1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/resources/picture_pile.h"
11 #include "cc/base/region.h"
12 #include "cc/debug/rendering_stats_instrumentation.h"
13 #include "cc/resources/picture_pile_impl.h"
14 #include "cc/resources/raster_worker_pool.h"
15 #include "cc/resources/tile_priority.h"
18 // Layout pixel buffer around the visible layer rect to record. Any base
19 // picture that intersects the visible layer rect expanded by this distance
21 const int kPixelDistanceToRecord
= 8000;
22 // We don't perform solid color analysis on images that have more than 10 skia
24 const int kOpCountThatIsOkToAnalyze
= 10;
26 // TODO(humper): The density threshold here is somewhat arbitrary; need a
27 // way to set // this from the command line so we can write a benchmark
28 // script and find a sweet spot.
29 const float kDensityThreshold
= 0.5f
;
31 bool rect_sort_y(const gfx::Rect
& r1
, const gfx::Rect
& r2
) {
32 return r1
.y() < r2
.y() || (r1
.y() == r2
.y() && r1
.x() < r2
.x());
35 bool rect_sort_x(const gfx::Rect
& r1
, const gfx::Rect
& r2
) {
36 return r1
.x() < r2
.x() || (r1
.x() == r2
.x() && r1
.y() < r2
.y());
39 float PerformClustering(const std::vector
<gfx::Rect
>& tiles
,
40 std::vector
<gfx::Rect
>* clustered_rects
) {
41 // These variables track the record area and invalid area
42 // for the entire clustering
43 int total_record_area
= 0;
44 int total_invalid_area
= 0;
46 // These variables track the record area and invalid area
47 // for the current cluster being constructed.
48 gfx::Rect cur_record_rect
;
49 int cluster_record_area
= 0, cluster_invalid_area
= 0;
51 for (std::vector
<gfx::Rect
>::const_iterator it
= tiles
.begin();
54 gfx::Rect invalid_tile
= *it
;
56 // For each tile, we consider adding the invalid tile to the
57 // current record rectangle. Only add it if the amount of empty
58 // space created is below a density threshold.
59 int tile_area
= invalid_tile
.width() * invalid_tile
.height();
61 gfx::Rect proposed_union
= cur_record_rect
;
62 proposed_union
.Union(invalid_tile
);
63 int proposed_area
= proposed_union
.width() * proposed_union
.height();
64 float proposed_density
=
65 static_cast<float>(cluster_invalid_area
+ tile_area
) /
66 static_cast<float>(proposed_area
);
68 if (proposed_density
>= kDensityThreshold
) {
69 // It's okay to add this invalid tile to the
70 // current recording rectangle.
71 cur_record_rect
= proposed_union
;
72 cluster_record_area
= proposed_area
;
73 cluster_invalid_area
+= tile_area
;
74 total_invalid_area
+= tile_area
;
76 // Adding this invalid tile to the current recording rectangle
77 // would exceed our badness threshold, so put the current rectangle
78 // in the list of recording rects, and start a new one.
79 clustered_rects
->push_back(cur_record_rect
);
80 total_record_area
+= cluster_record_area
;
81 cur_record_rect
= invalid_tile
;
82 cluster_invalid_area
= tile_area
;
83 cluster_record_area
= tile_area
;
87 DCHECK(!cur_record_rect
.IsEmpty());
88 clustered_rects
->push_back(cur_record_rect
);
89 total_record_area
+= cluster_record_area
;;
91 DCHECK_NE(total_record_area
, 0);
93 return static_cast<float>(total_invalid_area
) /
94 static_cast<float>(total_record_area
);
97 float ClusterTiles(const std::vector
<gfx::Rect
>& invalid_tiles
,
98 std::vector
<gfx::Rect
>* record_rects
) {
99 TRACE_EVENT1("cc", "ClusterTiles",
101 invalid_tiles
.size());
103 if (invalid_tiles
.size() <= 1) {
104 // Quickly handle the special case for common
105 // single-invalidation update, and also the less common
106 // case of no tiles passed in.
107 *record_rects
= invalid_tiles
;
111 // Sort the invalid tiles by y coordinate.
112 std::vector
<gfx::Rect
> invalid_tiles_vertical
= invalid_tiles
;
113 std::sort(invalid_tiles_vertical
.begin(),
114 invalid_tiles_vertical
.end(),
117 float vertical_density
;
118 std::vector
<gfx::Rect
> vertical_clustering
;
119 vertical_density
= PerformClustering(invalid_tiles_vertical
,
120 &vertical_clustering
);
122 // If vertical density is optimal, then we can return early.
