Update V8 to version 4.7.52.
[chromium-blink-merge.git] / third_party / tcmalloc / vendor / src / debugallocation.cc
blob70ec162bc72121d432bbdf710250aa9a824c63a4
1 // Copyright (c) 2000, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 // ---
31 // Author: Urs Holzle <opensource@google.com>
33 #include "config.h"
34 #include <errno.h>
35 #ifdef HAVE_FCNTL_H
36 #include <fcntl.h>
37 #endif
38 #ifdef HAVE_INTTYPES_H
39 #include <inttypes.h>
40 #endif
41 // We only need malloc.h for struct mallinfo.
42 #ifdef HAVE_STRUCT_MALLINFO
43 // Malloc can be in several places on older versions of OS X.
44 # if defined(HAVE_MALLOC_H)
45 # include <malloc.h>
46 # elif defined(HAVE_MALLOC_MALLOC_H)
47 # include <malloc/malloc.h>
48 # elif defined(HAVE_SYS_MALLOC_H)
49 # include <sys/malloc.h>
50 # endif
51 #endif
52 #ifdef HAVE_PTHREAD
53 #include <pthread.h>
54 #endif
55 #include <stdarg.h>
56 #include <stdio.h>
57 #include <string.h>
58 #ifdef HAVE_MMAP
59 #include <sys/mman.h>
60 #endif
61 #include <sys/stat.h>
62 #include <sys/types.h>
63 #ifdef HAVE_UNISTD_H
64 #include <unistd.h>
65 #endif
67 #include <gperftools/malloc_extension.h>
68 #include <gperftools/malloc_hook.h>
69 #include <gperftools/stacktrace.h>
70 #include "addressmap-inl.h"
71 #include "base/commandlineflags.h"
72 #include "base/googleinit.h"
73 #include "base/logging.h"
74 #include "base/spinlock.h"
75 #include "malloc_hook-inl.h"
76 #include "symbolize.h"
78 #define TCMALLOC_USING_DEBUGALLOCATION
79 #include "tcmalloc.cc"
81 // __THROW is defined in glibc systems. It means, counter-intuitively,
82 // "This function will never throw an exception." It's an optional
83 // optimization tool, but we may need to use it to match glibc prototypes.
84 #ifndef __THROW // I guess we're not on a glibc system
85 # define __THROW // __THROW is just an optimization, so ok to make it ""
86 #endif
88 // On systems (like freebsd) that don't define MAP_ANONYMOUS, use the old
89 // form of the name instead.
90 #ifndef MAP_ANONYMOUS
91 # define MAP_ANONYMOUS MAP_ANON
92 #endif
94 // ========================================================================= //
96 DEFINE_bool(malloctrace,
97 EnvToBool("TCMALLOC_TRACE", false),
98 "Enables memory (de)allocation tracing to /tmp/google.alloc.");
99 #ifdef HAVE_MMAP
100 DEFINE_bool(malloc_page_fence,
101 EnvToBool("TCMALLOC_PAGE_FENCE", false),
102 "Enables putting of memory allocations at page boundaries "
103 "with a guard page following the allocation (to catch buffer "
104 "overruns right when they happen).");
105 DEFINE_bool(malloc_page_fence_never_reclaim,
106 EnvToBool("TCMALLOC_PAGE_FRANCE_NEVER_RECLAIM", false),
107 "Enables making the virtual address space inaccessible "
108 "upon a deallocation instead of returning it and reusing later.");
109 #else
110 DEFINE_bool(malloc_page_fence, false, "Not usable (requires mmap)");
111 DEFINE_bool(malloc_page_fence_never_reclaim, false, "Not usable (required mmap)");
112 #endif
113 DEFINE_bool(malloc_reclaim_memory,
114 EnvToBool("TCMALLOC_RECLAIM_MEMORY", true),
115 "If set to false, we never return memory to malloc "
116 "when an object is deallocated. This ensures that all "
117 "heap object addresses are unique.");
118 DEFINE_int32(max_free_queue_size,
119 EnvToInt("TCMALLOC_MAX_FREE_QUEUE_SIZE", 10*1024*1024),
120 "If greater than 0, keep freed blocks in a queue instead of "
121 "releasing them to the allocator immediately. Release them when "
122 "the total size of all blocks in the queue would otherwise exceed "
123 "this limit.");
125 DEFINE_bool(symbolize_stacktrace,
126 EnvToBool("TCMALLOC_SYMBOLIZE_STACKTRACE", true),
127 "Symbolize the stack trace when provided (on some error exits)");
129 // If we are LD_PRELOAD-ed against a non-pthreads app, then
130 // pthread_once won't be defined. We declare it here, for that
131 // case (with weak linkage) which will cause the non-definition to
132 // resolve to NULL. We can then check for NULL or not in Instance.
133 extern "C" int pthread_once(pthread_once_t *, void (*)(void))
134 ATTRIBUTE_WEAK;
136 // ========================================================================= //
138 // A safe version of printf() that does not do any allocation and
139 // uses very little stack space.
140 static void TracePrintf(int fd, const char *fmt, ...)
141 __attribute__ ((__format__ (__printf__, 2, 3)));
143 // The do_* functions are defined in tcmalloc/tcmalloc.cc,
144 // which is included before this file
145 // when TCMALLOC_FOR_DEBUGALLOCATION is defined
146 // TODO(csilvers): get rid of these now that we are tied to tcmalloc.
147 #define BASE_MALLOC_NEW do_malloc
148 #define BASE_MALLOC do_malloc
149 #define BASE_FREE do_free
150 #define BASE_MALLOC_STATS do_malloc_stats
151 #define BASE_MALLOPT do_mallopt
152 #define BASE_MALLINFO do_mallinfo
154 // ========================================================================= //
156 class MallocBlock;
158 // A circular buffer to hold freed blocks of memory. MallocBlock::Deallocate
159 // (below) pushes blocks into this queue instead of returning them to the
160 // underlying allocator immediately. See MallocBlock::Deallocate for more
161 // information.
163 // We can't use an STL class for this because we need to be careful not to
164 // perform any heap de-allocations in any of the code in this class, since the
165 // code in MallocBlock::Deallocate is not re-entrant.
166 template <typename QueueEntry>
167 class FreeQueue {
168 public:
169 FreeQueue() : q_front_(0), q_back_(0) {}
171 bool Full() {
172 return (q_front_ + 1) % kFreeQueueSize == q_back_;
175 void Push(const QueueEntry& block) {
176 q_[q_front_] = block;
177 q_front_ = (q_front_ + 1) % kFreeQueueSize;
180 QueueEntry Pop() {
181 RAW_CHECK(q_back_ != q_front_, "Queue is empty");
182 const QueueEntry& ret = q_[q_back_];
183 q_back_ = (q_back_ + 1) % kFreeQueueSize;
184 return ret;
187 size_t size() const {
188 return (q_front_ - q_back_ + kFreeQueueSize) % kFreeQueueSize;
191 private:
192 // Maximum number of blocks kept in the free queue before being freed.
