketNumber wire_packet_number = 0u;
1083 if (!reader->ReadBytes(&wire_packet_number, packet_number_length)) {
1084 return false;
1087 // TODO(ianswett): Explore the usefulness of trying multiple packet numbers
1088 // in case the first guess is incorrect.
1089 *packet_number =
1090 CalculatePacketNumberFromWire(packet_number_length, wire_packet_number);
1091 return true;
1094 bool QuicFramer::ProcessFrameData(QuicDataReader* reader,
1095 const QuicPacketHeader& header) {
1096 if (reader->IsDoneReading()) {
1097 set_detailed_error("Packet has no frames.");
1098 return RaiseError(QUIC_MISSING_PAYLOAD);
1100 while (!reader->IsDoneReading()) {
1101 uint8 frame_type;
1102 if (!reader->ReadBytes(&frame_type, 1)) {
1103 set_detailed_error("Unable to read frame type.");
1104 return RaiseError(QUIC_INVALID_FRAME_DATA);
1107 if (frame_type & kQuicFrameTypeSpecialMask) {
1108 // Stream Frame
1109 if (frame_type & kQuicFrameTypeStreamMask) {
1110 QuicStreamFrame frame;
1111 if (!ProcessStreamFrame(reader, frame_type, &frame)) {
1112 return RaiseError(QUIC_INVALID_STREAM_DATA);
1114 if (!visitor_->OnStreamFrame(frame)) {
1115 DVLOG(1) << "Visitor asked to stop further processing.";
1116 // Returning true since there was no parsing error.
1117 return true;
1119 continue;
1122 // Ack Frame
1123 if (frame_type & kQuicFrameTypeAckMask) {
1124 QuicAckFrame frame;
1125 if (!ProcessAckFrame(reader, frame_type, &frame)) {
1126 return RaiseError(QUIC_INVALID_ACK_DATA);
1128 if (!visitor_->OnAckFrame(frame)) {
1129 DVLOG(1) << "Visitor asked to stop further processing.";
1130 // Returning true since there was no parsing error.
1131 return true;
1133 continue;
1136 // This was a special frame type that did not match any
1137 // of the known ones. Error.
1138 set_detailed_error("Illegal frame type.");
1139 DLOG(WARNING) << "Illegal frame type: "
1140 << static_cast<int>(frame_type);
1141 return RaiseError(QUIC_INVALID_FRAME_DATA);
1144 switch (frame_type) {
1145 case PADDING_FRAME:
1146 // We're done with the packet.
1147 return true;
1149 case RST_STREAM_FRAME: {
1150 QuicRstStreamFrame frame;
1151 if (!ProcessRstStreamFrame(reader, &frame)) {
1152 return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
1154 if (!visitor_->OnRstStreamFrame(frame)) {
1155 DVLOG(1) << "Visitor asked to stop further processing.";
1156 // Returning true since there was no parsing error.
1157 return true;
1159 continue;
1162 case CONNECTION_CLOSE_FRAME: {
1163 QuicConnectionCloseFrame frame;
1164 if (!ProcessConnectionCloseFrame(reader, &frame)) {
1165 return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
1168 if (!visitor_->OnConnectionCloseFrame(frame)) {
1169 DVLOG(1) << "Visitor asked to stop further processing.";
1170 // Returning true since there was no parsing error.
1171 return true;
1173 continue;
1176 case GOAWAY_FRAME: {
1177 QuicGoAwayFrame goaway_frame;
1178 if (!ProcessGoAwayFrame(reader, &goaway_frame)) {
1179 return RaiseError(QUIC_INVALID_GOAWAY_DATA);
1181 if (!visitor_->OnGoAwayFrame(goaway_frame)) {
1182 DVLOG(1) << "Visitor asked to stop further processing.";
1183 // Returning true since there was no parsing error.
1184 return true;
1186 continue;
1189 case WINDOW_UPDATE_FRAME: {
1190 QuicWindowUpdateFrame window_update_frame;
1191 if (!ProcessWindowUpdateFrame(reader, &window_update_frame)) {
1192 return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA);
1194 if (!visitor_->OnWindowUpdateFrame(window_update_frame)) {
1195 DVLOG(1) << "Visitor asked to stop further processing.";
1196 // Returning true since there was no parsing error.
1197 return true;
1199 continue;
1202 case BLOCKED_FRAME: {
1203 QuicBlockedFrame blocked_frame;
1204 if (!ProcessBlockedFrame(reader, &blocked_frame)) {
1205 return RaiseError(QUIC_INVALID_BLOCKED_DATA);
1207 if (!visitor_->OnBlockedFrame(blocked_frame)) {
1208 DVLOG(1) << "Visitor asked to stop further processing.";
1209 // Returning true since there was no parsing error.
1210 return true;
1212 continue;
1215 case STOP_WAITING_FRAME: {
1216 QuicStopWaitingFrame stop_waiting_frame;
1217 if (!ProcessStopWaitingFrame(reader, header, &stop_waiting_frame)) {
1218 return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
1220 if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) {
1221 DVLOG(1) << "Visitor asked to stop further processing.";
1222 // Returning true since there was no parsing error.
1223 return true;
1225 continue;
1227 case PING_FRAME: {
1228 // Ping has no payload.
1229 QuicPingFrame ping_frame;
1230 if (!visitor_->OnPingFrame(ping_frame)) {
1231 DVLOG(1) << "Visitor asked to stop further processing.";
1232 // Returning true since there was no parsing error.
