1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/base/math_util.h"
11 #include "base/trace_event/trace_event_argument.h"
12 #include "base/values.h"
13 #include "ui/gfx/geometry/quad_f.h"
14 #include "ui/gfx/geometry/rect.h"
15 #include "ui/gfx/geometry/rect_conversions.h"
16 #include "ui/gfx/geometry/rect_f.h"
17 #include "ui/gfx/geometry/vector2d_f.h"
18 #include "ui/gfx/geometry/vector3d_f.h"
19 #include "ui/gfx/transform.h"
23 const double MathUtil::kPiDouble
= 3.14159265358979323846;
24 const float MathUtil::kPiFloat
= 3.14159265358979323846f
;
26 static HomogeneousCoordinate
ProjectHomogeneousPoint(
27 const gfx::Transform
& transform
,
28 const gfx::PointF
& p
) {
30 -(transform
.matrix().get(2, 0) * p
.x() +
31 transform
.matrix().get(2, 1) * p
.y() + transform
.matrix().get(2, 3)) /
32 transform
.matrix().get(2, 2);
34 // In this case, the layer we are trying to project onto is perpendicular to
35 // ray (point p and z-axis direction) that we are trying to project. This
36 // happens when the layer is rotated so that it is infinitesimally thin, or
37 // when it is co-planar with the camera origin -- i.e. when the layer is
39 if (!std::isfinite(z
))
40 return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);
42 HomogeneousCoordinate
result(p
.x(), p
.y(), z
, 1.0);
43 transform
.matrix().mapMScalars(result
.vec
, result
.vec
);
47 static HomogeneousCoordinate
ProjectHomogeneousPoint(
48 const gfx::Transform
& transform
,
51 HomogeneousCoordinate h
= ProjectHomogeneousPoint(transform
, p
);
52 *clipped
= h
.w() <= 0;
56 static HomogeneousCoordinate
MapHomogeneousPoint(
57 const gfx::Transform
& transform
,
58 const gfx::Point3F
& p
) {
59 HomogeneousCoordinate
result(p
.x(), p
.y(), p
.z(), 1.0);
60 transform
.matrix().mapMScalars(result
.vec
, result
.vec
);
64 static HomogeneousCoordinate
ComputeClippedPointForEdge(
65 const HomogeneousCoordinate
& h1
,
66 const HomogeneousCoordinate
& h2
) {
67 // Points h1 and h2 form a line in 4d, and any point on that line can be
68 // represented as an interpolation between h1 and h2:
69 // p = (1-t) h1 + (t) h2
71 // We want to compute point p such that p.w == epsilon, where epsilon is a
72 // small non-zero number. (but the smaller the number is, the higher the risk
74 // To do this, we solve for t in the following equation:
75 // p.w = epsilon = (1-t) * h1.w + (t) * h2.w
77 // Once paramter t is known, the rest of p can be computed via
78 // p = (1-t) h1 + (t) h2.
80 // Technically this is a special case of the following assertion, but its a
81 // good idea to keep it an explicit sanity check here.
82 DCHECK_NE(h2
.w(), h1
.w());
83 // Exactly one of h1 or h2 (but not both) must be on the negative side of the
84 // w plane when this is called.