193 static const int kFreeQueueSize = 1024;
195 QueueEntry q_[kFreeQueueSize];
196 int q_front_;
197 int q_back_;
200 struct MallocBlockQueueEntry {
201 MallocBlockQueueEntry() : block(NULL), size(0),
202 num_deleter_pcs(0), deleter_threadid(0) {}
203 MallocBlockQueueEntry(MallocBlock* b, size_t s) : block(b), size(s) {
204 if (FLAGS_max_free_queue_size != 0 && b != NULL) {
205 // Adjust the number of frames to skip (4) if you change the
206 // location of this call.
207 num_deleter_pcs =
208 GetStackTrace(deleter_pcs,
209 sizeof(deleter_pcs) / sizeof(deleter_pcs[0]),
211 deleter_threadid = pthread_self();
212 } else {
213 num_deleter_pcs = 0;
214 // Zero is an illegal pthread id by my reading of the pthread
215 // implementation:
216 deleter_threadid = 0;
220 MallocBlock* block;
221 size_t size;
223 // When deleted and put in the free queue, we (flag-controlled)
224 // record the stack so that if corruption is later found, we can
225 // print the deleter's stack. (These three vars add 144 bytes of
226 // overhead under the LP64 data model.)
227 void* deleter_pcs[16];
228 int num_deleter_pcs;
229 pthread_t deleter_threadid;
232 class MallocBlock {
233 public: // allocation type constants
235 // Different allocation types we distinguish.
236 // Note: The lower 4 bits are not random: we index kAllocName array
237 // by these values masked with kAllocTypeMask;
238 // the rest are "random" magic bits to help catch memory corruption.
239 static const int kMallocType = 0xEFCDAB90;
240 static const int kNewType = 0xFEBADC81;
241 static const int kArrayNewType = 0xBCEADF72;
243 private: // constants
245 // A mask used on alloc types above to get to 0, 1, 2
246 static const int kAllocTypeMask = 0x3;
247 // An additional bit to set in AllocType constants
248 // to mark now deallocated regions.
249 static const int kDeallocatedTypeBit = 0x4;
251 // For better memory debugging, we initialize all storage to known
252 // values, and overwrite the storage when it's deallocated:
253 // Byte that fills uninitialized storage.
254 static const int kMagicUninitializedByte = 0xAB;
255 // Byte that fills deallocated storage.
256 // NOTE: tcmalloc.cc depends on the value of kMagicDeletedByte
257 // to work around a bug in the pthread library.
258 static const int kMagicDeletedByte = 0xCD;
259 // A size_t (type of alloc_type_ below) in a deallocated storage
260 // filled with kMagicDeletedByte.
261 static const size_t kMagicDeletedSizeT =
262 0xCDCDCDCD | (((size_t)0xCDCDCDCD << 16) << 16);
263 // Initializer works for 32 and 64 bit size_ts;
264 // "<< 16 << 16" is to fool gcc from issuing a warning
265 // when size_ts are 32 bits.
267 // NOTE: on Linux, you can enable malloc debugging support in libc by
268 // setting the environment variable MALLOC_CHECK_ to 1 before you
269 // start the program (see man malloc).
271 // We use either BASE_MALLOC or mmap to make the actual allocation. In
272 // order to remember which one of the two was used for any block, we store an
273 // appropriate magic word next to the block.
274 static const int kMagicMalloc = 0xDEADBEEF;
275 static const int kMagicMMap = 0xABCDEFAB;
277 // This array will be filled with 0xCD, for use with memcmp.
278 static unsigned char kMagicDeletedBuffer[1024];
279 static pthread_once_t deleted_buffer_initialized_;
280 static bool deleted_buffer_initialized_no_pthreads_;
282 private: // data layout
284 // The four fields size1_,offset_,magic1_,alloc_type_
285 // should together occupy a multiple of 16 bytes. (At the
286 // moment, sizeof(size_t) == 4 or 8 depending on piii vs
287 // k8, and 4 of those sum to 16 or 32 bytes).
288 // This, combined with BASE_MALLOC's alignment guarantees,
289 // ensures that SSE types can be stored into the returned
290 // block, at &size2_.
291 size_t size1_;
292 size_t offset_; // normally 0 unless memaligned memory
293 // see comments in memalign() and FromRawPointer().
294 size_t magic1_;
295 size_t alloc_type_;
296 // here comes the actual data (variable length)
297 // ...
298 // then come the size2_ and magic2_, or a full page of mprotect-ed memory
299 // if the malloc_page_fence feature is enabled.
300 size_t size2_;
301 int magic2_;
303 private: // static data and helpers
305 // Allocation map: stores the allocation type for each allocated object,
306 // or the type or'ed with kDeallocatedTypeBit
307 // for each formerly allocated object.
308 typedef AddressMap<int> AllocMap;
309 static AllocMap* alloc_map_;
310 // This protects alloc_map_ and consistent state of metadata
311 // for each still-allocated object in it.
312 // We use spin locks instead of pthread_mutex_t locks
313 // to prevent crashes via calls to pthread_mutex_(un)lock
314 // for the (de)allocations coming from pthreads initialization itself.
315 static SpinLock alloc_map_lock_;
317 // A queue of freed blocks. Instead of releasing blocks to the allocator
318 // immediately, we put them in a queue, freeing them only when necessary
319 // to keep the total size of all the freed blocks below the limit set by
320 // FLAGS_max_free_queue_size.
321 static FreeQueue<MallocBlockQueueEntry>* free_queue_;
323 static size_t free_queue_size_; // total size of blocks in free_queue_
324 // protects free_queue_ and free_queue_size_
325 static SpinLock free_queue_lock_;
327 // Names of allocation types (kMallocType, kNewType, kArrayNewType)
328 static const char* const kAllocName[];
329 // Names of corresponding deallocation types
330 static const char* const kDeallocName[];
332 static const char* AllocName(int type) {
333 return kAllocName[type & kAllocTypeMask];
336 static const char* DeallocName(int type) {
337 return kDeallocName[type & kAllocTypeMask];
340 private: // helper accessors
342 bool IsMMapped() const { return kMagicMMap == magic1_; }
344 bool IsValidMagicValue(int value) const {
345 return kMagicMMap == value || kMagicMalloc == value;
348 static size_t real_malloced_size(size_t size) {
349 return size + sizeof(MallocBlock);
351 static size_t real_mmapped_size(size_t size) {
352 return size + MallocBlock::data_offset();
355 size_t real_size() {
356 return IsMMapped() ? real_mmapped_size(size1_) : real_malloced_size(size1_);
359 // NOTE: if the block is mmapped (that is, we're using the
360 // malloc_page_fence option) then there's no size2 or magic2
361 // (instead, the guard page begins where size2 would be).