1233 return true;
1235 continue;
1238 default:
1239 set_detailed_error("Illegal frame type.");
1240 DLOG(WARNING) << "Illegal frame type: "
1241 << static_cast<int>(frame_type);
1242 return RaiseError(QUIC_INVALID_FRAME_DATA);
1246 return true;
1249 bool QuicFramer::ProcessStreamFrame(QuicDataReader* reader,
1250 uint8 frame_type,
1251 QuicStreamFrame* frame) {
1252 uint8 stream_flags = frame_type;
1254 stream_flags &= ~kQuicFrameTypeStreamMask;
1256 // Read from right to left: StreamID, Offset, Data Length, Fin.
1257 const uint8 stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1;
1258 stream_flags >>= kQuicStreamIdShift;
1260 uint8 offset_length = (stream_flags & kQuicStreamOffsetMask);
1261 // There is no encoding for 1 byte, only 0 and 2 through 8.
1262 if (offset_length > 0) {
1263 offset_length += 1;
1265 stream_flags >>= kQuicStreamOffsetShift;
1267 bool has_data_length =
1268 (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask;
1269 stream_flags >>= kQuicStreamDataLengthShift;
1271 frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift;
1273 frame->stream_id = 0;
1274 if (!reader->ReadBytes(&frame->stream_id, stream_id_length)) {
1275 set_detailed_error("Unable to read stream_id.");
1276 return false;
1279 frame->offset = 0;
1280 if (!reader->ReadBytes(&frame->offset, offset_length)) {
1281 set_detailed_error("Unable to read offset.");
1282 return false;
1285 if (has_data_length) {
1286 if (!reader->ReadStringPiece16(&frame->data)) {
1287 set_detailed_error("Unable to read frame data.");
1288 return false;
1290 } else {
1291 if (!reader->ReadStringPiece(&frame->data, reader->BytesRemaining())) {
1292 set_detailed_error("Unable to read frame data.");
1293 return false;
1297 return true;
1300 bool QuicFramer::ProcessAckFrame(QuicDataReader* reader,
1301 uint8 frame_type,
1302 QuicAckFrame* ack_frame) {
1303 // Determine the three lengths from the frame type: largest observed length,
1304 // missing packet number length, and missing range length.
1305 const QuicPacketNumberLength missing_packet_number_length =
1306 ReadSequenceNumberLength(frame_type);
1307 frame_type >>= kQuicSequenceNumberLengthShift;
1308 const QuicPacketNumberLength largest_observed_packet_number_length =
1309 ReadSequenceNumberLength(frame_type);
1310 frame_type >>= kQuicSequenceNumberLengthShift;
1311 ack_frame->is_truncated = frame_type & kQuicAckTruncatedMask;
1312 frame_type >>= kQuicAckTruncatedShift;
1313 bool has_nacks = frame_type & kQuicHasNacksMask;
1315 if (!reader->ReadBytes(&ack_frame->entropy_hash, 1)) {
1316 set_detailed_error("Unable to read entropy hash for received packets.");
1317 return false;
1320 if (!reader->ReadBytes(&ack_frame->largest_observed,
1321 largest_observed_packet_number_length)) {
1322 set_detailed_error("Unable to read largest observed.");
1323 return false;
1326 uint64 delta_time_largest_observed_us;
1327 if (!reader->ReadUFloat16(&delta_time_largest_observed_us)) {
1328 set_detailed_error("Unable to read delta time largest observed.");
1329 return false;
1332 if (delta_time_largest_observed_us == kUFloat16MaxValue) {
1333 ack_frame->delta_time_largest_observed = QuicTime::Delta::Infinite();
1334 } else {
1335 ack_frame->delta_time_largest_observed =
1336 QuicTime::Delta::FromMicroseconds(delta_time_largest_observed_us);
1339 if (!ProcessTimestampsInAckFrame(reader, ack_frame)) {
1340 return false;
1343 if (!has_nacks) {
1344 return true;
1347 uint8 num_missing_ranges;
1348 if (!reader->ReadBytes(&num_missing_ranges, 1)) {
1349 set_detailed_error("Unable to read num missing packet ranges.");
1350 return false;
1353 QuicPacketNumber last_packet_number = ack_frame->largest_observed;
1354 for (size_t i = 0; i < num_missing_ranges; ++i) {
1355 QuicPacketNumber missing_delta = 0;
1356 if (!reader->ReadBytes(&missing_delta, missing_packet_number_length)) {
1357 set_detailed_error("Unable to read missing packet number delta.");
1358 return false;
1360 last_packet_number -= missing_delta;
1361 QuicPacketNumber range_length = 0;
1362 if (!reader->ReadBytes(&range_length, PACKET_1BYTE_PACKET_NUMBER)) {
1363 set_detailed_error("Unable to read missing packet number range.");
1364 return false;
1366 ack_frame->missing_packets.Add(last_packet_number - range_length,
1367 last_packet_number + 1);
1368 // Subtract an extra 1 to ensure ranges are represented efficiently and
1369 // can't overlap by 1 packet number. This allows a missing_delta of 0
1370 // to represent an adjacent nack range.
1371 last_packet_number -= (range_length + 1);
1374 // Parse the revived packets list.
