Update V8 to version 4.7.52.
[chromium-blink-merge.git] / third_party / libwebp / utils / quant_levels_dec.c
blob5b8b8b49e6bf732a86c110c344e1fbca7287c96b
1 // Copyright 2013 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Implement gradient smoothing: we replace a current alpha value by its
11 // surrounding average if it's close enough (that is: the change will be less
12 // than the minimum distance between two quantized level).
13 // We use sliding window for computing the 2d moving average.
15 // Author: Skal (pascal.massimino@gmail.com)
17 #include "./quant_levels_dec.h"
19 #include <string.h> // for memset
21 #include "./utils.h"
23 // #define USE_DITHERING // uncomment to enable ordered dithering (not vital)
25 #define FIX 16 // fix-point precision for averaging
26 #define LFIX 2 // extra precision for look-up table
27 #define LUT_SIZE ((1 << (8 + LFIX)) - 1) // look-up table size
29 #if defined(USE_DITHERING)
31 #define DFIX 4 // extra precision for ordered dithering
32 #define DSIZE 4 // dithering size (must be a power of two)
33 // cf. http://en.wikipedia.org/wiki/Ordered_dithering
34 static const uint8_t kOrderedDither[DSIZE][DSIZE] = {
35 { 0, 8, 2, 10 }, // coefficients are in DFIX fixed-point precision
36 { 12, 4, 14, 6 },
37 { 3, 11, 1, 9 },
38 { 15, 7, 13, 5 }
41 #else
42 #define DFIX 0
43 #endif
45 typedef struct {
46 int width_, height_; // dimension
47 int row_; // current input row being processed
48 uint8_t* src_; // input pointer
49 uint8_t* dst_; // output pointer
51 int radius_; // filter radius (=delay)
52 int scale_; // normalization factor, in FIX bits precision
54 void* mem_; // all memory
56 // various scratch buffers
57 uint16_t* start_;
58 uint16_t* cur_;
59 uint16_t* end_;
60 uint16_t* top_;
61 uint16_t* average_;
63 // input levels distribution
64 int num_levels_; // number of quantized levels
65 int min_, max_; // min and max level values
66 int min_level_dist_; // smallest distance between two consecutive levels
68 int16_t* correction_; // size = 1 + 2*LUT_SIZE -> ~4k memory
69 } SmoothParams;
71 //------------------------------------------------------------------------------
73 #define CLIP_MASK (int)(~0U << (8 + DFIX))
74 static WEBP_INLINE uint8_t clip_8b(int v) {
75 return (!(v & CLIP_MASK)) ? (uint8_t)(v >> DFIX) : (v < 0) ? 0u : 255u;
78 // vertical accumulation
79 static void VFilter(SmoothParams* const p) {
80 const uint8_t* src = p->src_;
81 const int w = p->width_;
82 uint16_t* const cur = p->cur_;
83 const uint16_t* const top = p->top_;
84 uint16_t* const out = p->end_;
85 uint16_t sum = 0; // all arithmetic is modulo 16bit
86 int x;
88 for (x = 0; x < w; ++x) {
89 uint16_t new_value;
90 sum += src[x];
91 new_value = top[x] + sum;
92 out[x] = new_value - cur[x]; // vertical sum of 'r' pixels.
93 cur[x] = new_value;
95 // move input pointers one row down
96 p->top_ = p->cur_;
97 p->cur_ += w;
98 if (p->cur_ == p->end_) p->cur_ = p->start_; // roll-over
99 // We replicate edges, as it's somewhat easier as a boundary condition.
100 // That's why we don't update the 'src' pointer on top/bottom area:
101 if (p->row_ >= 0 && p->row_ < p->height_ - 1) {
102 p->src_ += p->width_;
106 // horizontal accumulation. We use mirror replication of missing pixels, as it's
107 // a little easier to implement (surprisingly).
108 static void HFilter(SmoothParams* const p) {
109 const uint16_t* const in = p->end_;
110 uint16_t* const out = p->average_;
111 const uint32_t scale = p->scale_;
112 const int w = p->width_;
113 const int r = p->radius_;
115 int x;
116 for (x = 0; x <= r; ++x) { // left mirroring
117 const uint16_t delta = in[x + r - 1] + in[r - x];
118 out[x] = (delta * scale) >> FIX;
120 for (; x < w - r; ++x) { // bulk middle run
121 const uint16_t delta = in[x + r] - in[x - r - 1];
122 out[x] = (delta * scale) >> FIX;
124 for (; x < w; ++x) { // right mirroring
125 const uint16_t delta =
126 2 * in[w - 1] - in[2 * w - 2 - r - x] - in[x - r - 1];
127 out[x] = (delta * scale) >> FIX;
131 // emit one filtered output row
132 static void ApplyFilter(SmoothParams* const p) {
133 const uint16_t* const average = p->average_;
134 const int w = p->width_;
135 const int16_t* const correction = p->correction_;
136 #if defined(USE_DITHERING)
137 const uint8_t* const dither = kOrderedDither[p->row_ % DSIZE];
138 #endif
139 uint8_t* const dst = p->dst_;
140 int x;
141 for (x = 0; x < w; ++x) {
142 const int v = dst[x];
143 if (v < p->max_ && v > p->min_) {
144 const int c = (v << DFIX) + correction[average[x] - (v << LFIX)];
145 #if defined(USE_DITHERING)
146 dst[x] = clip_8b(c + dither[x % DSIZE]);
147 #else
148 dst[x] = clip_8b(c);
149 #endif
152 p->dst_ += w; // advance output pointer
155 //------------------------------------------------------------------------------
156 // Initialize correction table
158 static void InitCorrectionLUT(int16_t* const lut, int min_dist) {
159 // The correction curve is:
160 // f(x) = x for x <= threshold2
161 // f(x) = 0 for x >= threshold1
162 // and a linear interpolation for range x=[threshold2, threshold1]
163 // (along with f(-x) = -f(x) symmetry).