363 size_t* size2_addr() { return (size_t*)((char*)&size2_ + size1_); }
364 const size_t* size2_addr() const {
365 return (const size_t*)((char*)&size2_ + size1_);
368 int* magic2_addr() { return (int*)(size2_addr() + 1); }
369 const int* magic2_addr() const { return (const int*)(size2_addr() + 1); }
371 private: // other helpers
373 void Initialize(size_t size, int type) {
374 RAW_CHECK(IsValidMagicValue(magic1_), "");
375 // record us as allocated in the map
376 alloc_map_lock_.Lock();
377 if (!alloc_map_) {
378 void* p = BASE_MALLOC(sizeof(AllocMap));
379 alloc_map_ = new(p) AllocMap(BASE_MALLOC, BASE_FREE);
381 alloc_map_->Insert(data_addr(), type);
382 // initialize us
383 size1_ = size;
384 offset_ = 0;
385 alloc_type_ = type;
386 if (!IsMMapped()) {
387 *magic2_addr() = magic1_;
388 *size2_addr() = size;
390 alloc_map_lock_.Unlock();
391 memset(data_addr(), kMagicUninitializedByte, size);
392 if (!IsMMapped()) {
393 RAW_CHECK(size1_ == *size2_addr(), "should hold");
394 RAW_CHECK(magic1_ == *magic2_addr(), "should hold");
398 size_t CheckAndClear(int type) {
399 alloc_map_lock_.Lock();
400 CheckLocked(type);
401 if (!IsMMapped()) {
402 RAW_CHECK(size1_ == *size2_addr(), "should hold");
404 // record us as deallocated in the map
405 alloc_map_->Insert(data_addr(), type | kDeallocatedTypeBit);
406 alloc_map_lock_.Unlock();
407 // clear us
408 const size_t size = real_size();
409 memset(this, kMagicDeletedByte, size);
410 return size;
413 void CheckLocked(int type) const {
414 int map_type = 0;
415 const int* found_type =
416 alloc_map_ != NULL ? alloc_map_->Find(data_addr()) : NULL;
417 if (found_type == NULL) {
418 RAW_LOG(FATAL, "memory allocation bug: object at %p "
419 "has never been allocated", data_addr());
420 } else {
421 map_type = *found_type;
423 if ((map_type & kDeallocatedTypeBit) != 0) {
424 RAW_LOG(FATAL, "memory allocation bug: object at %p "
425 "has been already deallocated (it was allocated with %s)",
426 data_addr(), AllocName(map_type & ~kDeallocatedTypeBit));
428 if (alloc_type_ == kMagicDeletedSizeT) {
429 RAW_LOG(FATAL, "memory stomping bug: a word before object at %p "
430 "has been corrupted; or else the object has been already "
431 "deallocated and our memory map has been corrupted",
432 data_addr());
434 if (!IsValidMagicValue(magic1_)) {
435 RAW_LOG(FATAL, "memory stomping bug: a word before object at %p "
436 "has been corrupted; "
437 "or else our memory map has been corrupted and this is a "
438 "deallocation for not (currently) heap-allocated object",
439 data_addr());
441 if (!IsMMapped()) {
442 if (size1_ != *size2_addr()) {
443 RAW_LOG(FATAL, "memory stomping bug: a word after object at %p "
444 "has been corrupted", data_addr());
446 if (!IsValidMagicValue(*magic2_addr())) {
447 RAW_LOG(FATAL, "memory stomping bug: a word after object at %p "
448 "has been corrupted", data_addr());
451 if (alloc_type_ != type) {
452 if ((alloc_type_ != MallocBlock::kMallocType) &&
453 (alloc_type_ != MallocBlock::kNewType) &&
454 (alloc_type_ != MallocBlock::kArrayNewType)) {
455 RAW_LOG(FATAL, "memory stomping bug: a word before object at %p "
456 "has been corrupted", data_addr());
458 RAW_LOG(FATAL, "memory allocation/deallocation mismatch at %p: "
459 "allocated with %s being deallocated with %s",
460 data_addr(), AllocName(alloc_type_), DeallocName(type));
462 if (alloc_type_ != map_type) {
463 RAW_LOG(FATAL, "memory stomping bug: our memory map has been corrupted : "
464 "allocation at %p made with %s "
465 "is recorded in the map to be made with %s",
466 data_addr(), AllocName(alloc_type_), AllocName(map_type));
470 public: // public accessors
472 void* data_addr() { return (void*)&size2_; }
473 const void* data_addr() const { return (const void*)&size2_; }
475 static size_t data_offset() { return OFFSETOF_MEMBER(MallocBlock, size2_); }
477 size_t data_size() const { return size1_; }
479 void set_offset(int offset) { this->offset_ = offset; }
481 public: // our main interface
483 static MallocBlock* Allocate(size_t size, int type) {
484 // Prevent an integer overflow / crash with large allocation sizes.
485 // TODO - Note that for a e.g. 64-bit size_t, max_size_t may not actually
486 // be the maximum value, depending on how the compiler treats ~0. The worst
487 // practical effect is that allocations are limited to 4Gb or so, even if
488 // the address space could take more.
489 static size_t max_size_t = ~0;
490 if (size > max_size_t - sizeof(MallocBlock)) {
491 RAW_LOG(ERROR, "Massive size passed to malloc: %"PRIuS"", size);
492 return NULL;
494 MallocBlock* b = NULL;
495 const bool use_malloc_page_fence = FLAGS_malloc_page_fence;
496 #ifdef HAVE_MMAP
497 if (use_malloc_page_fence) {
498 // Put the block towards the end of the page and make the next page
499 // inaccessible. This will catch buffer overrun right when it happens.
500 size_t sz = real_mmapped_size(size);
501 int pagesize = getpagesize();
502 int num_pages = (sz + pagesize - 1) / pagesize + 1;
503 char* p = (char*) mmap(NULL, num_pages * pagesize, PROT_READ|PROT_WRITE,
504 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
505 if (p == MAP_FAILED) {
506 // If the allocation fails, abort rather than returning NULL to
507 // malloc. This is because in most cases, the program will run out
508 // of memory in this mode due to tremendous amount of wastage. There
509 // is no point in propagating the error elsewhere.
510 RAW_LOG(FATAL, "Out of memory: possibly due to page fence overhead: %s",
511 strerror(errno));
513 // Mark the page after the block inaccessible
514 if (mprotect(p + (num_pages - 1) * pagesize, pagesize, PROT_NONE)) {
515 RAW_LOG(FATAL, "Guard page setup failed: %s", strerror(errno));
517 b = (MallocBlock*) (p + (num_pages - 1) * pagesize - sz);
518 } else {
519 b = (MallocBlock*) (type == kMallocType ?
520 BASE_MALLOC(real_malloced_size(size)) :
521 BASE_MALLOC_NEW(real_malloced_size(size)));
523 #else
524 b = (MallocBlock*) (type == kMallocType ?
525 BASE_MALLOC(real_malloced_size(size)) :
526 BASE_MALLOC_NEW(real_malloced_size(size)));
527 #endif
529 // It would be nice to output a diagnostic on allocation failure
530 // here, but logging (other than FATAL) requires allocating
531 // memory, which could trigger a nasty recursion. Instead, preserve
532 // malloc semantics and return NULL on failure.