85 DCHECK(h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped());
87 // ...or any positive non-zero small epsilon
88 SkMScalar w
= 0.00001f
;
89 SkMScalar t
= (w
- h1
.w()) / (h2
.w() - h1
.w());
91 SkMScalar x
= (SK_MScalar1
- t
) * h1
.x() + t
* h2
.x();
92 SkMScalar y
= (SK_MScalar1
- t
) * h1
.y() + t
* h2
.y();
93 SkMScalar z
= (SK_MScalar1
- t
) * h1
.z() + t
* h2
.z();
95 return HomogeneousCoordinate(x
, y
, z
, w
);
98 static inline void ExpandBoundsToIncludePoint(float* xmin
,
102 const gfx::PointF
& p
) {
103 *xmin
= std::min(p
.x(), *xmin
);
104 *xmax
= std::max(p
.x(), *xmax
);
105 *ymin
= std::min(p
.y(), *ymin
);
106 *ymax
= std::max(p
.y(), *ymax
);
109 static inline void AddVertexToClippedQuad(const gfx::PointF
& new_vertex
,
110 gfx::PointF clipped_quad
[8],
111 int* num_vertices_in_clipped_quad
) {
112 clipped_quad
[*num_vertices_in_clipped_quad
] = new_vertex
;
113 (*num_vertices_in_clipped_quad
)++;
116 static inline void AddVertexToClippedQuad3d(const gfx::Point3F
& new_vertex
,
117 gfx::Point3F clipped_quad
[8],
118 int* num_vertices_in_clipped_quad
) {
119 clipped_quad
[*num_vertices_in_clipped_quad
] = new_vertex
;
120 (*num_vertices_in_clipped_quad
)++;
123 gfx::Rect
MathUtil::MapEnclosingClippedRect(const gfx::Transform
& transform
,
124 const gfx::Rect
& src_rect
) {
125 if (transform
.IsIdentityOrIntegerTranslation()) {
126 gfx::Vector2d
offset(static_cast<int>(transform
.matrix().getFloat(0, 3)),
127 static_cast<int>(transform
.matrix().getFloat(1, 3)));
128 return src_rect
+ offset
;
130 return gfx::ToEnclosingRect(MapClippedRect(transform
, gfx::RectF(src_rect
)));
133 gfx::RectF
MathUtil::MapClippedRect(const gfx::Transform
& transform
,
134 const gfx::RectF
& src_rect
) {
135 if (transform
.IsIdentityOrTranslation()) {
136 gfx::Vector2dF
offset(transform
.matrix().getFloat(0, 3),
137 transform
.matrix().getFloat(1, 3));
138 return src_rect
+ offset
;
141 // Apply the transform, but retain the result in homogeneous coordinates.
143 SkMScalar quad
[4 * 2]; // input: 4 x 2D points
144 quad
[0] = src_rect
.x();
145 quad
[1] = src_rect
.y();
146 quad
[2] = src_rect
.right();
147 quad
[3] = src_rect
.y();
148 quad
[4] = src_rect
.right();
149 quad
[5] = src_rect
.bottom();
150 quad
[6] = src_rect
.x();
151 quad
[7] = src_rect
.bottom();
153 SkMScalar result
[4 * 4]; // output: 4 x 4D homogeneous points
154 transform
.matrix().map2(quad
, 4, result
);
156 HomogeneousCoordinate
hc0(result
[0], result
[1], result
[2], result
[3]);
157 HomogeneousCoordinate
hc1(result
[4], result
[5], result
[6], result
[7]);
158 HomogeneousCoordinate
hc2(result
[8], result
[9], result
[10], result
[11]);
159 HomogeneousCoordinate
hc3(result
[12], result
[13], result
[14], result
[15]);
160 return ComputeEnclosingClippedRect(hc0
, hc1
, hc2
, hc3
);
163 gfx::Rect
MathUtil::ProjectEnclosingClippedRect(const gfx::Transform
& transform
,
164 const gfx::Rect
& src_rect
) {
165 if (transform
.IsIdentityOrIntegerTranslation()) {
166 gfx::Vector2d
offset(static_cast<int>(transform
.matrix().getFloat(0, 3)),
167 static_cast<int>(transform
.matrix().getFloat(1, 3)));
168 return src_rect
+ offset
;
170 return gfx::ToEnclosingRect(
171 ProjectClippedRect(transform
, gfx::RectF(src_rect
)));
174 gfx::RectF
MathUtil::ProjectClippedRect(const gfx::Transform
& transform
,
175 const gfx::RectF
& src_rect
) {
176 if (transform
.IsIdentityOrTranslation()) {
177 gfx::Vector2dF
offset(transform
.matrix().getFloat(0, 3),
178 transform
.matrix().getFloat(1, 3));
179 return src_rect
+ offset
;
182 // Perform the projection, but retain the result in homogeneous coordinates.