164 // Note that: threshold2 = 3/4 * threshold1
165 const int threshold1 = min_dist << LFIX;
166 const int threshold2 = (3 * threshold1) >> 2;
167 const int max_threshold = threshold2 << DFIX;
168 const int delta = threshold1 - threshold2;
169 int i;
170 for (i = 1; i <= LUT_SIZE; ++i) {
171 int c = (i <= threshold2) ? (i << DFIX)
172 : (i < threshold1) ? max_threshold * (threshold1 - i) / delta
173 : 0;
174 c >>= LFIX;
175 lut[+i] = +c;
176 lut[-i] = -c;
178 lut[0] = 0;
181 static void CountLevels(const uint8_t* const data, int size,
182 SmoothParams* const p) {
183 int i, last_level;
184 uint8_t used_levels[256] = { 0 };
185 p->min_ = 255;
186 p->max_ = 0;
187 for (i = 0; i < size; ++i) {
188 const int v = data[i];
189 if (v < p->min_) p->min_ = v;
190 if (v > p->max_) p->max_ = v;
191 used_levels[v] = 1;
193 // Compute the mininum distance between two non-zero levels.
194 p->min_level_dist_ = p->max_ - p->min_;
195 last_level = -1;
196 for (i = 0; i < 256; ++i) {
197 if (used_levels[i]) {
198 ++p->num_levels_;
199 if (last_level >= 0) {
200 const int level_dist = i - last_level;
201 if (level_dist < p->min_level_dist_) {
202 p->min_level_dist_ = level_dist;
205 last_level = i;
210 // Initialize all params.
211 static int InitParams(uint8_t* const data, int width, int height,
212 int radius, SmoothParams* const p) {
213 const int R = 2 * radius + 1; // total size of the kernel
215 const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start_);
216 const size_t size_m = width * sizeof(*p->average_);
217 const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction_);
218 const size_t total_size = size_scratch_m + size_m + size_lut;
219 uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size);
221 if (mem == NULL) return 0;
222 p->mem_ = (void*)mem;
224 p->start_ = (uint16_t*)mem;
225 p->cur_ = p->start_;
226 p->end_ = p->start_ + R * width;
227 p->top_ = p->end_ - width;
228 memset(p->top_, 0, width * sizeof(*p->top_));
229 mem += size_scratch_m;
231 p->average_ = (uint16_t*)mem;
232 mem += size_m;
234 p->width_ = width;
235 p->height_ = height;
236 p->src_ = data;
237 p->dst_ = data;
238 p->radius_ = radius;
239 p->scale_ = (1 << (FIX + LFIX)) / (R * R); // normalization constant
240 p->row_ = -radius;
242 // analyze the input distribution so we can best-fit the threshold
243 CountLevels(data, width * height, p);
245 // correction table
246 p->correction_ = ((int16_t*)mem) + LUT_SIZE;
247 InitCorrectionLUT(p->correction_, p->min_level_dist_);
249 return 1;
252 static void CleanupParams(SmoothParams* const p) {
253 WebPSafeFree(p->mem_);
256 int WebPDequantizeLevels(uint8_t* const data, int width, int height,
257 int strength) {
258 const int radius = 4 * strength / 100;
259 if (strength < 0 || strength > 100) return 0;
260 if (data == NULL || width <= 0 || height <= 0) return 0; // bad params
261 if (radius > 0) {
262 SmoothParams p;
263 memset(&p, 0, sizeof(p));
264 if (!InitParams(data, width, height, radius, &p)) return 0;
265 if (p.num_levels_ > 2) {
266 for (; p.row_ < p.height_; ++p.row_) {
267 VFilter(&p); // accumulate average of input
268 // Need to wait few rows in order to prime the filter,
269 // before emitting some output.
270 if (p.row_ >= p.radius_) {
271 HFilter(&p);
272 ApplyFilter(&p);
276 CleanupParams(&p);
278 return 1;