533 if (b != NULL) {
534 b->magic1_ = use_malloc_page_fence ? kMagicMMap : kMagicMalloc;
535 b->Initialize(size, type);
537 return b;
540 void Deallocate(int type) {
541 if (IsMMapped()) { // have to do this before CheckAndClear
542 #ifdef HAVE_MMAP
543 int size = CheckAndClear(type);
544 int pagesize = getpagesize();
545 int num_pages = (size + pagesize - 1) / pagesize + 1;
546 char* p = (char*) this;
547 if (FLAGS_malloc_page_fence_never_reclaim ||
548 !FLAGS_malloc_reclaim_memory) {
549 mprotect(p - (num_pages - 1) * pagesize + size,
550 num_pages * pagesize, PROT_NONE);
551 } else {
552 munmap(p - (num_pages - 1) * pagesize + size, num_pages * pagesize);
554 #endif
555 } else {
556 const size_t size = CheckAndClear(type);
557 if (FLAGS_malloc_reclaim_memory) {
558 // Instead of freeing the block immediately, push it onto a queue of
559 // recently freed blocks. Free only enough blocks to keep from
560 // exceeding the capacity of the queue or causing the total amount of
561 // un-released memory in the queue from exceeding
562 // FLAGS_max_free_queue_size.
563 ProcessFreeQueue(this, size, FLAGS_max_free_queue_size);
568 static size_t FreeQueueSize() {
569 SpinLockHolder l(&free_queue_lock_);
570 return free_queue_size_;
573 static void ProcessFreeQueue(MallocBlock* b, size_t size,
574 int max_free_queue_size) {
575 // MallocBlockQueueEntry are about 144 in size, so we can only
576 // use a small array of them on the stack.
577 MallocBlockQueueEntry entries[4];
578 int num_entries = 0;
579 MallocBlockQueueEntry new_entry(b, size);
580 free_queue_lock_.Lock();
581 if (free_queue_ == NULL)
582 free_queue_ = new FreeQueue<MallocBlockQueueEntry>;
583 RAW_CHECK(!free_queue_->Full(), "Free queue mustn't be full!");
585 if (b != NULL) {
586 free_queue_size_ += size + sizeof(MallocBlockQueueEntry);
587 free_queue_->Push(new_entry);
590 // Free blocks until the total size of unfreed blocks no longer exceeds
591 // max_free_queue_size, and the free queue has at least one free
592 // space in it.
593 while (free_queue_size_ > max_free_queue_size || free_queue_->Full()) {
594 RAW_CHECK(num_entries < arraysize(entries), "entries array overflow");
595 entries[num_entries] = free_queue_->Pop();
596 free_queue_size_ -=
597 entries[num_entries].size + sizeof(MallocBlockQueueEntry);
598 num_entries++;
599 if (num_entries == arraysize(entries)) {
600 // The queue will not be full at this point, so it is ok to
601 // release the lock. The queue may still contain more than
602 // max_free_queue_size, but this is not a strict invariant.
603 free_queue_lock_.Unlock();
604 for (int i = 0; i < num_entries; i++) {
605 CheckForDanglingWrites(entries[i]);
606 BASE_FREE(entries[i].block);
608 num_entries = 0;
609 free_queue_lock_.Lock();
612 RAW_CHECK(free_queue_size_ >= 0, "Free queue size went negative!");
613 free_queue_lock_.Unlock();
614 for (int i = 0; i < num_entries; i++) {
615 CheckForDanglingWrites(entries[i]);
616 BASE_FREE(entries[i].block);
620 static void InitDeletedBuffer() {
621 memset(kMagicDeletedBuffer, kMagicDeletedByte, sizeof(kMagicDeletedBuffer));
622 deleted_buffer_initialized_no_pthreads_ = true;
625 static void CheckForDanglingWrites(const MallocBlockQueueEntry& queue_entry) {
626 // Initialize the buffer if necessary.
627 if (pthread_once)
628 pthread_once(&deleted_buffer_initialized_, &InitDeletedBuffer);
629 if (!deleted_buffer_initialized_no_pthreads_) {
630 // This will be the case on systems that don't link in pthreads,
631 // including on FreeBSD where pthread_once has a non-zero address
632 // (but doesn't do anything) even when pthreads isn't linked in.
633 InitDeletedBuffer();
636 const unsigned char* p =
637 reinterpret_cast<unsigned char*>(queue_entry.block);
639 static const size_t size_of_buffer = sizeof(kMagicDeletedBuffer);
640 const size_t size = queue_entry.size;
641 const size_t buffers = size / size_of_buffer;
642 const size_t remainder = size % size_of_buffer;
643 size_t buffer_idx;
644 for (buffer_idx = 0; buffer_idx < buffers; ++buffer_idx) {
645 CheckForCorruptedBuffer(queue_entry, buffer_idx, p, size_of_buffer);
646 p += size_of_buffer;
648 CheckForCorruptedBuffer(queue_entry, buffer_idx, p, remainder);
651 static void CheckForCorruptedBuffer(const MallocBlockQueueEntry& queue_entry,
652 size_t buffer_idx,
653 const unsigned char* buffer,
654 size_t size_of_buffer) {
655 if (memcmp(buffer, kMagicDeletedBuffer, size_of_buffer) == 0) {
656 return;
659 RAW_LOG(ERROR,
660 "Found a corrupted memory buffer in MallocBlock (may be offset "
661 "from user ptr): buffer index: %zd, buffer ptr: %p, size of "
662 "buffer: %zd", buffer_idx, buffer, size_of_buffer);
664 // The magic deleted buffer should only be 1024 bytes, but in case
665 // this changes, let's put an upper limit on the number of debug
666 // lines we'll output:
667 if (size_of_buffer <= 1024) {
668 for (int i = 0; i < size_of_buffer; ++i) {
669 if (buffer[i] != kMagicDeletedByte) {
670 RAW_LOG(ERROR, "Buffer byte %d is 0x%02x (should be 0x%02x).",
671 i, buffer[i], kMagicDeletedByte);
674 } else {
675 RAW_LOG(ERROR, "Buffer too large to print corruption.");
678 const MallocBlock* b = queue_entry.block;
679 const size_t size = queue_entry.size;
680 if (queue_entry.num_deleter_pcs > 0) {
681 TracePrintf(STDERR_FILENO, "Deleted by thread %p\n",
682 reinterpret_cast<void*>(
683 PRINTABLE_PTHREAD(queue_entry.deleter_threadid)));
685 // We don't want to allocate or deallocate memory here, so we use
686 // placement-new. It's ok that we don't destroy this, since we're
687 // just going to error-exit below anyway. Union is for alignment.
688 union { void* alignment; char buf[sizeof(SymbolTable)]; } tablebuf;
689 SymbolTable* symbolization_table = new (tablebuf.buf) SymbolTable;
690 for (int i = 0; i < queue_entry.num_deleter_pcs; i++) {
691 // Symbolizes the previous address of pc because pc may be in the
692 // next function. This may happen when the function ends with
693 // a call to a function annotated noreturn (e.g. CHECK).
