1 // Copyright (c) 2007, Google Inc.
2 // All rights reserved.
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 // This file provides a minimal cache that can hold a <key, value> pair
34 // with little if any wasted space. The types of the key and value
35 // must be unsigned integral types or at least have unsigned semantics
36 // for >>, casting, and similar operations.
38 // Synchronization is not provided. However, the cache is implemented
39 // as an array of cache entries whose type is chosen at compile time.
40 // If a[i] is atomic on your hardware for the chosen array type then
41 // raciness will not necessarily lead to bugginess. The cache entries
42 // must be large enough to hold a partial key and a value packed
43 // together. The partial keys are bit strings of length
44 // kKeybits - kHashbits, and the values are bit strings of length kValuebits.
46 // In an effort to use minimal space, every cache entry represents
47 // some <key, value> pair; the class provides no way to mark a cache
48 // entry as empty or uninitialized. In practice, you may want to have
49 // reserved keys or values to get around this limitation. For example, in
50 // tcmalloc's PageID-to-sizeclass cache, a value of 0 is used as
51 // "unknown sizeclass."
53 // Usage Considerations
54 // --------------------
56 // kHashbits controls the size of the cache. The best value for
57 // kHashbits will of course depend on the application. Perhaps try
58 // tuning the value of kHashbits by measuring different values on your
59 // favorite benchmark. Also remember not to be a pig; other
60 // programs that need resources may suffer if you are.
62 // The main uses for this class will be when performance is
63 // critical and there's a convenient type to hold the cache's
64 // entries. As described above, the number of bits required
65 // for a cache entry is (kKeybits - kHashbits) + kValuebits. Suppose
66 // kKeybits + kValuebits is 43. Then it probably makes sense to
67 // chose kHashbits >= 11 so that cache entries fit in a uint32.
69 // On the other hand, suppose kKeybits = kValuebits = 64. Then
70 // using this class may be less worthwhile. You'll probably
71 // be using 128 bits for each entry anyway, so maybe just pick
72 // a hash function, H, and use an array indexed by H(key):
73 // void Put(K key, V value) { a_[H(key)] = pair<K, V>(key, value); }
74 // V GetOrDefault(K key, V default) { const pair<K, V> &p = a_[H(key)]; ... }
80 // For caches used only by one thread, the following is true:
82 // (c.Put(key, value), c.GetOrDefault(key, 0)) == value
84 // (c.Put(key, value), <...>, c.GetOrDefault(key, 0)) == value
85 // if the elided code contains no c.Put calls.
87 // 2. Has(key) will return false if no <key, value> pair with that key
88 // has ever been Put. However, a newly initialized cache will have
89 // some <key, value> pairs already present. When you create a new
90 // cache, you must specify an "initial value." The initialization
91 // procedure is equivalent to Clear(initial_value), which is
92 // equivalent to Put(k, initial_value) for all keys k from 0 to
95 // 3. If key and key' differ then the only way Put(key, value) may
96 // cause Has(key') to change is that Has(key') may change from true to
97 // false. Furthermore, a Put() call that doesn't change Has(key')
98 // doesn't change GetOrDefault(key', ...) either.
100 // Implementation details:
102 // This is a direct-mapped cache with 2^kHashbits entries; the hash
103 // function simply takes the low bits of the key. We store whole keys
104 // if a whole key plus a whole value fits in an entry. Otherwise, an
105 // entry is the high bits of a key and a value, packed together.
106 // E.g., a 20 bit key and a 7 bit value only require a uint16 for each
107 // entry if kHashbits >= 11.
109 // Alternatives to this scheme will be added as needed.
111 #ifndef TCMALLOC_PACKED_CACHE_INL_H_
112 #define TCMALLOC_PACKED_CACHE_INL_H_
115 #include <stddef.h> // for size_t
117 #include <stdint.h> // for uintptr_t
119 #include "base/basictypes.h"
120 #include "internal_logging.h"
122 // A safe way of doing "(1 << n) - 1" -- without worrying about overflow
123 // Note this will all be resolved to a constant expression at compile-time
124 #define N_ONES_(IntType, N) \
125 ( (N) == 0 ? 0 : ((static_cast<IntType>(1) << ((N)-1))-1 + \
126 (static_cast<IntType>(1) << ((N)-1))) )
128 // The types K and V provide upper bounds on the number of valid keys
129 // and values, but we explicitly require the keys to be less than
130 // 2^kKeybits and the values to be less than 2^kValuebits. The size of
131 // the table is controlled by kHashbits, and the type of each entry in
132 // the cache is T. See also the big comment at the top of the file.