183 gfx::QuadF q
= gfx::QuadF(src_rect
);
184 HomogeneousCoordinate h1
= ProjectHomogeneousPoint(transform
, q
.p1());
185 HomogeneousCoordinate h2
= ProjectHomogeneousPoint(transform
, q
.p2());
186 HomogeneousCoordinate h3
= ProjectHomogeneousPoint(transform
, q
.p3());
187 HomogeneousCoordinate h4
= ProjectHomogeneousPoint(transform
, q
.p4());
189 return ComputeEnclosingClippedRect(h1
, h2
, h3
, h4
);
192 gfx::Rect
MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
193 const gfx::Transform
& transform
,
194 const gfx::Rect
& rect
) {
195 DCHECK(transform
.Preserves2dAxisAlignment());
197 if (transform
.IsIdentityOrIntegerTranslation()) {
198 gfx::Vector2d
offset(static_cast<int>(transform
.matrix().getFloat(0, 3)),
199 static_cast<int>(transform
.matrix().getFloat(1, 3)));
200 return rect
+ offset
;
202 if (transform
.IsIdentityOrTranslation()) {
203 gfx::Vector2dF
offset(transform
.matrix().getFloat(0, 3),
204 transform
.matrix().getFloat(1, 3));
205 return gfx::ToEnclosedRect(gfx::RectF(rect
) + offset
);
208 SkMScalar quad
[2 * 2]; // input: 2 x 2D points
211 quad
[2] = rect
.right();
212 quad
[3] = rect
.bottom();
214 SkMScalar result
[4 * 2]; // output: 2 x 4D homogeneous points
215 transform
.matrix().map2(quad
, 2, result
);
217 HomogeneousCoordinate
hc0(result
[0], result
[1], result
[2], result
[3]);
218 HomogeneousCoordinate
hc1(result
[4], result
[5], result
[6], result
[7]);
219 DCHECK(!hc0
.ShouldBeClipped());
220 DCHECK(!hc1
.ShouldBeClipped());
222 gfx::PointF
top_left(hc0
.CartesianPoint2d());
223 gfx::PointF
bottom_right(hc1
.CartesianPoint2d());
224 return gfx::ToEnclosedRect(gfx::BoundingRect(top_left
, bottom_right
));
227 void MathUtil::MapClippedQuad(const gfx::Transform
& transform
,
228 const gfx::QuadF
& src_quad
,
229 gfx::PointF clipped_quad
[8],
230 int* num_vertices_in_clipped_quad
) {
231 HomogeneousCoordinate h1
=
232 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p1()));
233 HomogeneousCoordinate h2
=
234 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p2()));
235 HomogeneousCoordinate h3
=
236 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p3()));
237 HomogeneousCoordinate h4
=
238 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p4()));
240 // The order of adding the vertices to the array is chosen so that
241 // clockwise / counter-clockwise orientation is retained.
243 *num_vertices_in_clipped_quad
= 0;
245 if (!h1
.ShouldBeClipped()) {
246 AddVertexToClippedQuad(
247 h1
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
250 if (h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped()) {
251 AddVertexToClippedQuad(
252 ComputeClippedPointForEdge(h1
, h2
).CartesianPoint2d(),
254 num_vertices_in_clipped_quad
);
257 if (!h2
.ShouldBeClipped()) {
258 AddVertexToClippedQuad(
259 h2
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
262 if (h2
.ShouldBeClipped() ^ h3
.ShouldBeClipped()) {
263 AddVertexToClippedQuad(
264 ComputeClippedPointForEdge(h2
, h3
).CartesianPoint2d(),
266 num_vertices_in_clipped_quad
);
269 if (!h3
.ShouldBeClipped()) {
270 AddVertexToClippedQuad(
271 h3
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
274 if (h3
.ShouldBeClipped() ^ h4
.ShouldBeClipped()) {
275 AddVertexToClippedQuad(
276 ComputeClippedPointForEdge(h3
, h4
).CartesianPoint2d(),
278 num_vertices_in_clipped_quad
);
281 if (!h4
.ShouldBeClipped()) {
282 AddVertexToClippedQuad(
283 h4
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
286 if (h4
.ShouldBeClipped() ^ h1
.ShouldBeClipped()) {
287 AddVertexToClippedQuad(
288 ComputeClippedPointForEdge(h4
, h1
).CartesianPoint2d(),
290 num_vertices_in_clipped_quad
);
293 DCHECK_LE(*num_vertices_in_clipped_quad
, 8);
296 bool MathUtil::MapClippedQuad3d(const gfx::Transform
& transform
,
297 const gfx::QuadF
& src_quad
,
298 gfx::Point3F clipped_quad
[8],
299 int* num_vertices_in_clipped_quad
) {
300 HomogeneousCoordinate h1
=
301 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p1()));
302 HomogeneousCoordinate h2
=
303 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p2()));
304 HomogeneousCoordinate h3
=
305 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p3()));
306 HomogeneousCoordinate h4
=
307 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p4()));
309 // The order of adding the vertices to the array is chosen so that
310 // clockwise / counter-clockwise orientation is retained.