694 char *pc = reinterpret_cast<char*>(queue_entry.deleter_pcs[i]);
695 symbolization_table->Add(pc - 1);
697 if (FLAGS_symbolize_stacktrace)
698 symbolization_table->Symbolize();
699 for (int i = 0; i < queue_entry.num_deleter_pcs; i++) {
700 char *pc = reinterpret_cast<char*>(queue_entry.deleter_pcs[i]);
701 TracePrintf(STDERR_FILENO, " @ %p %s\n",
702 pc, symbolization_table->GetSymbol(pc - 1));
704 } else {
705 RAW_LOG(ERROR,
706 "Skipping the printing of the deleter's stack! Its stack was "
707 "not found; either the corruption occurred too early in "
708 "execution to obtain a stack trace or --max_free_queue_size was "
709 "set to 0.");
712 RAW_LOG(FATAL,
713 "Memory was written to after being freed. MallocBlock: %p, user "
714 "ptr: %p, size: %zd. If you can't find the source of the error, "
715 "try using ASan (http://code.google.com/p/address-sanitizer/), "
716 "Valgrind, or Purify, or study the "
717 "output of the deleter's stack printed above.",
718 b, b->data_addr(), size);
721 static MallocBlock* FromRawPointer(void* p) {
722 const size_t data_offset = MallocBlock::data_offset();
723 // Find the header just before client's memory.
724 MallocBlock *mb = reinterpret_cast<MallocBlock *>(
725 reinterpret_cast<char *>(p) - data_offset);
726 // If mb->alloc_type_ is kMagicDeletedSizeT, we're not an ok pointer.
727 if (mb->alloc_type_ == kMagicDeletedSizeT) {
728 RAW_LOG(FATAL, "memory allocation bug: object at %p has been already"
729 " deallocated; or else a word before the object has been"
730 " corrupted (memory stomping bug)", p);
732 // If mb->offset_ is zero (common case), mb is the real header. If
733 // mb->offset_ is non-zero, this block was allocated by memalign, and
734 // mb->offset_ is the distance backwards to the real header from mb,
735 // which is a fake header. The following subtraction works for both zero
736 // and non-zero values.
737 return reinterpret_cast<MallocBlock *>(
738 reinterpret_cast<char *>(mb) - mb->offset_);
740 static const MallocBlock* FromRawPointer(const void* p) {
741 // const-safe version: we just cast about
742 return FromRawPointer(const_cast<void*>(p));
745 void Check(int type) const {
746 alloc_map_lock_.Lock();
747 CheckLocked(type);
748 alloc_map_lock_.Unlock();
751 static bool CheckEverything() {
752 alloc_map_lock_.Lock();
753 if (alloc_map_ != NULL) alloc_map_->Iterate(CheckCallback, 0);
754 alloc_map_lock_.Unlock();
755 return true; // if we get here, we're okay
758 static bool MemoryStats(int* blocks, size_t* total,
759 int histogram[kMallocHistogramSize]) {
760 memset(histogram, 0, kMallocHistogramSize * sizeof(int));
761 alloc_map_lock_.Lock();
762 stats_blocks_ = 0;
763 stats_total_ = 0;
764 stats_histogram_ = histogram;
765 if (alloc_map_ != NULL) alloc_map_->Iterate(StatsCallback, 0);
766 *blocks = stats_blocks_;
767 *total = stats_total_;
768 alloc_map_lock_.Unlock();
769 return true;
772 private: // helpers for CheckEverything and MemoryStats
774 static void CheckCallback(const void* ptr, int* type, int dummy) {
775 if ((*type & kDeallocatedTypeBit) == 0) {
776 FromRawPointer(ptr)->CheckLocked(*type);
780 // Accumulation variables for StatsCallback protected by alloc_map_lock_
781 static int stats_blocks_;
782 static size_t stats_total_;
783 static int* stats_histogram_;
785 static void StatsCallback(const void* ptr, int* type, int dummy) {
786 if ((*type & kDeallocatedTypeBit) == 0) {
787 const MallocBlock* b = FromRawPointer(ptr);
788 b->CheckLocked(*type);
789 ++stats_blocks_;
790 size_t mysize = b->size1_;
791 int entry = 0;
792 stats_total_ += mysize;
793 while (mysize) {
794 ++entry;
795 mysize >>= 1;
797 RAW_CHECK(entry < kMallocHistogramSize,
798 "kMallocHistogramSize should be at least as large as log2 "
799 "of the maximum process memory size");
800 stats_histogram_[entry] += 1;
805 void DanglingWriteChecker() {
806 // Clear out the remaining free queue to check for dangling writes.
807 MallocBlock::ProcessFreeQueue(NULL, 0, 0);
810 // ========================================================================= //
812 const int MallocBlock::kMagicMalloc;
813 const int MallocBlock::kMagicMMap;
815 MallocBlock::AllocMap* MallocBlock::alloc_map_ = NULL;
816 SpinLock MallocBlock::alloc_map_lock_(SpinLock::LINKER_INITIALIZED);
818 FreeQueue<MallocBlockQueueEntry>* MallocBlock::free_queue_ = NULL;
819 size_t MallocBlock::free_queue_size_ = 0;
820 SpinLock MallocBlock::free_queue_lock_(SpinLock::LINKER_INITIALIZED);
822 unsigned char MallocBlock::kMagicDeletedBuffer[1024];
823 pthread_once_t MallocBlock::deleted_buffer_initialized_ = PTHREAD_ONCE_INIT;
824 bool MallocBlock::deleted_buffer_initialized_no_pthreads_ = false;
826 const char* const MallocBlock::kAllocName[] = {
827 "malloc",
828 "new",
829 "new []",
830 NULL,
833 const char* const MallocBlock::kDeallocName[] = {
834 "free",
835 "delete",
836 "delete []",
837 NULL,
840 int MallocBlock::stats_blocks_;
841 size_t MallocBlock::stats_total_;
842 int* MallocBlock::stats_histogram_;
844 // ========================================================================= //
846 // The following cut-down version of printf() avoids
847 // using stdio or ostreams.
848 // This is to guarantee no recursive calls into
849 // the allocator and to bound the stack space consumed. (The pthread
850 // manager thread in linuxthreads has a very small stack,
851 // so fprintf can't be called.)