1375 uint8 num_revived_packets;
1376 if (!reader->ReadBytes(&num_revived_packets, 1)) {
1377 set_detailed_error("Unable to read num revived packets.");
1378 return false;
1381 for (size_t i = 0; i < num_revived_packets; ++i) {
1382 QuicPacketNumber revived_packet = 0;
1383 if (!reader->ReadBytes(&revived_packet,
1384 largest_observed_packet_number_length)) {
1385 set_detailed_error("Unable to read revived packet.");
1386 return false;
1389 ack_frame->revived_packets.insert(revived_packet);
1392 return true;
1395 bool QuicFramer::ProcessTimestampsInAckFrame(QuicDataReader* reader,
1396 QuicAckFrame* ack_frame) {
1397 if (ack_frame->is_truncated) {
1398 return true;
1400 uint8 num_received_packets;
1401 if (!reader->ReadBytes(&num_received_packets, 1)) {
1402 set_detailed_error("Unable to read num received packets.");
1403 return false;
1406 if (num_received_packets > 0) {
1407 uint8 delta_from_largest_observed;
1408 if (!reader->ReadBytes(&delta_from_largest_observed,
1409 PACKET_1BYTE_PACKET_NUMBER)) {
1410 set_detailed_error("Unable to read sequence delta in received packets.");
1411 return false;
1413 QuicPacketNumber seq_num =
1414 ack_frame->largest_observed - delta_from_largest_observed;
1416 // Time delta from the framer creation.
1417 uint32 time_delta_us;
1418 if (!reader->ReadBytes(&time_delta_us, sizeof(time_delta_us))) {
1419 set_detailed_error("Unable to read time delta in received packets.");
1420 return false;
1423 last_timestamp_ = CalculateTimestampFromWire(time_delta_us);
1425 ack_frame->received_packet_times.push_back(
1426 std::make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1428 for (uint8 i = 1; i < num_received_packets; ++i) {
1429 if (!reader->ReadBytes(&delta_from_largest_observed,
1430 PACKET_1BYTE_PACKET_NUMBER)) {
1431 set_detailed_error(
1432 "Unable to read sequence delta in received packets.");
1433 return false;
1435 seq_num = ack_frame->largest_observed - delta_from_largest_observed;
1437 // Time delta from the previous timestamp.
1438 uint64 incremental_time_delta_us;
1439 if (!reader->ReadUFloat16(&incremental_time_delta_us)) {
1440 set_detailed_error(
1441 "Unable to read incremental time delta in received packets.");
1442 return false;
1445 last_timestamp_ = last_timestamp_.Add(
1446 QuicTime::Delta::FromMicroseconds(incremental_time_delta_us));
1447 ack_frame->received_packet_times.push_back(
1448 std::make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1451 return true;
1454 bool QuicFramer::ProcessStopWaitingFrame(QuicDataReader* reader,
1455 const QuicPacketHeader& header,
1456 QuicStopWaitingFrame* stop_waiting) {
1457 if (!reader->ReadBytes(&stop_waiting->entropy_hash, 1)) {
1458 set_detailed_error("Unable to read entropy hash for sent packets.");
1459 return false;
1462 QuicPacketNumber least_unacked_delta = 0;
1463 if (!reader->ReadBytes(&least_unacked_delta,
1464 header.public_header.packet_number_length)) {
1465 set_detailed_error("Unable to read least unacked delta.");
1466 return false;
1468 DCHECK_GE(header.packet_packet_number, least_unacked_delta);
1469 stop_waiting->least_unacked =
1470 header.packet_packet_number - least_unacked_delta;
1472 return true;
1475 bool QuicFramer::ProcessRstStreamFrame(QuicDataReader* reader,
1476 QuicRstStreamFrame* frame) {
1477 if (!reader->ReadUInt32(&frame->stream_id)) {
1478 set_detailed_error("Unable to read stream_id.");
1479 return false;
1482 if (!reader->ReadUInt64(&frame->byte_offset)) {
1483 set_detailed_error("Unable to read rst stream sent byte offset.");
1484 return false;
1487 uint32 error_code;
1488 if (!reader->ReadUInt32(&error_code)) {
1489 set_detailed_error("Unable to read rst stream error code.");
1490 return false;
1493 if (error_code >= QUIC_STREAM_LAST_ERROR) {
1494 set_detailed_error("Invalid rst stream error code.");
1495 return false;
1498 frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code);
1499 if (quic_version_ <= QUIC_VERSION_24) {
1500 StringPiece error_details;
1501 if (!reader->ReadStringPiece16(&error_details)) {
1502 set_detailed_error("Unable to read rst stream error details.");
1503 return false;
1505 frame->error_details = error_details.as_string();
1508 return true;
1511 bool QuicFramer::ProcessConnectionCloseFrame(QuicDataReader* reader,
1512 QuicConnectionCloseFrame* frame) {
1513 uint32 error_code;
1514 if (!reader->ReadUInt32(&error_code)) {
1515 set_detailed_error("Unable to read connection close error code.");
1516 return false;