312 *num_vertices_in_clipped_quad
= 0;
314 if (!h1
.ShouldBeClipped()) {
315 AddVertexToClippedQuad3d(
316 h1
.CartesianPoint3d(), clipped_quad
, num_vertices_in_clipped_quad
);
319 if (h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped()) {
320 AddVertexToClippedQuad3d(
321 ComputeClippedPointForEdge(h1
, h2
).CartesianPoint3d(),
323 num_vertices_in_clipped_quad
);
326 if (!h2
.ShouldBeClipped()) {
327 AddVertexToClippedQuad3d(
328 h2
.CartesianPoint3d(), clipped_quad
, num_vertices_in_clipped_quad
);
331 if (h2
.ShouldBeClipped() ^ h3
.ShouldBeClipped()) {
332 AddVertexToClippedQuad3d(
333 ComputeClippedPointForEdge(h2
, h3
).CartesianPoint3d(),
335 num_vertices_in_clipped_quad
);
338 if (!h3
.ShouldBeClipped()) {
339 AddVertexToClippedQuad3d(
340 h3
.CartesianPoint3d(), clipped_quad
, num_vertices_in_clipped_quad
);
343 if (h3
.ShouldBeClipped() ^ h4
.ShouldBeClipped()) {
344 AddVertexToClippedQuad3d(
345 ComputeClippedPointForEdge(h3
, h4
).CartesianPoint3d(),
347 num_vertices_in_clipped_quad
);
350 if (!h4
.ShouldBeClipped()) {
351 AddVertexToClippedQuad3d(
352 h4
.CartesianPoint3d(), clipped_quad
, num_vertices_in_clipped_quad
);
355 if (h4
.ShouldBeClipped() ^ h1
.ShouldBeClipped()) {
356 AddVertexToClippedQuad3d(
357 ComputeClippedPointForEdge(h4
, h1
).CartesianPoint3d(),
359 num_vertices_in_clipped_quad
);
362 DCHECK_LE(*num_vertices_in_clipped_quad
, 8);
363 return (*num_vertices_in_clipped_quad
>= 4);
366 gfx::RectF
MathUtil::ComputeEnclosingRectOfVertices(
367 const gfx::PointF vertices
[],
369 if (num_vertices
< 2)
372 float xmin
= std::numeric_limits
<float>::max();
373 float xmax
= -std::numeric_limits
<float>::max();
374 float ymin
= std::numeric_limits
<float>::max();
375 float ymax
= -std::numeric_limits
<float>::max();
377 for (int i
= 0; i
< num_vertices
; ++i
)
378 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
, vertices
[i
]);
380 return gfx::RectF(gfx::PointF(xmin
, ymin
),
381 gfx::SizeF(xmax
- xmin
, ymax
- ymin
));
384 gfx::RectF
MathUtil::ComputeEnclosingClippedRect(
385 const HomogeneousCoordinate
& h1
,
386 const HomogeneousCoordinate
& h2
,
387 const HomogeneousCoordinate
& h3
,
388 const HomogeneousCoordinate
& h4
) {
389 // This function performs clipping as necessary and computes the enclosing 2d
390 // gfx::RectF of the vertices. Doing these two steps simultaneously allows us
391 // to avoid the overhead of storing an unknown number of clipped vertices.
393 // If no vertices on the quad are clipped, then we can simply return the
394 // enclosing rect directly.