852 static void TracePrintf(int fd, const char *fmt, ...) {
853 char buf[64];
854 int i = 0;
855 va_list ap;
856 va_start(ap, fmt);
857 const char *p = fmt;
858 char numbuf[25];
859 numbuf[sizeof(numbuf)-1] = 0;
860 while (*p != '\0') { // until end of format string
861 char *s = &numbuf[sizeof(numbuf)-1];
862 if (p[0] == '%' && p[1] != 0) { // handle % formats
863 int64 l = 0;
864 unsigned long base = 0;
865 if (*++p == 's') { // %s
866 s = va_arg(ap, char *);
867 } else if (*p == 'l' && p[1] == 'd') { // %ld
868 l = va_arg(ap, long);
869 base = 10;
870 p++;
871 } else if (*p == 'l' && p[1] == 'u') { // %lu
872 l = va_arg(ap, unsigned long);
873 base = 10;
874 p++;
875 } else if (*p == 'z' && p[1] == 'u') { // %zu
876 l = va_arg(ap, size_t);
877 base = 10;
878 p++;
879 } else if (*p == 'u') { // %u
880 l = va_arg(ap, unsigned int);
881 base = 10;
882 } else if (*p == 'd') { // %d
883 l = va_arg(ap, int);
884 base = 10;
885 } else if (*p == 'p') { // %p
886 l = va_arg(ap, intptr_t);
887 base = 16;
888 } else {
889 write(STDERR_FILENO, "Unimplemented TracePrintf format\n", 33);
890 write(STDERR_FILENO, p, 2);
891 write(STDERR_FILENO, "\n", 1);
892 abort();
894 p++;
895 if (base != 0) {
896 bool minus = (l < 0 && base == 10);
897 uint64 ul = minus? -l : l;
898 do {
899 *--s = "0123456789abcdef"[ul % base];
900 ul /= base;
901 } while (ul != 0);
902 if (base == 16) {
903 *--s = 'x';
904 *--s = '0';
905 } else if (minus) {
906 *--s = '-';
909 } else { // handle normal characters
910 *--s = *p++;
912 while (*s != 0) {
913 if (i == sizeof(buf)) {
914 write(fd, buf, i);
915 i = 0;
917 buf[i++] = *s++;
920 if (i != 0) {
921 write(fd, buf, i);
923 va_end(ap);
926 // Return the file descriptor we're writing a log to
927 static int TraceFd() {
928 static int trace_fd = -1;
929 if (trace_fd == -1) { // Open the trace file on the first call
930 trace_fd = open("/tmp/google.alloc", O_CREAT|O_TRUNC|O_WRONLY, 0666);
931 if (trace_fd == -1) {
932 trace_fd = 2;
933 TracePrintf(trace_fd,
934 "Can't open /tmp/google.alloc. Logging to stderr.\n");
936 // Add a header to the log.
937 TracePrintf(trace_fd, "Trace started: %lu\n",
938 static_cast<unsigned long>(time(NULL)));
939 TracePrintf(trace_fd,
940 "func\tsize\tptr\tthread_id\tstack pcs for tools/symbolize\n");
942 return trace_fd;
945 // Print the hex stack dump on a single line. PCs are separated by tabs.
946 static void TraceStack(void) {
947 void *pcs[16];
948 int n = GetStackTrace(pcs, sizeof(pcs)/sizeof(pcs[0]), 0);
949 for (int i = 0; i != n; i++) {
950 TracePrintf(TraceFd(), "\t%p", pcs[i]);
954 // This protects MALLOC_TRACE, to make sure its info is atomically written.
955 static SpinLock malloc_trace_lock(SpinLock::LINKER_INITIALIZED);
957 #define MALLOC_TRACE(name, size, addr) \
958 do { \
959 if (FLAGS_malloctrace) { \
960 SpinLockHolder l(&malloc_trace_lock); \
961 TracePrintf(TraceFd(), "%s\t%"PRIuS"\t%p\t%"GPRIuPTHREAD, \
962 name, size, addr, PRINTABLE_PTHREAD(pthread_self())); \
963 TraceStack(); \
964 TracePrintf(TraceFd(), "\n"); \
966 } while (0)
968 // ========================================================================= //
970 // Write the characters buf[0, ..., size-1] to
971 // the malloc trace buffer.
972 // This function is intended for debugging,
973 // and is not declared in any header file.
974 // You must insert a declaration of it by hand when you need
975 // to use it.
976 void __malloctrace_write(const char *buf, size_t size) {
977 if (FLAGS_malloctrace) {
978 write(TraceFd(), buf, size);
982 // ========================================================================= //
984 // General debug allocation/deallocation
986 static inline void* DebugAllocate(size_t size, int type) {
987 MallocBlock* ptr = MallocBlock::Allocate(size, type);
988 if (ptr == NULL) return NULL;
989 MALLOC_TRACE("malloc", size, ptr->data_addr());
990 return ptr->data_addr();
993 static inline void DebugDeallocate(void* ptr, int type) {
994 MALLOC_TRACE("free",
995 (ptr != 0 ? MallocBlock::FromRawPointer(ptr)->data_size() : 0),
996 ptr);
997 if (ptr) MallocBlock::FromRawPointer(ptr)->Deallocate(type);
1000 // ========================================================================= //
1002 // The following functions may be called via MallocExtension::instance()
1003 // for memory verification and statistics.
1004 class DebugMallocImplementation : public TCMallocImplementation {
1005 public:
1006 virtual bool GetNumericProperty(const char* name, size_t* value) {
1007 bool result = TCMallocImplementation::GetNumericProperty(name, value);
1008 if (result && (strcmp(name, "generic.current_allocated_bytes") == 0)) {
1009 // Subtract bytes kept in the free queue
1010 size_t qsize = MallocBlock::FreeQueueSize();
1011 if (*value >= qsize) {
1012 *value -= qsize;
1015 return result;
1018 virtual bool VerifyNewMemory(const void* p) {
1019 if (p) MallocBlock::FromRawPointer(p)->Check(MallocBlock::kNewType);
1020 return true;
1023 virtual bool VerifyArrayNewMemory(const void* p) {
1024 if (p) MallocBlock::FromRawPointer(p)->Check(MallocBlock::kArrayNewType);
1025 return true;
1028 virtual bool VerifyMallocMemory(const void* p) {
1029 if (p) MallocBlock::FromRawPointer(p)->Check(MallocBlock::kMallocType);
1030 return true;
1033 virtual bool VerifyAllMemory() {
1034 return MallocBlock::CheckEverything();
1037 virtual bool MallocMemoryStats(int* blocks, size_t* total,
1038 int histogram[kMallocHistogramSize]) {
1039 return MallocBlock::MemoryStats(blocks, total, histogram);
1042 virtual size_t GetEstimatedAllocatedSize(size_t size) {
1043 return size;
1046 virtual size_t GetAllocatedSize(const void* p) {
1047 if (p) {
1048 RAW_CHECK(GetOwnership(p) != MallocExtension::kNotOwned,
1049 "ptr not allocated by tcmalloc");
1050 return MallocBlock::FromRawPointer(p)->data_size();
1052 return 0;
1055 virtual MallocExtension::Ownership GetOwnership(const void* p) {
1056 if (p) {
1057 const MallocBlock* mb = MallocBlock::FromRawPointer(p);
1058 return TCMallocImplementation::GetOwnership(mb);
1060 return MallocExtension::kNotOwned; // nobody owns NULL
1063 virtual void GetFreeListSizes(vector<MallocExtension::FreeListInfo>* v) {
1064 static const char* kDebugFreeQueue = "debug.free_queue";
1066 TCMallocImplementation::GetFreeListSizes(v);
1068 MallocExtension::FreeListInfo i;
1069 i.type = kDebugFreeQueue;
1070 i.min_object_size = 0;
1071 i.max_object_size = numeric_limits<size_t>::max();
1072 i.total_bytes_free = MallocBlock::FreeQueueSize();
1073 v->push_back(i);
1078 static DebugMallocImplementation debug_malloc_implementation;
1080 REGISTER_MODULE_INITIALIZER(debugallocation, {
1081 // Either we or valgrind will control memory management. We
1082 // register our extension if we're the winner. Otherwise let
1083 // Valgrind use its own malloc (so don't register our extension).