1519 if (error_code >= QUIC_LAST_ERROR) {
1520 set_detailed_error("Invalid error code.");
1521 return false;
1524 frame->error_code = static_cast<QuicErrorCode>(error_code);
1526 StringPiece error_details;
1527 if (!reader->ReadStringPiece16(&error_details)) {
1528 set_detailed_error("Unable to read connection close error details.");
1529 return false;
1531 frame->error_details = error_details.as_string();
1533 return true;
1536 bool QuicFramer::ProcessGoAwayFrame(QuicDataReader* reader,
1537 QuicGoAwayFrame* frame) {
1538 uint32 error_code;
1539 if (!reader->ReadUInt32(&error_code)) {
1540 set_detailed_error("Unable to read go away error code.");
1541 return false;
1543 frame->error_code = static_cast<QuicErrorCode>(error_code);
1545 if (error_code >= QUIC_LAST_ERROR) {
1546 set_detailed_error("Invalid error code.");
1547 return false;
1550 uint32 stream_id;
1551 if (!reader->ReadUInt32(&stream_id)) {
1552 set_detailed_error("Unable to read last good stream id.");
1553 return false;
1555 frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id);
1557 StringPiece reason_phrase;
1558 if (!reader->ReadStringPiece16(&reason_phrase)) {
1559 set_detailed_error("Unable to read goaway reason.");
1560 return false;
1562 frame->reason_phrase = reason_phrase.as_string();
1564 return true;
1567 bool QuicFramer::ProcessWindowUpdateFrame(QuicDataReader* reader,
1568 QuicWindowUpdateFrame* frame) {
1569 if (!reader->ReadUInt32(&frame->stream_id)) {
1570 set_detailed_error("Unable to read stream_id.");
1571 return false;
1574 if (!reader->ReadUInt64(&frame->byte_offset)) {
1575 set_detailed_error("Unable to read window byte_offset.");
1576 return false;
1579 return true;
1582 bool QuicFramer::ProcessBlockedFrame(QuicDataReader* reader,
1583 QuicBlockedFrame* frame) {
1584 if (!reader->ReadUInt32(&frame->stream_id)) {
1585 set_detailed_error("Unable to read stream_id.");
1586 return false;
1589 return true;
1592 // static
1593 StringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket(
1594 const QuicEncryptedPacket& encrypted,
1595 QuicConnectionIdLength connection_id_length,
1596 bool includes_version,
1597 QuicPacketNumberLength packet_number_length) {
1598 return StringPiece(
1599 encrypted.data() + kStartOfHashData,
1600 GetStartOfEncryptedData(connection_id_length, includes_version,
1601 packet_number_length) -
1602 kStartOfHashData);
1605 void QuicFramer::SetDecrypter(EncryptionLevel level, QuicDecrypter* decrypter) {
1606 DCHECK(alternative_decrypter_.get() == nullptr);
1607 DCHECK_GE(level, decrypter_level_);
1608 decrypter_.reset(decrypter);
1609 decrypter_level_ = level;
1612 void QuicFramer::SetAlternativeDecrypter(EncryptionLevel level,
1613 QuicDecrypter* decrypter,
1614 bool latch_once_used) {
1615 alternative_decrypter_.reset(decrypter);
1616 alternative_decrypter_level_ = level;
1617 alternative_decrypter_latch_ = latch_once_used;
1620 const QuicDecrypter* QuicFramer::decrypter() const {
1621 return decrypter_.get();
1624 const QuicDecrypter* QuicFramer::alternative_decrypter() const {
1625 return alternative_decrypter_.get();
1628 void QuicFramer::SetEncrypter(EncryptionLevel level,
1629 QuicEncrypter* encrypter) {
1630 DCHECK_GE(level, 0);
1631 DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1632 encrypter_[level].reset(encrypter);
1635 QuicEncryptedPacket* QuicFramer::EncryptPayload(
1636 EncryptionLevel level,
1637 QuicPacketNumber packet_packet_number,
1638 const QuicPacket& packet,
1639 char* buffer,
1640 size_t buffer_len) {
1641 DCHECK(encrypter_[level].get() != nullptr);
1643 const size_t encrypted_len =
1644 encrypter_[level]->GetCiphertextSize(packet.Plaintext().length());
1645 StringPiece header_data = packet.BeforePlaintext();
1646 const size_t total_len = header_data.length() + encrypted_len;
1648 char* encryption_buffer = buffer;
1649 // Allocate a large enough buffer for the header and the encrypted data.
1650 const bool is_new_buffer = total_len > buffer_len;
1651 if (is_new_buffer) {
1652 if (!FLAGS_quic_allow_oversized_packets_for_test) {
1653 LOG(DFATAL) << "Buffer of length:" << buffer_len
1654 << " is not large enough to encrypt length " << total_len;
1655 return nullptr;
1657 encryption_buffer = new char[total_len];
1659 // Copy in the header, because the encrypter only populates the encrypted
1660 // plaintext content.
1661 memcpy(encryption_buffer, header_data.data(), header_data.length());
1662 // Encrypt the plaintext into the buffer.