395 bool something_clipped
= h1
.ShouldBeClipped() || h2
.ShouldBeClipped() ||
396 h3
.ShouldBeClipped() || h4
.ShouldBeClipped();
397 if (!something_clipped
) {
398 gfx::QuadF mapped_quad
= gfx::QuadF(h1
.CartesianPoint2d(),
399 h2
.CartesianPoint2d(),
400 h3
.CartesianPoint2d(),
401 h4
.CartesianPoint2d());
402 return mapped_quad
.BoundingBox();
405 bool everything_clipped
= h1
.ShouldBeClipped() && h2
.ShouldBeClipped() &&
406 h3
.ShouldBeClipped() && h4
.ShouldBeClipped();
407 if (everything_clipped
)
410 float xmin
= std::numeric_limits
<float>::max();
411 float xmax
= -std::numeric_limits
<float>::max();
412 float ymin
= std::numeric_limits
<float>::max();
413 float ymax
= -std::numeric_limits
<float>::max();
415 if (!h1
.ShouldBeClipped())
416 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
417 h1
.CartesianPoint2d());
419 if (h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped())
420 ExpandBoundsToIncludePoint(&xmin
,
424 ComputeClippedPointForEdge(h1
, h2
)
425 .CartesianPoint2d());
427 if (!h2
.ShouldBeClipped())
428 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
429 h2
.CartesianPoint2d());
431 if (h2
.ShouldBeClipped() ^ h3
.ShouldBeClipped())
432 ExpandBoundsToIncludePoint(&xmin
,
436 ComputeClippedPointForEdge(h2
, h3
)
437 .CartesianPoint2d());
439 if (!h3
.ShouldBeClipped())
440 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
441 h3
.CartesianPoint2d());
443 if (h3
.ShouldBeClipped() ^ h4
.ShouldBeClipped())
444 ExpandBoundsToIncludePoint(&xmin
,
448 ComputeClippedPointForEdge(h3
, h4
)
449 .CartesianPoint2d());
451 if (!h4
.ShouldBeClipped())
452 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
453 h4
.CartesianPoint2d());
455 if (h4
.ShouldBeClipped() ^ h1
.ShouldBeClipped())
456 ExpandBoundsToIncludePoint(&xmin
,
460 ComputeClippedPointForEdge(h4
, h1
)
461 .CartesianPoint2d());
463 return gfx::RectF(gfx::PointF(xmin
, ymin
),
464 gfx::SizeF(xmax
- xmin
, ymax
- ymin
));
467 gfx::QuadF
MathUtil::MapQuad(const gfx::Transform
& transform
,
470 if (transform
.IsIdentityOrTranslation()) {
471 gfx::QuadF
mapped_quad(q
);
472 mapped_quad
+= gfx::Vector2dF(transform
.matrix().getFloat(0, 3),
473 transform
.matrix().getFloat(1, 3));
478 HomogeneousCoordinate h1
=
479 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p1()));
480 HomogeneousCoordinate h2
=
481 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p2()));
482 HomogeneousCoordinate h3
=
483 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p3()));
484 HomogeneousCoordinate h4
=
485 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p4()));
487 *clipped
= h1
.ShouldBeClipped() || h2
.ShouldBeClipped() ||
488 h3
.ShouldBeClipped() || h4
.ShouldBeClipped();
490 // Result will be invalid if clipped == true. But, compute it anyway just in
491 // case, to emulate existing behavior.
492 return gfx::QuadF(h1
.CartesianPoint2d(),
493 h2
.CartesianPoint2d(),
494 h3
.CartesianPoint2d(),
495 h4
.CartesianPoint2d());
498 gfx::QuadF
MathUtil::MapQuad3d(const gfx::Transform
& transform
,
502 if (transform
.IsIdentityOrTranslation()) {
503 gfx::QuadF
mapped_quad(q
);
504 mapped_quad
+= gfx::Vector2dF(transform
.matrix().getFloat(0, 3),
505 transform
.matrix().getFloat(1, 3));
507 p
[0] = gfx::Point3F(mapped_quad
.p1().x(), mapped_quad
.p1().y(), 0.0f
);
508 p
[1] = gfx::Point3F(mapped_quad
.p2().x(), mapped_quad
.p2().y(), 0.0f
);
509 p
[2] = gfx::Point3F(mapped_quad
.p3().x(), mapped_quad
.p3().y(), 0.0f
);
510 p
[3] = gfx::Point3F(mapped_quad
.p4().x(), mapped_quad
.p4().y(), 0.0f
);
514 HomogeneousCoordinate h1
=
515 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p1()));
516 HomogeneousCoordinate h2
=
517 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p2()));
518 HomogeneousCoordinate h3
=
519 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p3()));
520 HomogeneousCoordinate h4
=
521 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p4()));
523 *clipped
= h1
.ShouldBeClipped() || h2
.ShouldBeClipped() ||
524 h3
.ShouldBeClipped() || h4
.ShouldBeClipped();
526 // Result will be invalid if clipped == true. But, compute it anyway just in
527 // case, to emulate existing behavior.