1084 if (!RunningOnValgrind()) {
1085 MallocExtension::Register(&debug_malloc_implementation);
1089 REGISTER_MODULE_DESTRUCTOR(debugallocation, {
1090 if (!RunningOnValgrind()) {
1091 // When the program exits, check all blocks still in the free
1092 // queue for corruption.
1093 DanglingWriteChecker();
1097 // ========================================================================= //
1099 // This is mostly the same a cpp_alloc in tcmalloc.cc.
1100 // TODO(csilvers): change Allocate() above to call cpp_alloc, so we
1101 // don't have to reproduce the logic here. To make tc_new_mode work
1102 // properly, I think we'll need to separate out the logic of throwing
1103 // from the logic of calling the new-handler.
1104 inline void* debug_cpp_alloc(size_t size, int new_type, bool nothrow) {
1105 for (;;) {
1106 void* p = DebugAllocate(size, new_type);
1107 #ifdef PREANSINEW
1108 return p;
1109 #else
1110 if (p == NULL) { // allocation failed
1111 // Get the current new handler. NB: this function is not
1112 // thread-safe. We make a feeble stab at making it so here, but
1113 // this lock only protects against tcmalloc interfering with
1114 // itself, not with other libraries calling set_new_handler.
1115 std::new_handler nh;
1117 SpinLockHolder h(&set_new_handler_lock);
1118 nh = std::set_new_handler(0);
1119 (void) std::set_new_handler(nh);
1121 #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1122 if (nh) {
1123 // Since exceptions are disabled, we don't really know if new_handler
1124 // failed. Assume it will abort if it fails.
1125 (*nh)();
1126 continue;
1128 return 0;
1129 #else
1130 // If no new_handler is established, the allocation failed.
1131 if (!nh) {
1132 if (nothrow) return 0;
1133 throw std::bad_alloc();
1135 // Otherwise, try the new_handler. If it returns, retry the
1136 // allocation. If it throws std::bad_alloc, fail the allocation.
1137 // if it throws something else, don't interfere.
1138 try {
1139 (*nh)();
1140 } catch (const std::bad_alloc&) {
1141 if (!nothrow) throw;
1142 return p;
1144 #endif // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1145 } else { // allocation success
1146 return p;
1148 #endif // PREANSINEW
1152 inline void* do_debug_malloc_or_debug_cpp_alloc(size_t size) {
1153 return tc_new_mode ? debug_cpp_alloc(size, MallocBlock::kMallocType, true)
1154 : DebugAllocate(size, MallocBlock::kMallocType);
1157 // Exported routines
1159 extern "C" PERFTOOLS_DLL_DECL void* tc_malloc(size_t size) __THROW {
1160 void* ptr = do_debug_malloc_or_debug_cpp_alloc(size);
1161 MallocHook::InvokeNewHook(ptr, size);
1162 return ptr;
1165 extern "C" PERFTOOLS_DLL_DECL void tc_free(void* ptr) __THROW {
1166 MallocHook::InvokeDeleteHook(ptr);
1167 DebugDeallocate(ptr, MallocBlock::kMallocType);
1170 extern "C" PERFTOOLS_DLL_DECL void* tc_calloc(size_t count, size_t size) __THROW {
1171 // Overflow check
1172 const size_t total_size = count * size;
1173 if (size != 0 && total_size / size != count) return NULL;
1175 void* block = do_debug_malloc_or_debug_cpp_alloc(total_size);
1176 MallocHook::InvokeNewHook(block, total_size);
1177 if (block) memset(block, 0, total_size);
1178 return block;
1181 extern "C" PERFTOOLS_DLL_DECL void tc_cfree(void* ptr) __THROW {
1182 MallocHook::InvokeDeleteHook(ptr);
1183 DebugDeallocate(ptr, MallocBlock::kMallocType);
1186 extern "C" PERFTOOLS_DLL_DECL void* tc_realloc(void* ptr, size_t size) __THROW {
1187 if (ptr == NULL) {
1188 ptr = do_debug_malloc_or_debug_cpp_alloc(size);
1189 MallocHook::InvokeNewHook(ptr, size);
1190 return ptr;
1192 if (size == 0) {
1193 MallocHook::InvokeDeleteHook(ptr);
1194 DebugDeallocate(ptr, MallocBlock::kMallocType);
1195 return NULL;
1197 MallocBlock* old = MallocBlock::FromRawPointer(ptr);
1198 old->Check(MallocBlock::kMallocType);
1199 MallocBlock* p = MallocBlock::Allocate(size, MallocBlock::kMallocType);
1201 // If realloc fails we are to leave the old block untouched and
1202 // return null
1203 if (p == NULL) return NULL;
1205 memcpy(p->data_addr(), old->data_addr(),
1206 (old->data_size() < size) ? old->data_size() : size);
1207 MallocHook::InvokeDeleteHook(ptr);
1208 MallocHook::InvokeNewHook(p->data_addr(), size);
1209 DebugDeallocate(ptr, MallocBlock::kMallocType);
1210 MALLOC_TRACE("realloc", p->data_size(), p->data_addr());
1211 return p->data_addr();
1214 extern "C" PERFTOOLS_DLL_DECL void* tc_new(size_t size) {
1215 void* ptr = debug_cpp_alloc(size, MallocBlock::kNewType, false);
1216 MallocHook::InvokeNewHook(ptr, size);
1217 if (ptr == NULL) {
1218 RAW_LOG(FATAL, "Unable to allocate %"PRIuS" bytes: new failed.", size);
1220 return ptr;
1223 extern "C" PERFTOOLS_DLL_DECL void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW {
1224 void* ptr = debug_cpp_alloc(size, MallocBlock::kNewType, true);
1225 MallocHook::InvokeNewHook(ptr, size);
1226 return ptr;
1229 extern "C" PERFTOOLS_DLL_DECL void tc_delete(void* p) __THROW {
1230 MallocHook::InvokeDeleteHook(p);
1231 DebugDeallocate(p, MallocBlock::kNewType);
1234 // Some STL implementations explicitly invoke this.
1235 // It is completely equivalent to a normal delete (delete never throws).
1236 extern "C" PERFTOOLS_DLL_DECL void tc_delete_nothrow(void* p, const std::nothrow_t&) __THROW {
1237 MallocHook::InvokeDeleteHook(p);
1238 DebugDeallocate(p, MallocBlock::kNewType);
1241 extern "C" PERFTOOLS_DLL_DECL void* tc_newarray(size_t size) {
1242 void* ptr = debug_cpp_alloc(size, MallocBlock::kArrayNewType, false);
1243 MallocHook::InvokeNewHook(ptr, size);
1244 if (ptr == NULL) {
1245 RAW_LOG(FATAL, "Unable to allocate %"PRIuS" bytes: new[] failed.", size);
1247 return ptr;
1250 extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_nothrow(size_t size, const std::nothrow_t&)
1251 __THROW {
1252 void* ptr = debug_cpp_alloc(size, MallocBlock::kArrayNewType, true);
1253 MallocHook::InvokeNewHook(ptr, size);
1254 return ptr;
1257 extern "C" PERFTOOLS_DLL_DECL void tc_deletearray(void* p) __THROW {
1258 MallocHook::InvokeDeleteHook(p);
1259 DebugDeallocate(p, MallocBlock::kArrayNewType);
1262 // Some STL implementations explicitly invoke this.