1663 size_t output_length = 0;
1664 if (!encrypter_[level]->EncryptPacket(
1665 packet_packet_number, packet.AssociatedData(), packet.Plaintext(),
1666 encryption_buffer + header_data.length(), &output_length,
1667 encrypted_len)) {
1668 RaiseError(QUIC_ENCRYPTION_FAILURE);
1669 return nullptr;
1672 return new QuicEncryptedPacket(
1673 encryption_buffer, header_data.length() + output_length, is_new_buffer);
1676 size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
1677 // In order to keep the code simple, we don't have the current encryption
1678 // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
1679 size_t min_plaintext_size = ciphertext_size;
1681 for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) {
1682 if (encrypter_[i].get() != nullptr) {
1683 size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size);
1684 if (size < min_plaintext_size) {
1685 min_plaintext_size = size;
1690 return min_plaintext_size;
1693 bool QuicFramer::DecryptPayload(QuicDataReader* encrypted_reader,
1694 const QuicPacketHeader& header,
1695 const QuicEncryptedPacket& packet,
1696 char* decrypted_buffer,
1697 size_t buffer_length,
1698 size_t* decrypted_length) {
1699 StringPiece encrypted = encrypted_reader->ReadRemainingPayload();
1700 DCHECK(decrypter_.get() != nullptr);
1701 const StringPiece& associated_data = GetAssociatedDataFromEncryptedPacket(
1702 packet, header.public_header.connection_id_length,
1703 header.public_header.version_flag,
1704 header.public_header.packet_number_length);
1705 bool success = decrypter_->DecryptPacket(
1706 header.packet_packet_number, associated_data, encrypted, decrypted_buffer,
1707 decrypted_length, buffer_length);
1708 if (success) {
1709 visitor_->OnDecryptedPacket(decrypter_level_);
1710 } else if (alternative_decrypter_.get() != nullptr) {
1711 success = alternative_decrypter_->DecryptPacket(
1712 header.packet_packet_number, associated_data, encrypted,
1713 decrypted_buffer, decrypted_length, buffer_length);
1714 if (success) {
1715 visitor_->OnDecryptedPacket(alternative_decrypter_level_);
1716 if (alternative_decrypter_latch_) {
1717 // Switch to the alternative decrypter and latch so that we cannot
1718 // switch back.
1719 decrypter_.reset(alternative_decrypter_.release());
1720 decrypter_level_ = alternative_decrypter_level_;
1721 alternative_decrypter_level_ = ENCRYPTION_NONE;
1722 } else {
1723 // Switch the alternative decrypter so that we use it first next time.
1724 decrypter_.swap(alternative_decrypter_);
1725 EncryptionLevel level = alternative_decrypter_level_;
1726 alternative_decrypter_level_ = decrypter_level_;
1727 decrypter_level_ = level;
1732 if (!success) {
1733 DLOG(WARNING) << "DecryptPacket failed for packet_number:"
1734 << header.packet_packet_number;
1735 return false;
1738 return true;
1741 size_t QuicFramer::GetAckFrameSize(
1742 const QuicAckFrame& ack,
1743 QuicPacketNumberLength packet_number_length) {
1744 AckFrameInfo ack_info = GetAckFrameInfo(ack);
1745 QuicPacketNumberLength largest_observed_length =
1746 GetMinSequenceNumberLength(ack.largest_observed);
1747 QuicPacketNumberLength missing_packet_number_length =
1748 GetMinSequenceNumberLength(ack_info.max_delta);
1750 size_t ack_size = GetMinAckFrameSize(largest_observed_length);
1751 if (!ack_info.nack_ranges.empty()) {
1752 ack_size += kNumberOfNackRangesSize + kNumberOfRevivedPacketsSize;
1753 ack_size += min(ack_info.nack_ranges.size(), kMaxNackRanges) *
1754 (missing_packet_number_length + PACKET_1BYTE_PACKET_NUMBER);
1755 ack_size += min(ack.revived_packets.size(),
1756 kMaxRevivedPackets) * largest_observed_length;
1759 // In version 23, if the ack will be truncated due to too many nack ranges,
1760 // then do not include the number of timestamps (1 byte).
1761 if (ack_info.nack_ranges.size() <= kMaxNackRanges) {
1762 // 1 byte for the number of timestamps.
1763 ack_size += 1;
1764 if (ack.received_packet_times.size() > 0) {
1765 // 1 byte for packet number, 4 bytes for timestamp for the first
1766 // packet.
1767 ack_size += 5;
1769 // 1 byte for packet number, 2 bytes for timestamp for the other
1770 // packets.
1771 ack_size += 3 * (ack.received_packet_times.size() - 1);
1775 return ack_size;
1778 size_t QuicFramer::ComputeFrameLength(
1779 const QuicFrame& frame,
1780 bool last_frame_in_packet,
1781 InFecGroup is_in_fec_group,
1782 QuicPacketNumberLength packet_number_length) {
1783 switch (frame.type) {
1784 case STREAM_FRAME:
1785 return GetMinStreamFrameSize(frame.stream_frame->stream_id,
1786 frame.stream_frame->offset,
1787 last_frame_in_packet, is_in_fec_group) +
1788 frame.stream_frame->data.length();
1789 case ACK_FRAME: {
1790 return GetAckFrameSize(*frame.ack_frame, packet_number_length);
1792 case STOP_WAITING_FRAME:
1793 return GetStopWaitingFrameSize(packet_number_length);
1794 case MTU_DISCOVERY_FRAME:
1795 // MTU discovery frames are serialized as ping frames.
1796 case PING_FRAME:
1797 // Ping has no payload.