528 p
[0] = h1
.CartesianPoint3d();
529 p
[1] = h2
.CartesianPoint3d();
530 p
[2] = h3
.CartesianPoint3d();
531 p
[3] = h4
.CartesianPoint3d();
533 return gfx::QuadF(h1
.CartesianPoint2d(),
534 h2
.CartesianPoint2d(),
535 h3
.CartesianPoint2d(),
536 h4
.CartesianPoint2d());
539 gfx::PointF
MathUtil::MapPoint(const gfx::Transform
& transform
,
540 const gfx::PointF
& p
,
542 HomogeneousCoordinate h
= MapHomogeneousPoint(transform
, gfx::Point3F(p
));
546 return h
.CartesianPoint2d();
549 // The cartesian coordinates will be invalid after dividing by w.
552 // Avoid dividing by w if w == 0.
554 return gfx::PointF();
556 // This return value will be invalid because clipped == true, but (1) users of
557 // this code should be ignoring the return value when clipped == true anyway,
558 // and (2) this behavior is more consistent with existing behavior of WebKit
559 // transforms if the user really does not ignore the return value.
560 return h
.CartesianPoint2d();
563 gfx::Point3F
MathUtil::MapPoint(const gfx::Transform
& transform
,
564 const gfx::Point3F
& p
,
566 HomogeneousCoordinate h
= MapHomogeneousPoint(transform
, p
);
570 return h
.CartesianPoint3d();
573 // The cartesian coordinates will be invalid after dividing by w.
576 // Avoid dividing by w if w == 0.
578 return gfx::Point3F();
580 // This return value will be invalid because clipped == true, but (1) users of
581 // this code should be ignoring the return value when clipped == true anyway,
582 // and (2) this behavior is more consistent with existing behavior of WebKit
583 // transforms if the user really does not ignore the return value.
584 return h
.CartesianPoint3d();
587 gfx::QuadF
MathUtil::ProjectQuad(const gfx::Transform
& transform
,
590 gfx::QuadF projected_quad
;
592 projected_quad
.set_p1(ProjectPoint(transform
, q
.p1(), &clipped_point
));
593 *clipped
= clipped_point
;
594 projected_quad
.set_p2(ProjectPoint(transform
, q
.p2(), &clipped_point
));
595 *clipped
|= clipped_point
;
596 projected_quad
.set_p3(ProjectPoint(transform
, q
.p3(), &clipped_point
));
597 *clipped
|= clipped_point
;
598 projected_quad
.set_p4(ProjectPoint(transform
, q
.p4(), &clipped_point
));
599 *clipped
|= clipped_point
;
601 return projected_quad
;
604 gfx::PointF
MathUtil::ProjectPoint(const gfx::Transform
& transform
,
605 const gfx::PointF
& p
,
607 HomogeneousCoordinate h
= ProjectHomogeneousPoint(transform
, p
, clipped
);
608 // Avoid dividing by w if w == 0.
610 return gfx::PointF();
612 // This return value will be invalid if clipped == true, but (1) users of
613 // this code should be ignoring the return value when clipped == true anyway,
614 // and (2) this behavior is more consistent with existing behavior of WebKit
615 // transforms if the user really does not ignore the return value.
616 return h
.CartesianPoint2d();
619 gfx::Point3F
MathUtil::ProjectPoint3D(const gfx::Transform
& transform
,
620 const gfx::PointF
& p
,
622 HomogeneousCoordinate h
= ProjectHomogeneousPoint(transform
, p
, clipped
);
624 return gfx::Point3F();
625 return h
.CartesianPoint3d();
628 gfx::RectF
MathUtil::ScaleRectProportional(const gfx::RectF
& input_outer_rect
,
629 const gfx::RectF
& scale_outer_rect
,
630 const gfx::RectF
& scale_inner_rect
) {
631 gfx::RectF output_inner_rect
= input_outer_rect
;
632 float scale_rect_to_input_scale_x
=
633 scale_outer_rect
.width() / input_outer_rect
.width();
634 float scale_rect_to_input_scale_y
=
635 scale_outer_rect
.height() / input_outer_rect
.height();
637 gfx::Vector2dF top_left_diff
=
638 scale_inner_rect
.origin() - scale_outer_rect
.origin();
639 gfx::Vector2dF bottom_right_diff
=
640 scale_inner_rect
.bottom_right() - scale_outer_rect
.bottom_right();
641 output_inner_rect
.Inset(top_left_diff
.x() / scale_rect_to_input_scale_x
,
642 top_left_diff
.y() / scale_rect_to_input_scale_y
,
643 -bottom_right_diff
.x() / scale_rect_to_input_scale_x
,
644 -bottom_right_diff
.y() / scale_rect_to_input_scale_y
);
645 return output_inner_rect
;
648 static inline bool NearlyZero(double value
) {
649 return std::abs(value
) < std::numeric_limits
<double>::epsilon();
652 static inline float ScaleOnAxis(double a
, double b
, double c
) {
653 if (NearlyZero(b
) && NearlyZero(c
))
655 if (NearlyZero(a
) && NearlyZero(c
))
657 if (NearlyZero(a
) && NearlyZero(b
))
660 // Do the sqrt as a double to not lose precision.