123 if (vertical_density
== 1.f
) {
124 *record_rects
= vertical_clustering
;
125 return vertical_density
;
128 // Now try again with a horizontal sort, see which one is best
129 std::vector
<gfx::Rect
> invalid_tiles_horizontal
= invalid_tiles
;
130 std::sort(invalid_tiles_horizontal
.begin(),
131 invalid_tiles_horizontal
.end(),
134 float horizontal_density
;
135 std::vector
<gfx::Rect
> horizontal_clustering
;
136 horizontal_density
= PerformClustering(invalid_tiles_horizontal
,
137 &horizontal_clustering
);
139 if (vertical_density
< horizontal_density
) {
140 *record_rects
= horizontal_clustering
;
141 return horizontal_density
;
144 *record_rects
= vertical_clustering
;
145 return vertical_density
;
152 PicturePile::PicturePile()
153 : is_suitable_for_gpu_rasterization_(true),
154 is_solid_color_(true),
155 solid_color_(SK_ColorTRANSPARENT
) {
158 PicturePile::~PicturePile() {
161 bool PicturePile::UpdateAndExpandInvalidation(
162 ContentLayerClient
* painter
,
163 Region
* invalidation
,
164 SkColor background_color
,
165 bool contents_opaque
,
166 bool contents_fill_bounds_completely
,
167 const gfx::Size
& layer_size
,
168 const gfx::Rect
& visible_layer_rect
,
170 Picture::RecordingMode recording_mode
,
171 RenderingStatsInstrumentation
* stats_instrumentation
) {
172 background_color_
= background_color
;
173 contents_opaque_
= contents_opaque
;
174 contents_fill_bounds_completely_
= contents_fill_bounds_completely
;
176 bool updated
= false;
178 Region resize_invalidation
;
179 gfx::Size old_tiling_size
= tiling_size();
180 if (old_tiling_size
!= layer_size
) {
181 tiling_
.SetTilingSize(layer_size
);
185 gfx::Rect interest_rect
= visible_layer_rect
;
187 -kPixelDistanceToRecord
,
188 -kPixelDistanceToRecord
,
189 -kPixelDistanceToRecord
,
190 -kPixelDistanceToRecord
);
191 recorded_viewport_
= interest_rect
;
192 recorded_viewport_
.Intersect(gfx::Rect(tiling_size()));
194 gfx::Rect interest_rect_over_tiles
=
195 tiling_
.ExpandRectToTileBounds(interest_rect
);
197 if (old_tiling_size
!= layer_size
) {
198 has_any_recordings_
= false;
200 // Drop recordings that are outside the new layer bounds or that changed
202 std::vector
<PictureMapKey
> to_erase
;
203 int min_toss_x
= tiling_
.num_tiles_x();
204 if (tiling_size().width() > old_tiling_size
.width()) {
206 tiling_
.FirstBorderTileXIndexFromSrcCoord(old_tiling_size
.width());
208 int min_toss_y
= tiling_
.num_tiles_y();
209 if (tiling_size().height() > old_tiling_size
.height()) {
211 tiling_
.FirstBorderTileYIndexFromSrcCoord(old_tiling_size
.height());
213 for (PictureMap::const_iterator it
= picture_map_
.begin();
214 it
!= picture_map_
.end();
216 const PictureMapKey
& key
= it
->first
;
217 if (key
.first
< min_toss_x
&& key
.second
< min_toss_y
) {
218 has_any_recordings_
|= !!it
->second
.GetPicture();
221 to_erase
.push_back(key
);
224 for (size_t i
= 0; i
< to_erase
.size(); ++i
)
225 picture_map_
.erase(to_erase
[i
]);
227 // If a recording is dropped and not re-recorded below, invalidate that
228 // full recording to cause any raster tiles that would use it to be
230 // If the recording will be replaced below, just invalidate newly exposed
231 // areas to force raster tiles that include the old recording to know
232 // there is new recording to display.
233 gfx::Rect old_tiling_rect_over_tiles
=
234 tiling_
.ExpandRectToTileBounds(gfx::Rect(old_tiling_size
));
235 if (min_toss_x
< tiling_
.num_tiles_x()) {
236 // The bounds which we want to invalidate are the tiles along the old
237 // edge of the pile. We'll call this bounding box the OLD EDGE RECT.
239 // In the picture below, the old edge rect would be the bounding box
240 // of tiles {h,i,j}. |min_toss_x| would be equal to the horizontal index
241 // of the same tiles.