1798 return kQuicFrameTypeSize;
1799 case RST_STREAM_FRAME:
1800 if (quic_version_ <= QUIC_VERSION_24) {
1801 return GetMinRstStreamFrameSize() +
1802 frame.rst_stream_frame->error_details.size();
1804 return GetRstStreamFrameSize();
1805 case CONNECTION_CLOSE_FRAME:
1806 return GetMinConnectionCloseFrameSize() +
1807 frame.connection_close_frame->error_details.size();
1808 case GOAWAY_FRAME:
1809 return GetMinGoAwayFrameSize() + frame.goaway_frame->reason_phrase.size();
1810 case WINDOW_UPDATE_FRAME:
1811 return GetWindowUpdateFrameSize();
1812 case BLOCKED_FRAME:
1813 return GetBlockedFrameSize();
1814 case PADDING_FRAME:
1815 DCHECK(false);
1816 return 0;
1817 case NUM_FRAME_TYPES:
1818 DCHECK(false);
1819 return 0;
1822 // Not reachable, but some Chrome compilers can't figure that out. *sigh*
1823 DCHECK(false);
1824 return 0;
1827 bool QuicFramer::AppendTypeByte(const QuicFrame& frame,
1828 bool no_stream_frame_length,
1829 QuicDataWriter* writer) {
1830 uint8 type_byte = 0;
1831 switch (frame.type) {
1832 case STREAM_FRAME: {
1833 if (frame.stream_frame == nullptr) {
1834 LOG(DFATAL) << "Failed to append STREAM frame with no stream_frame.";
1836 // Fin bit.
1837 type_byte |= frame.stream_frame->fin ? kQuicStreamFinMask : 0;
1839 // Data Length bit.
1840 type_byte <<= kQuicStreamDataLengthShift;
1841 type_byte |= no_stream_frame_length ? 0: kQuicStreamDataLengthMask;
1843 // Offset 3 bits.
1844 type_byte <<= kQuicStreamOffsetShift;
1845 const size_t offset_len = GetStreamOffsetSize(frame.stream_frame->offset);
1846 if (offset_len > 0) {
1847 type_byte |= offset_len - 1;
1850 // stream id 2 bits.
1851 type_byte <<= kQuicStreamIdShift;
1852 type_byte |= GetStreamIdSize(frame.stream_frame->stream_id) - 1;
1853 type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1.
1854 break;
1856 case ACK_FRAME:
1857 return true;
1858 case MTU_DISCOVERY_FRAME:
1859 type_byte = static_cast<uint8>(PING_FRAME);
1860 break;
1861 default:
1862 type_byte = static_cast<uint8>(frame.type);
1863 break;
1866 return writer->WriteUInt8(type_byte);
1869 // static
1870 bool QuicFramer::AppendPacketSequenceNumber(
1871 QuicPacketNumberLength packet_number_length,
1872 QuicPacketNumber packet_packet_number,
1873 QuicDataWriter* writer) {
1874 // Ensure the entire packet number can be written.
1875 if (writer->capacity() - writer->length() <
1876 static_cast<size_t>(packet_number_length)) {
1877 return false;
1879 switch (packet_number_length) {
1880 case PACKET_1BYTE_PACKET_NUMBER:
1881 return writer->WriteUInt8(packet_packet_number &
1882 k1ByteSequenceNumberMask);
1883 break;
1884 case PACKET_2BYTE_PACKET_NUMBER:
1885 return writer->WriteUInt16(packet_packet_number &
1886 k2ByteSequenceNumberMask);
1887 break;
1888 case PACKET_4BYTE_PACKET_NUMBER:
1889 return writer->WriteUInt32(packet_packet_number &
1890 k4ByteSequenceNumberMask);
1891 break;
1892 case PACKET_6BYTE_PACKET_NUMBER:
1893 return writer->WriteUInt48(packet_packet_number &
1894 k6ByteSequenceNumberMask);
1895 break;
1896 default:
1897 DCHECK(false) << "packet_number_length: " << packet_number_length;
1898 return false;
1902 bool QuicFramer::AppendStreamFrame(
1903 const QuicStreamFrame& frame,
1904 bool no_stream_frame_length,
1905 QuicDataWriter* writer) {
1906 if (!writer->WriteBytes(&frame.stream_id, GetStreamIdSize(frame.stream_id))) {
1907 LOG(DFATAL) << "Writing stream id size failed.";
1908 return false;
1910 if (!writer->WriteBytes(&frame.offset, GetStreamOffsetSize(frame.offset))) {
1911 LOG(DFATAL) << "Writing offset size failed.";
1912 return false;
1914 if (!no_stream_frame_length) {
1915 if ((frame.data.size() > numeric_limits<uint16>::max()) ||
1916 !writer->WriteUInt16(static_cast<uint16>(frame.data.size()))) {
1917 LOG(DFATAL) << "Writing stream frame length failed";
1918 return false;
1922 if (!writer->WriteBytes(frame.data.data(), frame.data.size())) {
1923 LOG(DFATAL) << "Writing frame data failed.";
1924 return false;
1926 return true;
1929 void QuicFramer::set_version(const QuicVersion version) {
1930 DCHECK(IsSupportedVersion(version)) << QuicVersionToString(version);
1931 quic_version_ = version;
1934 bool QuicFramer::AppendAckFrameAndTypeByte(
1935 const QuicPacketHeader& header,
1936 const QuicAckFrame& frame,
1937 QuicDataWriter* writer) {
1938 AckFrameInfo ack_info = GetAckFrameInfo(frame);
1939 QuicPacketNumber ack_largest_observed = frame.largest_observed;
1940 QuicPacketNumberLength largest_observed_length =
1941 GetMinSequenceNumberLength(ack_largest_observed);
1942 QuicPacketNumberLength missing_packet_number_length =
1943 GetMinSequenceNumberLength(ack_info.max_delta);
1944 // Determine whether we need to truncate ranges.