133 template <int kKeybits
, typename T
>
138 #ifdef TCMALLOC_SMALL_BUT_SLOW
139 // Decrease the size map cache if running in the small memory mode.
140 static const int kHashbits
= 12;
142 static const int kHashbits
= 16;
144 static const int kValuebits
= 7;
145 static const bool kUseWholeKeys
= kKeybits
+ kValuebits
<= 8 * sizeof(T
);
147 explicit PackedCache(V initial_value
) {
148 COMPILE_ASSERT(kKeybits
<= sizeof(K
) * 8, key_size
);
149 COMPILE_ASSERT(kValuebits
<= sizeof(V
) * 8, value_size
);
150 COMPILE_ASSERT(kHashbits
<= kKeybits
, hash_function
);
151 COMPILE_ASSERT(kKeybits
- kHashbits
+ kValuebits
<= kTbits
,
152 entry_size_must_be_big_enough
);
153 Clear(initial_value
);
156 void Put(K key
, V value
) {
157 ASSERT(key
== (key
& kKeyMask
));
158 ASSERT(value
== (value
& kValueMask
));
159 array_
[Hash(key
)] = KeyToUpper(key
) | value
;
162 bool Has(K key
) const {
163 ASSERT(key
== (key
& kKeyMask
));
164 return KeyMatch(array_
[Hash(key
)], key
);
167 V
GetOrDefault(K key
, V default_value
) const {
168 // As with other code in this class, we touch array_ as few times
169 // as we can. Assuming entries are read atomically (e.g., their
170 // type is uintptr_t on most hardware) then certain races are
172 ASSERT(key
== (key
& kKeyMask
));
173 T entry
= array_
[Hash(key
)];
174 return KeyMatch(entry
, key
) ? EntryToValue(entry
) : default_value
;
177 void Clear(V value
) {
178 ASSERT(value
== (value
& kValueMask
));
179 for (int i
= 0; i
< 1 << kHashbits
; i
++) {
180 ASSERT(kUseWholeKeys
|| KeyToUpper(i
) == 0);
181 array_
[i
] = kUseWholeKeys
? (value
| KeyToUpper(i
)) : value
;
186 // We are going to pack a value and the upper part of a key (or a
187 // whole key) into an entry of type T. The UPPER type is for the
188 // upper part of a key, after the key has been masked and shifted
189 // for inclusion in an entry.
192 static V
EntryToValue(T t
) { return t
& kValueMask
; }
194 // If we have space for a whole key, we just shift it left.
195 // Otherwise kHashbits determines where in a K to find the upper
196 // part of the key, and kValuebits determines where in the entry to
198 static UPPER
KeyToUpper(K k
) {
200 return static_cast<T
>(k
) << kValuebits
;
202 const int shift
= kHashbits
- kValuebits
;
203 // Assume kHashbits >= kValuebits. It'd be easy to lift this assumption.
204 return static_cast<T
>(k
>> shift
) & kUpperMask
;
208 static size_t Hash(K key
) {
209 return static_cast<size_t>(key
) & N_ONES_(size_t, kHashbits
);
212 // Does the entry match the relevant part of the given key?
213 static bool KeyMatch(T entry
, K key
) {
214 return kUseWholeKeys
?
215 (entry
>> kValuebits
== key
) :
216 ((KeyToUpper(key
) ^ entry
) & kUpperMask
) == 0;
219 static const int kTbits
= 8 * sizeof(T
);
220 static const int kUpperbits
= kUseWholeKeys
? kKeybits
: kKeybits
- kHashbits
;
223 static const K kKeyMask
= N_ONES_(K
, kKeybits
);
226 static const T kUpperMask
= N_ONES_(T
, kUpperbits
) << kValuebits
;
228 // For masking a V or a T.
229 static const V kValueMask
= N_ONES_(V
, kValuebits
);
231 // array_ is the cache. Its elements are volatile because any
232 // thread can write any array element at any time.
233 volatile T array_
[1 << kHashbits
];
238 #endif // TCMALLOC_PACKED_CACHE_INL_H_