243 // old pile edge-v new pile edge-v
244 // ---------------+ - - - - - - - -+
245 // mmppssvvyybbeeh|h .
246 // mmppssvvyybbeeh|h .
247 // nnqqttwwzzccffi|i .
248 // nnqqttwwzzccffi|i .
249 // oorruuxxaaddggj|j .
250 // oorruuxxaaddggj|j .
251 // ---------------+ - - - - - - - -+ <- old pile edge
253 // - - - - - - - - - - - - - - - -+ <- new pile edge
255 // If you were to slide a vertical beam from the left edge of the
256 // old edge rect toward the right, it would either hit the right edge
257 // of the old edge rect, or the interest rect (expanded to the bounds
258 // of the tiles it touches). The same is true for a beam parallel to
259 // any of the four edges, sliding accross the old edge rect. We use
260 // the union of these four rectangles generated by these beams to
261 // determine which part of the old edge rect is outside of the expanded
264 // Case 1: Intersect rect is outside the old edge rect. It can be
265 // either on the left or the right. The |left_rect| and |right_rect|,
266 // cover this case, one will be empty and one will cover the full
267 // old edge rect. In the picture below, |left_rect| would cover the
268 // old edge rect, and |right_rect| would be empty.
269 // +----------------------+ |^^^^^^^^^^^^^^^|
270 // |===> OLD EDGE RECT | | |
271 // |===> | | INTEREST RECT |
274 // +----------------------+ |vvvvvvvvvvvvvvv|
276 // Case 2: Interest rect is inside the old edge rect. It will always
277 // fill the entire old edge rect horizontally since the old edge rect
278 // is a single tile wide, and the interest rect has been expanded to the
279 // bounds of the tiles it touches. In this case the |left_rect| and
280 // |right_rect| will be empty, but the case is handled by the |top_rect|
281 // and |bottom_rect|. In the picture below, neither the |top_rect| nor
282 // |bottom_rect| would empty, they would each cover the area of the old
283 // edge rect outside the expanded interest rect.
284 // +-----------------+
285 // |:::::::::::::::::|
286 // |:::::::::::::::::|
287 // |vvvvvvvvvvvvvvvvv|
289 // +-----------------+
292 // +-----------------+
295 // +-----------------+
297 // Lastly, we need to consider tiles inside the expanded interest rect.
298 // For those tiles, we want to invalidate exactly the newly exposed
299 // pixels. In the picture below the tiles in the old edge rect have been
300 // resized and the area covered by periods must be invalidated. The
301 // |exposed_rect| will cover exactly that area.
303 // +---------+-------+
306 // | OLD EDGE.RECT..|
313 // +---------+-------+
315 int left
= tiling_
.TilePositionX(min_toss_x
);
316 int right
= left
+ tiling_
.TileSizeX(min_toss_x
);
317 int top
= old_tiling_rect_over_tiles
.y();
318 int bottom
= old_tiling_rect_over_tiles
.bottom();
320 int left_until
= std::min(interest_rect_over_tiles
.x(), right
);
321 int right_until
= std::max(interest_rect_over_tiles
.right(), left
);
322 int top_until
= std::min(interest_rect_over_tiles
.y(), bottom
);
323 int bottom_until
= std::max(interest_rect_over_tiles
.bottom(), top
);
325 int exposed_left
= old_tiling_size
.width();
326 int exposed_left_until
= right
;
327 DCHECK_GE(exposed_left
, left
);
329 gfx::Rect
left_rect(left
, top
, left_until
- left
, bottom
- top
);
330 gfx::Rect
right_rect(right_until
, top
, right
- right_until
, bottom
- top
);
331 gfx::Rect
top_rect(left
, top
, right
- left
, top_until
- top
);
332 gfx::Rect
bottom_rect(
333 left
, bottom_until
, right
- left
, bottom
- bottom_until
);
334 gfx::Rect
exposed_rect(
335 exposed_left
, top
, exposed_left_until
- exposed_left
, bottom
- top
);
336 resize_invalidation
.Union(left_rect
);
337 resize_invalidation
.Union(right_rect
);
338 resize_invalidation
.Union(top_rect
);
339 resize_invalidation
.Union(bottom_rect
);
340 resize_invalidation
.Union(exposed_rect
);
342 if (min_toss_y
< tiling_
.num_tiles_y()) {
343 // The same thing occurs here as in the case above, but the invalidation
344 // rect is the bounding box around the bottom row of tiles in the old
345 // pile. This would be tiles {o,r,u,x,a,d,g,j} in the above picture.