1945 size_t available_range_bytes =
1946 writer->capacity() - writer->length() - kNumberOfRevivedPacketsSize -
1947 kNumberOfNackRangesSize - GetMinAckFrameSize(largest_observed_length);
1948 size_t max_num_ranges =
1949 available_range_bytes /
1950 (missing_packet_number_length + PACKET_1BYTE_PACKET_NUMBER);
1951 max_num_ranges = min(kMaxNackRanges, max_num_ranges);
1952 bool truncated = ack_info.nack_ranges.size() > max_num_ranges;
1953 DVLOG_IF(1, truncated) << "Truncating ack from "
1954 << ack_info.nack_ranges.size() << " ranges to "
1955 << max_num_ranges;
1956 // Write out the type byte by setting the low order bits and doing shifts
1957 // to make room for the next bit flags to be set.
1958 // Whether there are any nacks.
1959 uint8 type_byte = ack_info.nack_ranges.empty() ? 0 : kQuicHasNacksMask;
1961 // truncating bit.
1962 type_byte <<= kQuicAckTruncatedShift;
1963 type_byte |= truncated ? kQuicAckTruncatedMask : 0;
1965 // Largest observed packet number length.
1966 type_byte <<= kQuicSequenceNumberLengthShift;
1967 type_byte |= GetSequenceNumberFlags(largest_observed_length);
1969 // Missing packet number length.
1970 type_byte <<= kQuicSequenceNumberLengthShift;
1971 type_byte |= GetSequenceNumberFlags(missing_packet_number_length);
1973 type_byte |= kQuicFrameTypeAckMask;
1975 if (!writer->WriteUInt8(type_byte)) {
1976 return false;
1979 QuicPacketEntropyHash ack_entropy_hash = frame.entropy_hash;
1980 NackRangeMap::reverse_iterator ack_iter = ack_info.nack_ranges.rbegin();
1981 if (truncated) {
1982 // Skip the nack ranges which the truncated ack won't include and set
1983 // a correct largest observed for the truncated ack.
1984 for (size_t i = 1; i < (ack_info.nack_ranges.size() - max_num_ranges);
1985 ++i) {
1986 ++ack_iter;
1988 // If the last range is followed by acks, include them.
1989 // If the last range is followed by another range, specify the end of the
1990 // range as the largest_observed.
1991 ack_largest_observed = ack_iter->first - 1;
1992 // Also update the entropy so it matches the largest observed.
1993 ack_entropy_hash = entropy_calculator_->EntropyHash(ack_largest_observed);
1994 ++ack_iter;
1997 if (!writer->WriteUInt8(ack_entropy_hash)) {
1998 return false;
2001 if (!AppendPacketSequenceNumber(largest_observed_length,
2002 ack_largest_observed, writer)) {
2003 return false;
2006 uint64 delta_time_largest_observed_us = kUFloat16MaxValue;
2007 if (!frame.delta_time_largest_observed.IsInfinite()) {
2008 DCHECK_LE(0u, frame.delta_time_largest_observed.ToMicroseconds());
2009 delta_time_largest_observed_us =
2010 frame.delta_time_largest_observed.ToMicroseconds();
2013 if (!writer->WriteUFloat16(delta_time_largest_observed_us)) {
2014 return false;
2017 // Timestamp goes at the end of the required fields.
2018 if (!truncated) {
2019 if (!AppendTimestampToAckFrame(frame, writer)) {
2020 return false;
2024 if (ack_info.nack_ranges.empty()) {
2025 return true;
2028 const uint8 num_missing_ranges =
2029 static_cast<uint8>(min(ack_info.nack_ranges.size(), max_num_ranges));
2030 if (!writer->WriteBytes(&num_missing_ranges, 1)) {
2031 return false;
2034 int num_ranges_written = 0;
2035 QuicPacketNumber last_sequence_written = ack_largest_observed;
2036 for (; ack_iter != ack_info.nack_ranges.rend(); ++ack_iter) {
2037 // Calculate the delta to the last number in the range.
2038 QuicPacketNumber missing_delta =
2039 last_sequence_written - (ack_iter->first + ack_iter->second);
2040 if (!AppendPacketSequenceNumber(missing_packet_number_length, missing_delta,
2041 writer)) {
2042 return false;
2044 if (!AppendPacketSequenceNumber(PACKET_1BYTE_PACKET_NUMBER,
2045 ack_iter->second, writer)) {
2046 return false;
2048 // Subtract 1 so a missing_delta of 0 means an adjacent range.
2049 last_sequence_written = ack_iter->first - 1;
2050 ++num_ranges_written;
2052 DCHECK_EQ(num_missing_ranges, num_ranges_written);
2054 // Append revived packets.
2055 // If not all the revived packets fit, only mention the ones that do.
2056 uint8 num_revived_packets =
2057 static_cast<uint8>(min(frame.revived_packets.size(), kMaxRevivedPackets));
2058 num_revived_packets = static_cast<uint8>(min(
2059 static_cast<size_t>(num_revived_packets),
2060 (writer->capacity() - writer->length()) / largest_observed_length));
2061 if (!writer->WriteBytes(&num_revived_packets, 1)) {
2062 return false;
2065 PacketNumberSet::const_iterator iter = frame.revived_packets.begin();
2066 for (int i = 0; i < num_revived_packets; ++i, ++iter) {
2067 LOG_IF(DFATAL, !frame.missing_packets.Contains(*iter));
2068 if (!AppendPacketSequenceNumber(largest_observed_length,
2069 *iter, writer)) {
2070 return false;
2074 return true;
2077 bool QuicFramer::AppendTimestampToAckFrame(const QuicAckFrame& frame,
2078 QuicDataWriter* writer) {
2079 DCHECK_GE(numeric_limits<uint8>::max(), frame.received_packet_times.size());
2080 // num_received_packets is only 1 byte.