661 return static_cast<float>(std::sqrt(a
* a
+ b
* b
+ c
* c
));
664 gfx::Vector2dF
MathUtil::ComputeTransform2dScaleComponents(
665 const gfx::Transform
& transform
,
666 float fallback_value
) {
667 if (transform
.HasPerspective())
668 return gfx::Vector2dF(fallback_value
, fallback_value
);
669 float x_scale
= ScaleOnAxis(transform
.matrix().getDouble(0, 0),
670 transform
.matrix().getDouble(1, 0),
671 transform
.matrix().getDouble(2, 0));
672 float y_scale
= ScaleOnAxis(transform
.matrix().getDouble(0, 1),
673 transform
.matrix().getDouble(1, 1),
674 transform
.matrix().getDouble(2, 1));
675 return gfx::Vector2dF(x_scale
, y_scale
);
678 float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF
& v1
,
679 const gfx::Vector2dF
& v2
) {
680 double dot_product
= gfx::DotProduct(v1
, v2
) / v1
.Length() / v2
.Length();
681 // Clamp to compensate for rounding errors.
682 dot_product
= std::max(-1.0, std::min(1.0, dot_product
));
683 return static_cast<float>(Rad2Deg(std::acos(dot_product
)));
686 gfx::Vector2dF
MathUtil::ProjectVector(const gfx::Vector2dF
& source
,
687 const gfx::Vector2dF
& destination
) {
688 float projected_length
=
689 gfx::DotProduct(source
, destination
) / destination
.LengthSquared();
690 return gfx::Vector2dF(projected_length
* destination
.x(),
691 projected_length
* destination
.y());
694 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::Size
& s
) {
695 scoped_ptr
<base::DictionaryValue
> res(new base::DictionaryValue());
696 res
->SetDouble("width", s
.width());
697 res
->SetDouble("height", s
.height());
701 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::Rect
& r
) {
702 scoped_ptr
<base::ListValue
> res(new base::ListValue());
703 res
->AppendInteger(r
.x());
704 res
->AppendInteger(r
.y());
705 res
->AppendInteger(r
.width());
706 res
->AppendInteger(r
.height());
710 bool MathUtil::FromValue(const base::Value
* raw_value
, gfx::Rect
* out_rect
) {
711 const base::ListValue
* value
= nullptr;
712 if (!raw_value
->GetAsList(&value
))
715 if (value
->GetSize() != 4)
720 ok
&= value
->GetInteger(0, &x
);
721 ok
&= value
->GetInteger(1, &y
);
722 ok
&= value
->GetInteger(2, &w
);
723 ok
&= value
->GetInteger(3, &h
);
727 *out_rect
= gfx::Rect(x
, y
, w
, h
);
731 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::PointF
& pt
) {
732 scoped_ptr
<base::ListValue
> res(new base::ListValue());
733 res
->AppendDouble(pt
.x());
734 res
->AppendDouble(pt
.y());
738 void MathUtil::AddToTracedValue(const char* name
,
740 base::trace_event::TracedValue
* res
) {
741 res
->BeginDictionary(name
);
742 res
->SetDouble("width", s
.width());
743 res
->SetDouble("height", s
.height());
744 res
->EndDictionary();
747 void MathUtil::AddToTracedValue(const char* name
,
749 base::trace_event::TracedValue
* res
) {
750 res
->BeginDictionary(name
);
751 res
->SetDouble("width", s
.width());
752 res
->SetDouble("height", s
.height());
753 res
->EndDictionary();
756 void MathUtil::AddToTracedValue(const char* name
,
758 base::trace_event::TracedValue
* res
) {
759 res
->BeginArray(name
);
760 res
->AppendInteger(r
.x());
761 res
->AppendInteger(r
.y());
762 res
->AppendInteger(r
.width());
763 res
->AppendInteger(r
.height());
767 void MathUtil::AddToTracedValue(const char* name