347 int top
= tiling_
.TilePositionY(min_toss_y
);
348 int bottom
= top
+ tiling_
.TileSizeY(min_toss_y
);
349 int left
= old_tiling_rect_over_tiles
.x();
350 int right
= old_tiling_rect_over_tiles
.right();
352 int top_until
= std::min(interest_rect_over_tiles
.y(), bottom
);
353 int bottom_until
= std::max(interest_rect_over_tiles
.bottom(), top
);
354 int left_until
= std::min(interest_rect_over_tiles
.x(), right
);
355 int right_until
= std::max(interest_rect_over_tiles
.right(), left
);
357 int exposed_top
= old_tiling_size
.height();
358 int exposed_top_until
= bottom
;
359 DCHECK_GE(exposed_top
, top
);
361 gfx::Rect
left_rect(left
, top
, left_until
- left
, bottom
- top
);
362 gfx::Rect
right_rect(right_until
, top
, right
- right_until
, bottom
- top
);
363 gfx::Rect
top_rect(left
, top
, right
- left
, top_until
- top
);
364 gfx::Rect
bottom_rect(
365 left
, bottom_until
, right
- left
, bottom
- bottom_until
);
366 gfx::Rect
exposed_rect(
367 left
, exposed_top
, right
- left
, exposed_top_until
- exposed_top
);
368 resize_invalidation
.Union(left_rect
);
369 resize_invalidation
.Union(right_rect
);
370 resize_invalidation
.Union(top_rect
);
371 resize_invalidation
.Union(bottom_rect
);
372 resize_invalidation
.Union(exposed_rect
);
376 Region invalidation_expanded_to_full_tiles
;
377 for (Region::Iterator
i(*invalidation
); i
.has_rect(); i
.next()) {
378 gfx::Rect invalid_rect
= i
.rect();
380 // Expand invalidation that is outside tiles that intersect the interest
381 // rect. These tiles are no longer valid and should be considerered fully
382 // invalid, so we can know to not keep around raster tiles that intersect
383 // with these recording tiles.
384 gfx::Rect invalid_rect_outside_interest_rect_tiles
= invalid_rect
;
385 // TODO(danakj): We should have a Rect-subtract-Rect-to-2-rects operator
386 // instead of using Rect::Subtract which gives you the bounding box of the
388 invalid_rect_outside_interest_rect_tiles
.Subtract(interest_rect_over_tiles
);
389 invalidation_expanded_to_full_tiles
.Union(tiling_
.ExpandRectToTileBounds(
390 invalid_rect_outside_interest_rect_tiles
));
392 // Split this inflated invalidation across tile boundaries and apply it
393 // to all tiles that it touches.
394 bool include_borders
= true;
395 for (TilingData::Iterator
iter(&tiling_
, invalid_rect
, include_borders
);
398 const PictureMapKey
& key
= iter
.index();
400 PictureMap::iterator picture_it
= picture_map_
.find(key
);
401 if (picture_it
== picture_map_
.end())
404 // Inform the grid cell that it has been invalidated in this frame.
405 updated
= picture_it
->second
.Invalidate(frame_number
) || updated
;
406 // Invalidate drops the picture so the whole tile better be invalidated if
407 // it won't be re-recorded below.
409 tiling_
.TileBounds(key
.first
, key
.second
).Intersects(interest_rect
) ||
410 invalidation_expanded_to_full_tiles
.Contains(
411 tiling_
.TileBounds(key
.first
, key
.second
)));
415 invalidation
->Union(invalidation_expanded_to_full_tiles
);
416 invalidation
->Union(resize_invalidation
);
418 // Make a list of all invalid tiles; we will attempt to
419 // cluster these into multiple invalidation regions.
420 std::vector
<gfx::Rect
> invalid_tiles
;
421 bool include_borders
= true;
422 for (TilingData::Iterator
it(&tiling_
, interest_rect
, include_borders
); it
;
424 const PictureMapKey
& key
= it
.index();
425 PictureInfo
& info
= picture_map_
[key
];
427 gfx::Rect rect
= PaddedRect(key
);
428 int distance_to_visible
=
429 rect
.ManhattanInternalDistance(visible_layer_rect
);
431 if (info
.NeedsRecording(frame_number
, distance_to_visible
)) {
432 gfx::Rect tile
= tiling_
.TileBounds(key
.first
, key
.second
);
433 invalid_tiles
.push_back(tile
);
434 } else if (!info
.GetPicture()) {
435 if (recorded_viewport_
.Intersects(rect
)) {
436 // Recorded viewport is just an optimization for a fully recorded
437 // interest rect. In this case, a tile in that rect has declined
438 // to be recorded (probably due to frequent invalidations).