2081 if (frame.received_packet_times.size() > numeric_limits<uint8>::max()) {
2082 return false;
2085 uint8 num_received_packets = frame.received_packet_times.size();
2087 if (!writer->WriteBytes(&num_received_packets, 1)) {
2088 return false;
2090 if (num_received_packets == 0) {
2091 return true;
2094 PacketTimeList::const_iterator it = frame.received_packet_times.begin();
2095 QuicPacketNumber packet_number = it->first;
2096 QuicPacketNumber delta_from_largest_observed =
2097 frame.largest_observed - packet_number;
2099 DCHECK_GE(numeric_limits<uint8>::max(), delta_from_largest_observed);
2100 if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2101 return false;
2104 if (!writer->WriteUInt8(
2105 delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2106 return false;
2109 // Use the lowest 4 bytes of the time delta from the creation_time_.
2110 const uint64 time_epoch_delta_us = UINT64_C(1) << 32;
2111 uint32 time_delta_us =
2112 static_cast<uint32>(it->second.Subtract(creation_time_).ToMicroseconds()
2113 & (time_epoch_delta_us - 1));
2114 if (!writer->WriteBytes(&time_delta_us, sizeof(time_delta_us))) {
2115 return false;
2118 QuicTime prev_time = it->second;
2120 for (++it; it != frame.received_packet_times.end(); ++it) {
2121 packet_number = it->first;
2122 delta_from_largest_observed = frame.largest_observed - packet_number;
2124 if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2125 return false;
2128 if (!writer->WriteUInt8(
2129 delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2130 return false;
2133 uint64 frame_time_delta_us =
2134 it->second.Subtract(prev_time).ToMicroseconds();
2135 prev_time = it->second;
2136 if (!writer->WriteUFloat16(frame_time_delta_us)) {
2137 return false;
2140 return true;
2143 bool QuicFramer::AppendStopWaitingFrame(
2144 const QuicPacketHeader& header,
2145 const QuicStopWaitingFrame& frame,
2146 QuicDataWriter* writer) {
2147 DCHECK_GE(header.packet_packet_number, frame.least_unacked);
2148 const QuicPacketNumber least_unacked_delta =
2149 header.packet_packet_number - frame.least_unacked;
2150 const QuicPacketNumber length_shift =
2151 header.public_header.packet_number_length * 8;
2152 if (!writer->WriteUInt8(frame.entropy_hash)) {
2153 LOG(DFATAL) << " hash failed";
2154 return false;
2157 if (least_unacked_delta >> length_shift > 0) {
2158 LOG(DFATAL) << "packet_number_length "
2159 << header.public_header.packet_number_length
2160 << " is too small for least_unacked_delta: "
2161 << least_unacked_delta;
2162 return false;
2164 if (!AppendPacketSequenceNumber(header.public_header.packet_number_length,
2165 least_unacked_delta, writer)) {
2166 LOG(DFATAL) << " seq failed: " << header.public_header.packet_number_length;
2167 return false;
2170 return true;
2173 bool QuicFramer::AppendRstStreamFrame(const QuicRstStreamFrame& frame,
2174 QuicDataWriter* writer) {
2175 if (!writer->WriteUInt32(frame.stream_id)) {
2176 return false;
2179 if (!writer->WriteUInt64(frame.byte_offset)) {
2180 return false;
2183 uint32 error_code = static_cast<uint32>(frame.error_code);
2184 if (!writer->WriteUInt32(error_code)) {
2185 return false;
2188 if (quic_version_ <= QUIC_VERSION_24) {
2189 if (!writer->WriteStringPiece16(frame.error_details)) {
2190 return false;
2193 return true;
2196 bool QuicFramer::AppendConnectionCloseFrame(
2197 const QuicConnectionCloseFrame& frame,
2198 QuicDataWriter* writer) {
2199 uint32 error_code = static_cast<uint32>(frame.error_code);
2200 if (!writer->WriteUInt32(error_code)) {
2201 return false;
2203 if (!writer->WriteStringPiece16(frame.error_details)) {
2204 return false;
2206 return true;
2209 bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame,
2210 QuicDataWriter* writer) {
2211 uint32 error_code = static_cast<uint32>(frame.error_code);
2212 if (!writer->WriteUInt32(error_code)) {
2213 return false;
2215 uint32 stream_id = static_cast<uint32>(frame.last_good_stream_id);
2216 if (!writer->WriteUInt32(stream_id)) {
2217 return false;
2219 if (!writer->WriteStringPiece16(frame.reason_phrase)) {
2220 return false;
2222 return true;
2225 bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame,
2226 QuicDataWriter* writer) {
2227 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2228 if (!writer->WriteUInt32(stream_id)) {
2229 return false;
2231 if (!writer->WriteUInt64(frame.byte_offset)) {
2232 return false;
2234 return true;
2237 bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame,
2238 QuicDataWriter* writer) {
2239 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2240 if (!writer->WriteUInt32(stream_id)) {
2241 return false;
2243 return true;
2246 bool QuicFramer::RaiseError(QuicErrorCode error) {
2247 DVLOG(1) << "Error: " << QuicUtils::ErrorToString(error)
2248 << " detail: " << detailed_error_;
2249 set_error(error);
2250 visitor_->OnError(this);
2251 return false;
2254 } // namespace net