1263 // It is completely equivalent to a normal delete (delete never throws).
1264 extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_nothrow(void* p, const std::nothrow_t&) __THROW {
1265 MallocHook::InvokeDeleteHook(p);
1266 DebugDeallocate(p, MallocBlock::kArrayNewType);
1269 // Round "value" up to next "alignment" boundary.
1270 // Requires that "alignment" be a power of two.
1271 static intptr_t RoundUp(intptr_t value, intptr_t alignment) {
1272 return (value + alignment - 1) & ~(alignment - 1);
1275 // This is mostly the same as do_memalign in tcmalloc.cc.
1276 static void *do_debug_memalign(size_t alignment, size_t size) {
1277 // Allocate >= size bytes aligned on "alignment" boundary
1278 // "alignment" is a power of two.
1279 void *p = 0;
1280 RAW_CHECK((alignment & (alignment-1)) == 0, "must be power of two");
1281 const size_t data_offset = MallocBlock::data_offset();
1282 // Allocate "alignment-1" extra bytes to ensure alignment is possible, and
1283 // a further data_offset bytes for an additional fake header.
1284 size_t extra_bytes = data_offset + alignment - 1;
1285 if (size + extra_bytes < size) return NULL; // Overflow
1286 p = DebugAllocate(size + extra_bytes, MallocBlock::kMallocType);
1287 if (p != 0) {
1288 intptr_t orig_p = reinterpret_cast<intptr_t>(p);
1289 // Leave data_offset bytes for fake header, and round up to meet
1290 // alignment.
1291 p = reinterpret_cast<void *>(RoundUp(orig_p + data_offset, alignment));
1292 // Create a fake header block with an offset_ that points back to the
1293 // real header. FromRawPointer uses this value.
1294 MallocBlock *fake_hdr = reinterpret_cast<MallocBlock *>(
1295 reinterpret_cast<char *>(p) - data_offset);
1296 // offset_ is distance between real and fake headers.
1297 // p is now end of fake header (beginning of client area),
1298 // and orig_p is the end of the real header, so offset_
1299 // is their difference.
1300 fake_hdr->set_offset(reinterpret_cast<intptr_t>(p) - orig_p);
1302 return p;
1305 // This is mostly the same as cpp_memalign in tcmalloc.cc.
1306 static void* debug_cpp_memalign(size_t align, size_t size) {
1307 for (;;) {
1308 void* p = do_debug_memalign(align, size);
1309 #ifdef PREANSINEW
1310 return p;
1311 #else
1312 if (p == NULL) { // allocation failed
1313 // Get the current new handler. NB: this function is not
1314 // thread-safe. We make a feeble stab at making it so here, but
1315 // this lock only protects against tcmalloc interfering with
1316 // itself, not with other libraries calling set_new_handler.
1317 std::new_handler nh;
1319 SpinLockHolder h(&set_new_handler_lock);
1320 nh = std::set_new_handler(0);
1321 (void) std::set_new_handler(nh);
1323 #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1324 if (nh) {
1325 // Since exceptions are disabled, we don't really know if new_handler
1326 // failed. Assume it will abort if it fails.
1327 (*nh)();
1328 continue;
1330 return 0;
1331 #else
1332 // If no new_handler is established, the allocation failed.
1333 if (!nh)
1334 return 0;
1336 // Otherwise, try the new_handler. If it returns, retry the
1337 // allocation. If it throws std::bad_alloc, fail the allocation.
1338 // if it throws something else, don't interfere.
1339 try {
1340 (*nh)();
1341 } catch (const std::bad_alloc&) {
1342 return p;
1344 #endif // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1345 } else { // allocation success
1346 return p;
1348 #endif // PREANSINEW
1352 inline void* do_debug_memalign_or_debug_cpp_memalign(size_t align,
1353 size_t size) {
1354 return tc_new_mode ? debug_cpp_memalign(align, size)
1355 : do_debug_memalign(align, size);
1358 extern "C" PERFTOOLS_DLL_DECL void* tc_memalign(size_t align, size_t size) __THROW {
1359 void *p = do_debug_memalign_or_debug_cpp_memalign(align, size);
1360 MallocHook::InvokeNewHook(p, size);
1361 return p;
1364 // Implementation taken from tcmalloc/tcmalloc.cc
1365 extern "C" PERFTOOLS_DLL_DECL int tc_posix_memalign(void** result_ptr, size_t align, size_t size)
1366 __THROW {
1367 if (((align % sizeof(void*)) != 0) ||
1368 ((align & (align - 1)) != 0) ||
1369 (align == 0)) {
1370 return EINVAL;
1373 void* result = do_debug_memalign_or_debug_cpp_memalign(align, size);
1374 MallocHook::InvokeNewHook(result, size);
1375 if (result == NULL) {
1376 return ENOMEM;
1377 } else {
1378 *result_ptr = result;
1379 return 0;
1383 extern "C" PERFTOOLS_DLL_DECL void* tc_valloc(size_t size) __THROW {
1384 // Allocate >= size bytes starting on a page boundary
1385 void *p = do_debug_memalign_or_debug_cpp_memalign(getpagesize(), size);
1386 MallocHook::InvokeNewHook(p, size);
1387 return p;
1390 extern "C" PERFTOOLS_DLL_DECL void* tc_pvalloc(size_t size) __THROW {
1391 // Round size up to a multiple of pages
1392 // then allocate memory on a page boundary
1393 int pagesize = getpagesize();
1394 size = RoundUp(size, pagesize);
1395 if (size == 0) { // pvalloc(0) should allocate one page, according to
1396 size = pagesize; // http://man.free4web.biz/man3/libmpatrol.3.html
1398 void *p = do_debug_memalign_or_debug_cpp_memalign(pagesize, size);
1399 MallocHook::InvokeNewHook(p, size);
1400 return p;
1403 // malloc_stats just falls through to the base implementation.
1404 extern "C" PERFTOOLS_DLL_DECL void tc_malloc_stats(void) __THROW {
1405 BASE_MALLOC_STATS();
1408 extern "C" PERFTOOLS_DLL_DECL int tc_mallopt(int cmd, int value) __THROW {
1409 return BASE_MALLOPT(cmd, value);
1412 #ifdef HAVE_STRUCT_MALLINFO
1413 extern "C" PERFTOOLS_DLL_DECL struct mallinfo tc_mallinfo(void) __THROW {
1414 return BASE_MALLINFO();
1416 #endif
1418 extern "C" PERFTOOLS_DLL_DECL size_t tc_malloc_size(void* ptr) __THROW {
1419 return MallocExtension::instance()->GetAllocatedSize(ptr);