439 // TODO(enne): Shrink the recorded_viewport_ rather than clearing.
440 recorded_viewport_
= gfx::Rect();
443 // If a tile in the interest rect is not recorded, the entire tile needs
444 // to be considered invalid, so that we know not to keep around raster
445 // tiles that intersect this recording tile.
446 invalidation
->Union(tiling_
.TileBounds(it
.index_x(), it
.index_y()));
450 std::vector
<gfx::Rect
> record_rects
;
451 ClusterTiles(invalid_tiles
, &record_rects
);
453 if (record_rects
.empty())
456 for (std::vector
<gfx::Rect
>::iterator it
= record_rects
.begin();
457 it
!= record_rects
.end();
459 gfx::Rect record_rect
= *it
;
460 record_rect
= PadRect(record_rect
);
462 int repeat_count
= std::max(1, slow_down_raster_scale_factor_for_debug_
);
463 scoped_refptr
<Picture
> picture
;
465 // Note: Currently, gathering of pixel refs when using a single
466 // raster thread doesn't provide any benefit. This might change
467 // in the future but we avoid it for now to reduce the cost of
469 bool gather_pixel_refs
= RasterWorkerPool::GetNumRasterThreads() > 1;
472 base::TimeDelta best_duration
= base::TimeDelta::Max();
473 for (int i
= 0; i
< repeat_count
; i
++) {
474 base::TimeTicks start_time
= stats_instrumentation
->StartRecording();
475 picture
= Picture::Create(record_rect
,
480 // Note the '&&' with previous is-suitable state.
481 // This means that once a picture-pile becomes unsuitable for gpu
482 // rasterization due to some content, it will continue to be unsuitable
483 // even if that content is replaced by gpu-friendly content.
484 // This is an optimization to avoid iterating though all pictures in
485 // the pile after each invalidation.
486 is_suitable_for_gpu_rasterization_
&=
487 picture
->IsSuitableForGpuRasterization();
488 has_text_
|= picture
->HasText();
489 base::TimeDelta duration
=
490 stats_instrumentation
->EndRecording(start_time
);
491 best_duration
= std::min(duration
, best_duration
);
493 int recorded_pixel_count
=
494 picture
->LayerRect().width() * picture
->LayerRect().height();
495 stats_instrumentation
->AddRecord(best_duration
, recorded_pixel_count
);
498 bool found_tile_for_recorded_picture
= false;
500 bool include_borders
= true;
501 for (TilingData::Iterator
it(&tiling_
, record_rect
, include_borders
); it
;
503 const PictureMapKey
& key
= it
.index();
504 gfx::Rect tile
= PaddedRect(key
);
505 if (record_rect
.Contains(tile
)) {
506 PictureInfo
& info
= picture_map_
[key
];
507 info
.SetPicture(picture
);
508 found_tile_for_recorded_picture
= true;
511 DetermineIfSolidColor();
512 DCHECK(found_tile_for_recorded_picture
);
515 has_any_recordings_
= true;
516 DCHECK(CanRasterSlowTileCheck(recorded_viewport_
));
520 void PicturePile::SetEmptyBounds() {
521 tiling_
.SetTilingSize(gfx::Size());
522 picture_map_
.clear();
523 has_any_recordings_
= false;
524 recorded_viewport_
= gfx::Rect();
527 void PicturePile::DetermineIfSolidColor() {
528 is_solid_color_
= false;
529 solid_color_
= SK_ColorTRANSPARENT
;
531 if (picture_map_
.empty()) {
535 PictureMap::const_iterator it
= picture_map_
.begin();
536 const Picture
* picture
= it
->second
.GetPicture();
538 // Missing recordings due to frequent invalidations or being too far away
539 // from the interest rect will cause the a null picture to exist.
543 // Don't bother doing more work if the first image is too complicated.
544 if (picture
->ApproximateOpCount() > kOpCountThatIsOkToAnalyze
)
547 // Make sure all of the mapped images point to the same picture.
548 for (++it
; it
!= picture_map_
.end(); ++it
) {
549 if (it
->second
.GetPicture() != picture
)
552 skia::AnalysisCanvas
canvas(recorded_viewport_
.width(),
553 recorded_viewport_
.height());
554 picture
->Raster(&canvas
, NULL
, Region(), 1.0f
);
555 is_solid_color_
= canvas
.GetColorIfSolid(&solid_color_
);