,
768 const gfx::PointF
& pt
,
769 base::trace_event::TracedValue
* res
) {
770 res
->BeginArray(name
);
771 res
->AppendDouble(pt
.x());
772 res
->AppendDouble(pt
.y());
776 void MathUtil::AddToTracedValue(const char* name
,
777 const gfx::Point3F
& pt
,
778 base::trace_event::TracedValue
* res
) {
779 res
->BeginArray(name
);
780 res
->AppendDouble(pt
.x());
781 res
->AppendDouble(pt
.y());
782 res
->AppendDouble(pt
.z());
786 void MathUtil::AddToTracedValue(const char* name
,
787 const gfx::Vector2d
& v
,
788 base::trace_event::TracedValue
* res
) {
789 res
->BeginArray(name
);
790 res
->AppendInteger(v
.x());
791 res
->AppendInteger(v
.y());
795 void MathUtil::AddToTracedValue(const char* name
,
796 const gfx::Vector2dF
& v
,
797 base::trace_event::TracedValue
* res
) {
798 res
->BeginArray(name
);
799 res
->AppendDouble(v
.x());
800 res
->AppendDouble(v
.y());
804 void MathUtil::AddToTracedValue(const char* name
,
805 const gfx::ScrollOffset
& v
,
806 base::trace_event::TracedValue
* res
) {
807 res
->BeginArray(name
);
808 res
->AppendDouble(v
.x());
809 res
->AppendDouble(v
.y());
813 void MathUtil::AddToTracedValue(const char* name
,
815 base::trace_event::TracedValue
* res
) {
816 res
->BeginArray(name
);
817 res
->AppendDouble(q
.p1().x());
818 res
->AppendDouble(q
.p1().y());
819 res
->AppendDouble(q
.p2().x());
820 res
->AppendDouble(q
.p2().y());
821 res
->AppendDouble(q
.p3().x());
822 res
->AppendDouble(q
.p3().y());
823 res
->AppendDouble(q
.p4().x());
824 res
->AppendDouble(q
.p4().y());
828 void MathUtil::AddToTracedValue(const char* name
,
829 const gfx::RectF
& rect
,
830 base::trace_event::TracedValue
* res
) {
831 res
->BeginArray(name
);
832 res
->AppendDouble(rect
.x());
833 res
->AppendDouble(rect
.y());
834 res
->AppendDouble(rect
.width());
835 res
->AppendDouble(rect
.height());
839 void MathUtil::AddToTracedValue(const char* name
,
840 const gfx::Transform
& transform
,
841 base::trace_event::TracedValue
* res
) {
842 res
->BeginArray(name
);
843 const SkMatrix44
& m
= transform
.matrix();
844 for (int row
= 0; row
< 4; ++row
) {
845 for (int col
= 0; col
< 4; ++col
)
846 res
->AppendDouble(m
.getDouble(row
, col
));
851 void MathUtil::AddToTracedValue(const char* name
,
852 const gfx::BoxF
& box
,
853 base::trace_event::TracedValue
* res
) {
854 res
->BeginArray(name
);
855 res
->AppendInteger(box
.x());
856 res
->AppendInteger(box
.y());
857 res
->AppendInteger(box
.z());
858 res
->AppendInteger(box
.width());
859 res
->AppendInteger(box
.height());
860 res
->AppendInteger(box
.depth());
864 double MathUtil::AsDoubleSafely(double value
) {
865 return std::min(value
, std::numeric_limits
<double>::max());
868 float MathUtil::AsFloatSafely(float value
) {
869 return std::min(value
, std::numeric_limits
<float>::max());
872 gfx::Vector3dF
MathUtil::GetXAxis(const gfx::Transform
& transform
) {
873 return gfx::Vector3dF(transform
.matrix().getFloat(0, 0),
874 transform
.matrix().getFloat(1, 0),
875 transform
.matrix().getFloat(2, 0));
878 gfx::Vector3dF
MathUtil::GetYAxis(const gfx::Transform
& transform
) {
879 return gfx::Vector3dF(transform
.matrix().getFloat(0, 1),
880 transform
.matrix().getFloat(1, 1),
881 transform
.matrix().getFloat(2, 1));